
“Where to Multivariate Normal Samples Come
from?

Paul E. Johnson <pauljohn@ku.edu>
Center for Research Methods and Data Analysis

University of Kansas
Lawrence, Kansas 66045

January 15, 2016

This note is about details of simulation of draws from a multivariate normal distribu-
tion. It reviews the mathematical formulation of the problem, some matrix terminology,
and compares software implementations. It explores a basic question that most social
scientists never consider, “Where do multivariate normal samples come from?” The
essay compares Stata (StataCorp, 2015) functions, corr2data and drawnorm, and
the mvrnorm function in the MASS package (Venables & Ripley, 2002) for R (R Core
Team, 2015). A number of matrix algebra details are written out in detail.

In an essay named, “New Estimates for Propensity Score Analysis Monte Carlo Simulations”,
we discuss a replication of Monte Carlo simulation estimates reported in Guo & Fraser (2015).
Put simply, simulations prepared in R (R Core Team, 2015) did not match estimates conducted
with Stata (StataCorp, 2015) by Guo and Fraser. In the process of discovering the source of
the differences, a good deal of effort was invested in basic questions about competing methods of
numerical linear algebra and the generation of simulated multivariate normal data.
This essay is a record of the technical side of the project. Students in research methodology

can benefit from an inspection of this material in four ways. First, the process of simulating
draws from a multivariate normal (MVN) distribution is laid out, step by step. Second, several
competing methods of decomposing a matrix X and the associated cross product matrix XTX
are considered. Third, coding differences between R and Stata implementations of the MVN are
considered. Finally, the quirks of a Stata function called corr2data are investigated. It is shown
that usage of corr2data has troubling implications in projects that call for data from an MVN
process.
The first sections offer a formal definition of the MVN distribution and its parameters along

with some mathematical details. A 5 step procedure for generating MVN samples is described.
The software implementations in Stata and R are compared. The final section focuses on Stata’s
corr2data function, which may have been used accidentally in simulations that should instead
have used drawnorm.
This note presumes a basic training in statistics, random variables1, and elementary matrix

1“Distribution Overview: Probability by the Seat of the Pants”, http://pj.freefaculty.org/guides/stat/
Distributions/DistributionOverview/DistributionReview.pdf

1

http://pj.freefaculty.org/guides/stat/Distributions/DistributionOverview/DistributionReview.pdf
http://pj.freefaculty.org/guides/stat/Distributions/DistributionOverview/DistributionReview.pdf

algebra as it is used in regression analysis. Most of the other details are given a basic description
when they arise.

1 Normal and Multivariate Normal Distributions
Basic surveys of the normal distribution, N(µ, σ2), and the multivariate normal distribution,
MVN(µ,Σ), are available on my Website2.
The probability density function for the one variable model is written

Univariate : f(x) = 1√
2πσ

e− 1
2 (x−µ

σ)2
or 1

(2π)1/2σ
e− 1

2 (x−µ)σ−1(x−µ). (1)

A draw from that probability process is referred to as x ∼ N(µ, σ2). The parameter µ determines
the center point of the distribution’s values, while σ2 is the dispersion. The density function has
the property that the mostly likely outcome is also the expected value, which happens to equal the
parameter µ. For that reason, the parameter µ is sometimes simply referred to as the expected
value, or the mean. The dispersion parameter is often referred to as the variance. I try to avoid
the name “population” to refer to this process; that causes more confusion than clarity for readers.
Instead, refer to this a data generating process, and µ and σ are the “true” or “parametric” values.
Estimates from samples are distinguished with hats, µ̂ and σ̂.
We write x ∼ MVN(µ,Σ) to refer to a column vector that is drawn from the multivariate

normal distribution, MVN(µ,Σ)3

x =


x1
x2
...
xp

 ∼MVN(µ,Σ) = MVN



µ1
µ2
...
µp

 ,

σ2

1 σ12 σ1p
σ12 σ2

2 σ2p
. . .

σ1p σ2p σ2
p


 . (2)

The probability density function (PDF) for the MVN is quite similar to the formula for the one
dimensional model.

f(x) = 1
(2π)p/2|Σ|1/2 e

−1
2 (x−µ)TΣ−1(x−µ). (3)

The probability of a given outcome depends on the parameters,

µ =


µ1
µ2
...
µp

 Σ =


σ2

1 σ12 σ1p
σ12 σ2

2 σ2p
. . .

σ1p σ2p σ2
p

 . (4)

The matrix Σ is also known in the literature as the “variance-covariance matrix” or the “covariance
matrix”.

2“Normal Distribution”, http://pj.freefaculty.org/guides/stat/Distributions/
DistributionWriteups/Normal/Normal-01.pdf.
“The Multivariate Normal Distribution”, http://pj.freefaculty.org/guides/stat/Distributions/

DistributionWriteups/NormalMultivariate/NormalMultivariate.pdf
3To save space on a written page, we often refer the transpose, xT , which is a row vector, or, equivalently x =

(x1, x2, . . . xp)T .

2

http://pj.freefaculty.org/guides/stat/Distributions/DistributionWriteups/Normal/Normal-01.pdf
http://pj.freefaculty.org/guides/stat/Distributions/DistributionWriteups/Normal/Normal-01.pdf
http://pj.freefaculty.org/guides/stat/Distributions/DistributionWriteups/NormalMultivariate/NormalMultivariate.pdf
http://pj.freefaculty.org/guides/stat/Distributions/DistributionWriteups/NormalMultivariate/NormalMultivariate.pdf

The similarity of MVN to the one-dimensional normal is more apparent if we write the one
variable model’s density as

f(x) = 1
(2π)1/2σ

e− 1
2 (x−µ)σ−1(x−µ). (5)

If p = 1, of course, the two density functions are the same (both one dimensional).

2 Understanding the Variance Matrix Σ

Most students do not have trouble appreciating the fact that the vector of means for the individual
elements, (µ1, . . . , µp)T , provides the center points (modes, means) of the individual components
of the random draw. They do, however, have difficulty understanding the variance matrix Σ.
One source of difficulty is a notational incongruity. In the literature, we refer to variance as σ2

(sigma squared) and the standard deviation as σ (sigma). In contrast, in a multivariate normal
model, we refer to the variance matrix simply as Σ (bold-faced upper-case sigma), whereas it would
seem more natural to refer to it as Σ2.
A nice way to begin study the variance matrix is to set all of the non-diagonal elements to zero

(σij = 0),

Σ =


σ2

1 0 0
0 σ2

2 0
. . .

0 0 σ2
p

 (6)

As one can see in (6), the elements on the main diagonal (σ2
i) are variance parameters. Notice the

incongrous notation: Sigma (on the left) is equal to a diagonal of sigmas squared.
A draw from MVN with that Σ matrix would provide uncorrelated elements. We can see that

the square root of each element in the diagonal (
√
σ2
i = σi) looks an awful lot like the standard

deviation of an individual variable. If we took draws from MVN with this variance, we would
essentially have separate columns. We could look at the j’th element of x in isolation and the value
would be distributed with standard deviation σj .
Lets collect the standard deviations in a vector σ = (σ1, σ2, . . . , σp)T . If we place the standard

deviation values along the diagonal, as in the following, we have a matrix that might be thought
of as a square root of Σ:

Σ1/2 =


σ1 0 0
0 σ2 0

. . .
0 0 σp

 = diag(σ) (7)

Note that it is a matrix square root, in the sense that

Σ = Σ1/2Σ1/2. (8)

This will turn out to be a key idea in the generation of multivariate normal random. We are able
to state conditions under which a square root of the variance Σ exists.

2.1 About the off-diagonal elements, σij.
Generally, the off-diagonal elements in Σ are not equal to 0. Those off diagonal elements, σij in
(4), are commonly called covariance parameters. A positive value of σij means that elements xi

3

and xj “go together”, in the sense that if xi is high, then xj is also likely to be high. A negative
value means that when xi is high, then xj is low.
There are p2 elements in Σ (it is a p × p matrix). We are not free to set all of them however

we like. There are logical and mathematical restrictions on the values that must be respected.
Obviously, the main diagonal elements σ2

i must be positive (they are variances). In addition, as we
see in the next sections, Σ is symmetric and positive definite.

2.1.1 Σ is symmetric.

The values of Σ above and below the main diagonal must be the same, σij = σji. Thus, Σ = ΣT .
As soon as we define variance, the proof that Σ is symmetric will fall out without any effort.
To define variance, it is necessary to understand the concept of expected value. In a one variable

probability model, the expected value is E[x] = µ and the variance is defined as the expected
value of the squared deviation of observed scores around the expected value, E[(x − E[x])2] =
E[(x−µ)2] = σ2. Expected value is a probability weighted sum of possible outcomes for a variable.
In the normally distributed variables, µ is the average and σ2 is the diversity of scores likely to be
observed.
The multivariate model uses vector multiplication to define variance. Replace the one variable

expression (x− E[x]) with the multivariate (x− E[x]). I’ll be explicit:

Σ = E[(x − E[x])((x − E[x])T] (9)

= E



x1 − E[x1]
x2 − E[x2]

...
xp − E[xp]

[x1 − E[x1], x2 − E[x2], . . . , xp − E[xp]
]

= E



(x1 − E[x1])2 (x1 − E[x1])(x2 − E[x2]) (x1 − E[x1])(x3 − E[x3]) . . . (x1 − E[x1])(xp − E[xp])

(x1 − E[x1])(x2 − E[x2) (x2 − E[x2])2 (x2 − E[x2])(x3 − E[x3])
...

(x1 − E[x1])(x3 − E[x3) (x2 − E[x2])(x3 − E[x3])
. . .

...
. . .

. . .
...

(x1 − E[x1])(xp − E[xp]) (xp − E[xp])2

 .

The expected value of a matrix is the expected value of each individual element. Before writing
that out, lets simplify by replacing E[xi] with µi:

=


E[(x1 − µ1)2] E[(x1 − µ1)(x2 − µ2)] E[(x1 − µ1)(xp − µp)]

E[(x1 − µ1)(x2 − µ2)] E[(x2 − µ2)2]
. . .

E[(x1 − µ1)(xp − µp)] E[(xp − µp)2]

 (10)

From the construction of Σ, it should be apparent that Σ is a symmetric matrix4: E[(xi −
µi)(xj − µj)] = E[(xj − µj)(xi − µi)].
The impact of symmetry is that it reduces the number of “unrestricted elements” in Σ. There

are (n− 1)n/2 elements above the main diagonal. Once they are specified, they must be mirrored
below.

4In elementary mathematics, we know that a · b = b · a.

4

2.1.2 Σ is positive definite

This section is about the restrictions that flow from the idea that the last part of the exponent in
equation (3),

(x− µ)TΣ−1(x− µ), (11)

must be positive. We explore the idea that Σ−1, and hence Σ, must be “positive definite”. This dis-
cussion is a little bit esoteric, but this concept/terminology pervades the literature on multivariate
random numbers and there is simply no way to avoid it.
Here’s one intuition. The distance between two points cannot be negative (Remember Pythago-

ras: a2 + b2 = c2). The difference (x − µ) is the distance between x and µ. The squared distance
from x to µ is

(x− µ)T (x− µ) = (x1 − µ1)2 + (x2 − µ2)2 + . . .+ (xp − µp)2, (12)

an application of the Pythagorean theorem. Squared values are always positive. As long as the
two points are indeed at different positions, the distance between them has to be greater than zero.
This is not something to be derived. It is a property to be assumed:

(x− µ)T (x− µ) > 0 if x 6= µ. (13)

In (11) we have a weighted distance matrix, where the inverse of Σ appears between (x−µ)T and
(x − µ). The weighted distance, well, has to be positive, unless the two points we are comparing
are at the exactly same position. So we restate the “distance must be positive” idea:

(x− µ)TΣ−1(x− µ) > 0. (14)

The expression in (14) has a formal name: Σ−1 is “positive definite”. A matrix, such as Σ−1, is
positive definite if, for any non-zero vector z,

zTΣ−1z > 0. (15)

If the inequality allows “equal to”, ≥, then Σ−1 is said to be positive semi-definite. This generally
indicates that one column can be reproduced as a weighted sum of the other columns; such a
column adds no information.
Admittedly, this seems esoteric because we are working hard to justify the simple idea that

“something squared is a positive value”. Not only does it seem esoteric, it seems unhelpful. We
want information about restrictions on Σ, but we are giving restrictions on Σ−1. However, the
effort is not wasted.
Here is an important fact: if Σ is positive definite, then Σ−1 is positive definite. This is fairly

easy to prove. Suppose xΣx > 0 and Σ is symmetric and invertible. Let y = Σx. Note that
yT = xTΣT . Thus yTΣ−1y = xTΣTΣ−1Σx = xTΣx. The signs of the first and third elements
must be the same, so if Σ is positive definite, then so is Σ−1.

2.2 Checking if a Matrix is Positive Definite: Eigenvalues and Eigenvectors
In many linear algebra books (for example, Golub and Van Loan, 1996, p. 141-2), there will be a
list of equivalent properties that link positive definiteness of a matrix to a number of other qualities.
These other qualities give us ideas about how to check whether a matrix is positive definite, or how
we might manufacture a positive definite matrix..

Theorem 1. (Positive Definite Matrix Properties) The following are equivalent:

5

1. xTΣx > 0 for all x 6= 0.

2. If a matrix S has full column rank (the p columns are linearly independent), then the product
STS is a positive definite matrix.5

3. A positive definite matrix Σ can be decomposed into a product of matrices. The Cholesky
root and the eigenvalue decompositions are explored below.

4. The eigenvalues of Σ are positive.

5. The determinants of principal submatrices (square submatrices beginning with row and col-
umn 1) are positive.

In property 4, we note that when Σ is positive definite, then the eigenvalues are all positive.
Eigenvalues are discussed in depth in a first course on linear algebra. This note cannot replace

a thorough study of the material, but it might help students remember what they learned, or
motivate them to study some more. Here is a nutshell definition of eigenvalue.
The eigenvalues (λj) and eigenvectors (vj) of a matrix are defined as the solutions of this equation

Σvj = λjvj (16)

Heuristically, this says that the scaling effect that Σ exerts on a vector vj can be summarized by a
proportional rescaling λjvj . This is the sense in which the matrix Σ is characterized by λj and vj .
Eigenvalues are calculated as follows. Rearrange the definition as follows:

Σvj = λjvj
Σvj − λjvj = 0

Σvj − λjIvj = 0
(Σ− λjI) vj = 0 (17)

We want to ignore the trivial solution where vj = 0. Thus, when vj 6= 0, it must be that
(Σ − λjI) = 0. There may be several solutions, the eigenvalues are always generally unique. A
theorem in linear algebra states that the eigenvalues can be found as the solutions of the so-called
characteristic equation, det(Σ − λjI) = 0, where det represents the determinant. When Σ is a
well specified p × p variance matrix, then there will be p separate solutions of the characteristic
equation, and hence p eigenvalues. After the eigenvalues are found, then the corresponding vectors
are calculated.
In most software packages, the eigenvalues are stored in order of descending magnitude in λT =

(λ1, λ2, . . . , λp) and the eigenvectors are scaled so that vTj vj = 1. (The scaling is done by calculating
vTj vj for the un-scaled eigenvector and then replacing vj with 1

vTj vj
vj).

We use the symbol V = [v1,v2, . . . ,vp] to refer to a p × p matrix with columns of the scaled
eigenvectors. The columns of V are all linearly independent from one another. That is to say, not
only are they scaled so that their lengths are 1, but also vTj vk = 0 for all j 6= k. Thus

VTV = I (18)
5The number of columns in S determines the size of STS. If S is n×p, then STS is square, p×p, and it is symmetric.
The number of rows in S is not relevant to the final size of STS.

6

3 Rescaling Normal Random Variables
3.1 One Dimension: σ is a Scaling Parameter
Until recent software enhancements, it was very common that statistical packages (or spreadsheets)
would offer to draw from a standard normal distribution N(0, 1), but not from a normal with other
values for the expected value and variance. A draw from N(0, 1) can be re-scaled to match the
desired probability model.
If we have a draw x from N(0, 1) but we wish we had a draw from N(µ, σ2), where σ2 > 0, we

re-scale x:
y = µ+ σ · x. (19)

Note that x is multiplied by the standard deviation, σ, not the variance, σ2. The parameter σ is a
scaling factor, while the µ plays the role of a location parameter.
This pre-supposes that one has a high quality method to draw a simulated N(0, 1), of course,

but that is fairly well worked out at this late date.
There are two technical claims worth emphasizing.
1. Given a random variable x with E[x] = 0 and V ar[x] = 1, a weighted sum y = µ + σx has
E[y] = µ and V ar[y] = σ2. This claim is true for all random variables, whether x is normal
or not.

2. y is normally distributed, N(µ, σ2). The proof that this requires us to do some math (either
a “change of variables” in the probability density function or a comparison of the moment
generating functions).

3.2 The Multivariate Version of Re-scaling
The multivariate version of the rescaling exercise is as follows. This follows the argument in Scheuer
and Stoller (1962, p. 278). Suppose x is a vector of p values drawn from an MVN(0, I) process.

x =


x1
x2
...
xp

 ∼MVN




0
0
0
...
0

 ,


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 . . . 0
0 0 0 0 1



 (20)

This is no different from saying that each of the elements in x is drawn independently, xi ∼ N(0, 1).
We want to apply a transformation so that the result is

y =


y1
y2
...
yp

 ∼MVN(µ,Σ) = MVN



µ1
µ2
...
µp

 ,

σ2

1 σ12 σ1p
σ12 σ2

2 σ2p
. . .

σ1p σ2p σ2
p


 . (21)

The correct transformation looks quite a bit like (19):
y = µ+ Sx. (22)

y1
y2
...
yp

 =


µ1
µ2
...
µp

+


s11 s12 s1p
s21 s22 s2p

. . .
sp1 sp2 spp




x1
x2
...
xp

 .

7

where S is a square scaling matrix that plays the same role that σ played in the one variable model.
Clearly, the expected value of our candidate draw y is correct,

E[y] = E[µ+ Sx] = µ+ SE[x] = µ. (23)

And the variance matrix of y is
V ar[y] = SV ar(x)ST . (24)

Because V ar(x) = I and because STS is symmetric,

V ar[y] = SST = STS. (25)

As long as the scaling matrix S is chosen very carefully, so that STS = Σ, then a big part of
the work is finished. We have some encouragement in positive definite matrix property 2, which
indicates that STS is positive definite. We just don’t know yet if STS equals Σ. That problem is
discussed in the next section.
The next step is to establish the fact that y is multivariate normally distributed, y ∼MVN(µ,Σ).

According to Greene (2008, p. 1015), “Any linear function of a vector of joint normally distributed
variables is also normally distributed... Thus,

If x ∼ N(µ,Σ), thenAx + b ∼ N(Aµ+ b, AΣAT)”. (26)

It is said that the normal distribution is closed under addition: if we put in a draw from a multivari-
ate normal, and re-scale by adding or multiplying by real valued matrices, we get out a re-scaled,
but still multivariate normal, random variable. Devroye (1986, p. 565-6) gives an argument for
this based on the moment generating function. He adds, “Unfortunately, the only symmetric stable
distribution with finite variance is the normal distribution.... Thus, the property that the normal
distribution is closed under the operation ’linear combination’ is what makes it so attractive to the
user. If the user specifies non-normal marginals, the covariance structure is much more difficult to
enforce” (Devroye 1986, p. 565).

3.3 Square Root of a Matrix
The number 9 has two possible square roots, 3 and −3. The square root of a number is not unique.
In light of that, it should not come as a shock to learn that the square root of a matrix is not
unique. It may come as a shock, however, to learn matrix square roots are grossly different from
one another and there are many square roots.

Method 1: Cholesky decomposition

If all of the estimated eigenvalues are greater than zero, the Cholesky decomposition of Σ can
be calculated. The Cholesky algorithm finds a upper triangular matrix R with this interesting
property:

Σ = RT × R =


r11 0 0 0 0
r12 r22 0 0 0
r13 r23 r33 0 0

. . . 0
r1p r1p r3p rpp




r11 r12 r13 . . . r1p

r22 r23 r2p
r33

. . .
rpp

 . (27)

8

This is one way to get a “matrix square root.” The lower triangular part, RT , can play the role of
S in the rescaling equation (22).
How do we know that RT can pass for S? The definition in (27) indicates that RTR equals the

variance matrix,Σ.

Method 2: Eigen decomposition

When Σ is positive semi-definite (there is an eigenvalue equal to 0), the Cholesky decomposition is
not possible. In that case, an eigen decomposition of Σ can be used. Recall the eigenvalue vector
is λT = (λ1, λ2, . . . , λp) and the scaled eigenvectors are the columns of V = [v1,v2, . . . ,vp].
We have not emphasized until now that the eigenvalue matrix V is an orthonormal matrix. That

means the vectors are orthogonal to one another, vTi vj = 0 (that’s the “ortho” part), and they are
re-scaled so their norms are are unity: vTj vj = 1 (that’s the “normal” part). Hence

Fact 2. If V is an orthonormal matrix, then

1. VTV = I, and

2. V−1 = VT .

The eigenvalues and eigenvectors can be used to write out a decomposition of Σ. (This is also
referred to as the spectral decomposition of Σ). Begin with the definition in (16):

ΣV = Vdiag(λ)
ΣVVT = Vdiag(λ)VT

Σ = Vdiag(λ)VT . (28)

The function diag places a vector’s values along the diagonal:

diag(λ) =


λ1 0 0 0
0 λ2 0 0

0 0 . . . 0
0 0 0 λp

 . (29)

Since λj ≥ 0, a real-valued square root of each eigenvalue exists, and we can write this as a
product using diag(λ)1/2:

diag(λ) =


√
λ1 0 0 0
0

√
λ2 0 0

0 0 . . . 0
0 0 0

√
λp



√
λ1 0 0 0
0

√
λ2 0 0

0 0 . . . 0
0 0 0

√
λp

 = diag(λ)1/2diag(λ)1/2 (30)

This allows us to revise (28) into a format that helps us to see that we have square root of Σ:

Σ = Vdiag(λ)1/2 diag(λ)1/2VT .

Vdiag(λ)1/2(Vdiag(λ)1/2)T (31)

The scaling matrix will be
S = Vdiag(λ)1/2 (32)

9

because SST = STS = Σ.
Is there any substantive interpretation for S? It is clear that the square roots of the eigenvalues

are being used to re-scale the columns of the eigenvector matrix V.

S =


v11 v12 v1p
v21 v22 v2p

. . .
vpp



√
λ1 0 0 0
0

√
λ2 0 0

0 0 . . . 0
0 0 0

√
λp

 =


√
λ1v11

√
λ2v12

√
λpv1p√

λ1v21
√
λ2v22

√
λpv2p

. . . √
λpvpp


(33)

3.4 Decompositions of X, rather than Σ

A different decomposition problem arises if the user has a “raw data matrix” X. The usual statistics
textbook recommends formula involving a cross product matrix XTX, such as the ordinary least
squares (OLS) regression vector, β̂ = (XTX)−1XTy. Statistics students then travels into a field
like numerical linear algebra, where the first thing they learn is “you were not taught proper
formulas for digital calculation” (see Woods, 2006, for example). Following the advice in Golub
& Van Loan (1996), we avoid forming XTX explicitly and do not try to “solve” XTX by explicit
matrix inversion. No reasonable regression software tries to invert (XTX) any more.
There are much more accurate ways to calculate theoretically important quantities like the inverse

of (XTX)−1. This is done with matrix factorization. In R, for example, there are two functions for
principal components analysis. The function princomp uses the older style of less stable linear
algebra based on the eigen decomposition of the centered variance matrix while the newer prcomp
is carried out after decomposing the data matrix. The R help page for the prcomp mentions this
difference, somewhat obliquely, “The calculation is done by a singular value decomposition of the
(centered and possibly scaled) data matrix, not by using ‘eigen’ on the covariance matrix. This
is generally the preferred method for numerical accuracy” (R Core Team, 2015).
There are several different ways that can decompose a data matrix. The two most widely men-

tioned are the QR decomposition and the singular value decomposition (SVD). The QR and the
SVD are different from the Cholesky and eigen decompositions because the latter approaches re-
quire the input data must be a square matrix, whereas QR and SVD can be applied to an n × p
matrix.

Method 3. QR decomposition

The theoretical quantity (XTX) can be calculated in a much more numerically accurate way as
(RTR), where R is an upper triangular matrix.

R =


r11 r12 . . . r1p
0 r22 r2p

0 0 . . .
0 0 0 rpp

 (34)

The R matrix is one result of the QR decomposition. The fact that R is triangular leads to a
number of simpler calculations. In particular, if we do need to calculate R−1, it is a comparatively
fast, stable exercise.
The “thin” version of the QR decomposition is

X = QR. (35)

10

The matrix Q is n× p orthogonal columns

Q =



Q p columns
orthogonal

n rows


. (36)

Orthogonality implies Q−1Q = QTQ = I, and R is the upper triangular matrix in (34).
The R produced by QR is, theoretically, equivalent to the Cholesky decomposition of (XTX),

with the possible exception that the diagonal elements in some of the rows in R from QR are not
positive and signs of those rows need to be reversed. To avoid explicitly forming (XTX), we replace
X with QR:

XTX = (QR)TQR = RTQTQR = RTR. (37)

If a calculation calls for (XTX)−1, then, we can replace that with (RTR)−1. However, we would
not explicitly calculate (RTR) and invert that product. Instead, we note, theoretically

(RTR)−1 = R−1R−1T (38)

It is necessary to calculate R−1, but that is a simpler, more stable calculation because the lower
left side of R is full of 0’s. The inverse of an upper triangular matrix will also be upper triangular,
so the benefits of this simplification continue.
Currently, I believe that most software implementations of the Cholesky root of (XTX) will not

form (XTX) and then decompose it. The will instead conduct the decomposition of X itself, and
then return the triangular R as the solution.

Method 4. Singular Value Decomposition

The QR decomposition is the predominant method of calculating regression estimates because it is
fast and very stable numerically. An alternative decomposition, the singular value decomposition,
is probably even better in terms of numerical stability (avoiding roundoff error, etc), but it is also
more costly to compute. There has been discussion from time-to-time suggesting that the SVN will
eventually become the predominant method, but, so far, it is not. However, in a close case, where
a matrix is perhaps nearly singular, it may be that the SVD can calculate results that would be
simply impossible with the other approaches.
The thin singular value decomposition (SVD) of X is a product of 3 matrices.

X = UDVT . (39)

U p columns
orthogonal

n rows



 δ1 0 0

0 . . . 0
0 0 δp


 VT p columns

p rows

 . (40)

11

The columns of U and V are orthogonal. That affords simplifications such as UTU = I and
VT = V−1 . The matrix D is a p× p diagonal matrix of the so-called “singular values”, δi.

D = diag(δ1, δ2, . . . , δp) =


δ1 0 0
0 δ2 0

. . .
0 0 δp

 (41)

To see the simplifying benefit of the SVD, replace X with UDVT .

XTX = (UDVT)TUDVT = VDUTUDVT = (DVT)TDVT = (VD)(VD)T (42)

The square root of XTX is thus seen to be VD(or(DVT)T , depending on how you want to group
things. So the SVD based candidate for a square root of XTX is

S = Vdiag(δ) (43)

The SVD approach is similar in personality to the eigenvalue decomposition of XTX. If numerical
linear algebra were “perfectly accurate”, then the eigen method in equation (32), Vdiag(λ)1/2,
would be identical to the SVD solution Vdiag(δ). Consequently, we see that, on a theoretical level,
the singular values are the squares of the eigen values.

4 Software Implementations that Draw from MVN(µ,Σ)
The multivariate normal generator distributed with R is mvrnorm in the recommended package
MASS (Venables & Ripley, 2002). The Stata function drawnorm is part of the base package.
The important parameters specified by the user are 1) the number of draws required (n), 2) the

population mean vector (µ) that has p elements, 3) the variance matrix (Σ) which is p× p, and 4)
a tolerance parameter (tol) which is used to decide if the variance matrix is positive definite. The
desired result is an n× p matrix in which each row is a draw from MVN(µ,Σ). I concentrate on
the case in which the user specifies a covariance matrix (rather than a correlation matrix).
The code for these functions is displayed in Appendices 1 and 2. Although the coding language

differs between Stata and R, a careful review indicates that both of them are carrying out a 5 step
algorithm.

1. Calculate the eigen decomposition of Σ.

2. Check that Σ is positive definite by inspecting the eigenvalues.

a) If an eigenvalue is intolerably negative, terminate with an error message.
b) Tolerably negative eigenvalues are reset to 0.

3. Create a scaling matrix, S. The two programs differ in this stage. R uses the eigen decom-
position while Stata uses Cholesky roots.

4. Create a candidate n× p matrix of random vectors by drawing from N(0, 1).

5. Apply y = µ+ Sx to rescale the candidate random draws.

12

To help the reader line up the critical parts for comparison, I offer Table 1, which enumerates the
algorithmic steps with line numbers in the code.
For students who do not read much computer code, one detail is worth mentioning. In computer

calculations, one of the slowest phases is allocation of memory, say for an n×p matrix. In numerical
linear algebra, there is a tradition of writing new results on top of old matrices that already exist
in memory. In R, for example,
X <- matrix(rnorm(p * n), n)
if(empirical) {

X <- scale(X, TRUE, FALSE) # remove means
X <- X %*% svd(X, nu = 0)$v # rotate to PCs
X <- scale(X, FALSE, TRUE) # rescale PCs to unit variance

}
X <- drop(mu) + eS$vectors %*% diag(sqrt(pmax(ev, 0)), p) %*% t(X)

or in Stata,
qui mat accum `T' = `varlist', noc dev
mat `T' = `T'/(`nobs'-1)
mat `T' = cholesky(syminv(`T'))

In an analytical report, we would usually create new labels for the successive matrices, allowing us
to differentiate them in our discussion. Efficient software coders don’t allocate fresh memory unless
they really need to.

4.1 Checking Σ for positive definiteness: Eigenvalues
The user supplies a variance matrix Σ, but software cannot trust the user to supply a coherent
matrix. Obviously, it would not make sense to ask for simulations from a silly matrices like

[
0 −1
2 0

]
or


1 .3 4 3
.4 1 3 4
2 5 1 3
5 4 2 1

 , (44)

but users sometimes ask silly questions.
All MVN programs should fail if the elements on the main diagonal, the variances, are not

positive, and also if the other terms are mathematically incoherent (it should be symmetric and
positive definite).
The programs mvrnorm and drawnorm check for trouble by evaluating the eigennvalues of the

user-specified matrix Σ. The key idea here is that Σ must be either positive definite (λj > 0) or
positive semi-definite (≥ λj). The difference between “all positive eigenvalues” and “some positive
eigenvalues and some equal to 0” is the difference between saying Σ is positive definite and Σ is
positive semi-definite. If Σ has a column with no unique information (say, it is full of 0’s or is a
copy of another column), then we will find that there are several positive eigenvalues, but one or
more might be exactly equal to 0. As we will explain below, this exercise only truly makes sense if
Σis positive definite, but we can avoid outright failure if it is merely positive semi-definite.
It may happen that the “correct” (pencil-and-paper) eigenvalue is zero or a small positive num-

ber but rounding error in a digital computer leads to a negative value. In both drawnorm and
mvrnorm, an allowance is made for that kind of numeric wobble. The positive definiteness test is
failed only if there is an eigenvalue that is negative and outside a tolerance region, as specified by

λj < −tol |λ1|. (45)

13

Table 1: Aligning MVN Code
Step mvrnorm (R) drawnorm (Stata)

line comments line comments
1. Eigenvalues 7-8 eigen is in base R. 79 _checkpd writes

eigenvector and
eigenvalues in memory

2a. Check positive
semi-definite

9 λj less than −tol|λ1|
causes termination. tol
defaults to 10−6, while in
Stata it defaults to 10−8

79 _checkpd returns
r(npos), an integer
number representing the
number of non-negative
eigenvectors

2b. Reform
eigenvalues

16 pmax(ev, 0) 91 max(0, ‘D’[1,‘i’])

3. Create re-scaling
matrix

16 Uses eigenvalue method.
The rescaling matrix
V diag(

√
λ)

85-93 if r(npos)=p, then use
Cholesky root. Otherwise,
use V

√
diag(λ)

4. Create X, n× p
matrix of candidates
from N(0, 1)

10 rnorm uses a table-based
CDF lookup procedure

121-27 Stata updated the normal
random generator. Two
versions are maintained.

5. Re-scale the
candidate data into
desired MVN

16 Result must be transposed
before return to user

129-36 Stata score function is
“inner product” of data
row with weight matrix

142 Standard deviation is
vector of 1’s (having no
effect when user supplies
covar matrix). M is the
mean vector requested by
user.

Step for generating data with mean and variance exactly equal to µ and Σ.
4.5. Rescale the
candidate X so that
the column means are
0 and variance matrix
is I

12 Mean center the columns
144

corr2data.ado
Mean center the columns.

13 Use SVD (principal
components) to create
uncorrelated columns.

147-54 Form (1
(n−1)X

TX), invert
and take Cholesky root.

14

In mvrnorm, the default value of tol is 10−6 , while in Stata it is 10−8. The key idea here is that
the true value of the smaller eigenvalues might actually be positive, but the digital calculations
have returned values just slightly below 0. If an eigenvalue is far enough from 0 to convince us that
it truly is negative, then we conclude the user’s matrix is not a valid, positive semi-definite matrix.
The programs will stop and return an error message to the user.

4.2 Reforming the eigenvalues (and positive semi-definiteness).
Suppose none of the eigenvalues are negative enough to fail the test, but some are negative. None
of the procedures we have for creating scaling matrices will work properly. We reform the negative
eigenvalues by changing them to 0:

λj = max(0, λj).

4.3 The Scaling Matrix: Eigenvalue-based weights? Or the Cholesky-based weights?
The major difference between drawnorm and mvrnorm is in the selection of the MVN scaling
matrix. In equation (22), we require a matrix S that can serve as a square root of Σ.
In Stata, the procedure is conditional. If Σ is positive definite, then a Cholesky decomposition is

used. If Σ is not positive definite, the alternative approach using the eigen decomposition is used.
In mvrnorm, the eigen decomposition is used, whether Σ is positive definite or semi-definite.6

The eigen decomposition was used to check whether the eigenvalues are intolerably negative. It is
put to use to calculate the scaling matrix.
The procedure in Stata wastes a bit of computation. The eigenvalue decomposition was calculated

by the check for positive definiteness. The decision to create a Cholesky decomposition when Σ is
full rank wastes some time. If one is running a simulation with hundreds of thousands of samples,
this would have a noticeable effect.
When there are some 0’s in the reformed eigenvalue vector, Σ is positive semi-definite. Both

Stata and R use the eigen decomposition. Basically, this means that the user-specified Σ includes
some redundant columns.
It deserves mention that the eigen decomposition is not really a solution for the inadequacies of

Σ, but rather it is a way to ignore them. The program will run without generating an error. But
one should not assume this is a good outcome. In fact, the simulated MVN draws are don’t really
fill up the full p dimensional space.
It is easier to illustrate than explain. Suppose, the user input is

µ =


2
3
4
5
6

 and Σ =


11 0 0 0 0
0 13 0 0 0
0 0 22 0 0
0 0 0 0 0
0 0 0 0 0

 (46)

Σ is positive semi-definite. The reformed eigenvalue vector is (λ1 = 22, λ2 = 13, λ3 = 11, 0, 0). The
MVN generator will, basically, ignore the two columns of Σ. The generator will return the mean
in positions 4 and 5 of all simulated vectors. The first four draws (the rows in this output) from
rmvnorm are 7

6On the Wikipedia page for this topic discusses both, https://en.wikipedia.org/wiki/Multivariate_
normal_distribution

7

15

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution

1 2 3 4 5
1 4.03 -2.76 7.66 5.00 6.00
2 1.46 9.51 10.83 5.00 6.00
3 4.69 1.26 0.98 5.00 6.00
4 9.29 5.24 -3.28 5.00 6.00

There’s no variance in the columns for which the eigenvalue is 0. Hence, the ability to “work
around” a positive semi-definite matrix is not a get out of jail free card. The simulation procedure
here will not crash, but it not return useful output for the 4th and 5th elements of the simulated
data rows. The simulation effectively generates an MVN draw with 3 = 5 − 2 dimensions. The
ability to tolerate positive semi-definite variance matrices is not hugely beneficial, except in avoiding
crashes. Users are well advised to revise their variance matrices by eliminating linearly dependent
columns.

4.4 Rescaling
To re-scale a single vector x, we draw p values fromMVN(0, I) and place them into x = (x1, . . . , xp)T .
We manufacture y with equation (22), which is reprinted (again) for reference.

y = µ+ Sx.

There is a little wrinkle coming our way. The re-scaling equation handles column vectors, but
the input data will be row vectors. In both mvrnorm and drawnorm, the input matrix X is an
n× p matrix, where the candidates to be rescaled are rows. The programs fill up an n× p matrix
candidate matrix,

X =


x11 x12 x1p
x21 x22

...
xn1 xnp

 . (47)

with draws from N(0, 1) and a row can be thought of as a draw from MVN(0, I).
The calculation strategy in mvrnorm is to transpose X. The candidate vectors, which are rows

in X, become columns of XT .
YT = µ1Tn + SXT . (48)

YT =


y11 y21 yn1
y12 y22

y1p ynp

 =


µ1 µ1 µ1
µ2 µ2 (n µ2
µ3 µ3 cols) µ3
...

...
...

µp µp µp

+

 Scaling
matrix
(p× p)



x11 x21 xn1
x12 x22

x1p xnp

 .

As one can see, the matrix algebra requires us to have n copies of µ side-by-side. (1Tn is a row
vector with n elements, all of which are equal to 1). A side effect of this approach is that the result
is also a transposed matrix, YT .

library(MASS)
set.seed(12345)
Sigma <- matrix(c(11, rep(0, 5), 13, rep(0, 5), 22, rep(0, 12)), ncol = 5)
mu <- c(2, 3, 4, 5, 6)
mvrnorm(4, mu, Sigma)

16

The Stata code works row by row, performing a series of inner-product calculations. To describe
that, a mathematically equivalent representation would be

Y = 1nµT + X ST . (49)
One can think of the rescaling calculation as (48) or (49). I understood the method in (48) more
readily, but (49) is perhaps more intuitive.

4.5 The $100,000 Question.
How can the two completely different scaling matrices lead to equally good MVN draws?
It is not intuitively reasonable to suppose that the the two versions,

r11 0 0 0
r12 r22 0 0

. . . 0
r1p r1p rpp

 , and


√
λ1v11

√
λ2v12

√
λpv1p√

λ1v21
√
λ2v22

√
λpv2p

. . .√
λ1vp1

√
λ2vp2

√
λpvpp

 , (50)

are equally good candidates to serve as S. The one on the left is half filled with 0’s. It is apparent
that we will get different simulated draws from these two matrices.
My intuition resists the idea that these two scaling matrices are equally valid. I have come to

accept the fact that they are adequate for two reasons. First, it is apparent that STS = SST = Σ,
using either matrix in (50) as S. They are both square roots of the same Σ, meaning the data
re-scaled with them is drawn from MVN(µ,Σ).
Second, I became aware of this fact that, generally speaking, matrix square roots are not unique.

Proposition 3. Given a symmetric Σ for which a square root S exists (STS = Σ), and given V
is orthonormal, then VS is also a square root.
Proof. Recall VVT = I.

(VS)T (VS) = STVTVS = STS. (51)

There are various suggestions about other ways to find a square-root decomposition that is most
numerically stable, or fast to compute, or unique within some restricted class of matrices. For
example, it can be shown that, if we insist the main diagonal of the Cholesky triangle is positive,
then there is a unique triangular R satisfying RTR if Σ is symmetric. Golub and Van Loan
(1996, p. 149) show (by a singular value decomposition of the Cholesky triangle) that there is a
unique square root if we insist the square root matrix itself is symmetric and positive semi-definite.
Unfortunately, the two “unique” square roots are not equal to each other.
Some authors are drawn to the Cholesky decomposition, when it exists, because we can, at

least, get a basic understanding of what’s going on. Write out the scaling equation (48) for a 4
dimensional problem (keep this simple by letting µ = 0).


y1
y2
y3
y4

 =


r11 0 0 0
r12 r22 0 0
r13 r23 r33 0
r14 r24 r34 r44



x1
x2
x3
x4



=


r11x1
r12x1 + r22x2
r13x1 + r23x2 + r33x3
r14x1 + r24x2 + r34x3 + r44x4



17

The first term y1 = r11x1 is easy to understand. The candidate x1 has been weighted by r11,
which is a standard deviation. That row is precisely analogous to equation (19). The following
rows are less easy to grasp, however.

4.6 There’s More: Its reversible.
If we are given a draw from a correlated MVN, it is possible to “de-correlate” the columns. This
is sometimes referred to as “whitening”, as in converting columns to “white noise.”
Recall that the focal calculation is (22), y = µ+Sx. In equation (26), we have the tool understand

the transform of a draw like y into some other distribution. This works whether we want the
transformation to go back to MVN(0, I) or something else. If y ∼ MVN(µ,Σ), a new variable
z = b + Ay is distributed as N(Aµ + b, AΣAT). So y can be converted to z ∼ MVN(0,I) by
setting A = S−1 and b = −µS−1. It is especially easy to see that if we write

z = b + Ay = b + A (µ+ Sx) (52)
= b + Aµ+ ASx (53)

In order to end up with z ∼MVN(0,I), it is necessary that AS = I and b + Aµ = 0.

5 Forcing the Sample Average to Have Observed Statistics µ and Σ.
Both µ and Σ are characteristics of a data generator (a.k.a “population parameters”). We often
want to compare the sample estimates, which I’ll refer to as µ̂ and Σ̂.
The summary statistics from a sample are not equal to the parameters of the data generator.

There is variation among samples. Newcomers often expect that the mean of a sample drawn from
N(10, 20) will be exactly 10. It takes a little time for them to become reconciled to the reality of
this.
It never occurred to me that anybody might like to manipulate a data generator so that the

observed mean would exactly equal µ (or that they would want Σ̂ = Σ). It never occurred to me
until I heard about the Stata function corr2data. It does exactly that.
The Stata simulation code used by Guo and Fraser uses corr2data to draw a sample that is

supposedly multivariate normal. They describe the variables thus:

“where x1, x2, x3, Z, and u are random variables, normally distributed with a mean
vector of (3 2 10 5 0), a standard deviation vector (.5 .6 9.5 2 1) and the following
symmetric correlation matrix:

r(x1, x2, x3, Z, u) =


1
.2 1
.3 0 1
0 0 0 1
0 0 0 .4 1

 .

In addition, v is a random variable that is normally distributed with mean zero and
variance 1...” (2015, p. 350).

However, according to its documentation (StataCorp, 2015), corr2data does not purport to
generate a multivariate normally distributed sample:

18

corr2data ... creates a new dataset with a specified covariance (correlation) struc-
ture.... The purpose of this is to allow you to perform analyses from summary statistics
(correlations/covariances and maybe the means) when these summary statistics are all
you know and summary statistics are sufficient to obtain results.
The data created by corr2data are artificial; they are not the original data, and
it (sic) is not a sample from an underlying population with the summary statistics
specified. See drawnorm if you want to generate a random sample....
The dataset corr2data creates is suitable for one purpose only: performing analyses
when all that is known are summary statistics and those summary statistics are sufficient
for the analysis at hand.

After digesting this information, I realized that the mvrnorm function for R has an equivalent,
setting the argument empirical = TRUE.
At the moment, I have two questions.

1. How do they do that? For that part, I have a good answer.

2. What do they get when they do that? This part has no good answer yet, but there are
interesting questions. Is there any formal way to understand the distortion caused by usage
of corr2data when a draw from an MVN is needed instead?

5.1 How Do They Do That?
This is a “data standardization” chore. It can be accomplished by inserting another step in the
middle of the 5 step algorithm for MVN draws (see the last entry in Table 1).

5.1.1 The big picture: standardizing variables

One standardized variable

Standardizing data is familiar to most social scientists. Consider x, a column variable, with an
estimated mean µ̂ = 1

n

∑
xi and standard deviation σ̂ =

√
1

(n−1)
∑

(xi − µ̂)2. The value we often
refer to as a “standardized variable” is calculated as

Ẑi = xi − µ̂
σ̂

. (54)

That variable has a mean of 0 and standard deviation 1. This is true, no matter what data generator
supplies xi, even if it is not normal.
Ẑ is an estimate of how xi is fluctuating above and below the center of the random process. It

is an estimate of variable that is centered and standardized on the true population parameters,

Zi = xi − µ
σ

. (55)

This variable Zi is normally distributed if xi is normal. Note Zi = −µ
σ + 1

σxi, a linear translation
of xi. By the same derivation as (19), we are certain this is normal, N(0, 1).
The empirically standardized Ẑi does not have an expected value of 0, or parametric variance 1,

but the vector Ẑ has an observed mean exactly 0 and variance equal to 1. Its not normal any more,
but that doesn’t stop us from rescaling it. A research who needs to manufacture a new column
with empirical mean a and standard deviation b can apply this rescaling equation:

19

a+ bẐi = a+ b

(
xi − µ̂
σ̂

)
. (56)

I don’t know what the name for that thing is.
It is not N(a, b2). But the empirical mean is a and the variance is b2.

Multivariate standardization: step 4.5

By analogy to the procedure in (56), a multivariate process is employed in corr2data.
The candidate data matrix in which each row is MVN(0, I), is transformed so that the observed

mean of each column is 0 and the observed variance matrix is the identity matrix. This is not the
same as standardizing each column separately. Not only must each column’s empirical mean be 0
with standard deviation is 1, but also the observed correlation between any pair of columns must
be 0.
The mean-centered matrix, Xc, is made up of columns X[, j] − mean(X[, j]). After this, the

empirical mean of each column in Xc is 0.
The unbiased empirical estimate of the variance matrix is

V ar(Xc) = 1
(n− 1)XT

c Xc (57)

We need to find a de-correlating matrix A with the property that

Xu = XcA such that V ar(XcA) = I. (58)

We have competing ways to calculate A, one which is more immediately understandable, one
of which is more numerically accurate. The more immediately understandable approach is the
one implemented in Stata’s corr2data. Because V ar(XcA) = ATV ar(Xc)A, we can write the
requirement

V ar(XcA) = ATV ar(Xc)A = I.

Then the inverse of both sides is

A−1V ar(Xc)−1AT−1 = I (59)

and we find
V ar(Xc)−1 = AAT . (60)

Thus, the desired matrix A is clearly a square root of V ar(Xc)−1.
That approach has some bad numerical properties (high roundoff error). The condition (index of

numerical instability, see) of XT
c Xc is the square of the condition of XT

c . It is recommended instead
employ a solution that does not require the explicit formulation of XT

c Xc or the calculation of its
inverse. Those concerns are clearly in the forefront of the approach in the R, where the singular
value decomposition is used.
After step 4.5 is complete, the de-correlated matrix Xu has been created. It replaces X in step

5. Because Xu has column means equal to 0 and empirical variance I, the result has summary
statistics that exactly match the user request.

20

5.1.2 Implementation Details: mvrnorm with empirical = TRUE

The mvrnorm function’s argument empirical is documented as follows: “mu and Sigma specify
the empirical not population mean and covariance matrix.” In the mvrnorm code (see Appendix
1), only 5 lines between steps 4 and 5 are altered (see lines 11 through 15).

3. Line 12. Create a mean-centered matrix Xc.

4. Line 13. Use a singular value decomposition (principal components analysis) generate a new
candidate matrix in which the empirically observed correlations among the columns are 0.
New “empirically de-correlated” columns are produced using estimates of the eigenvalues of
XT
c Xc that are produced with principal component analysis.

XcV (61)

The columns are referred to as principal component scores; they are orthogonal columns, em-
pirically uncorrelated (Pearson’s r between columns is 0; it is easy to show that V ar(XcV) =
I). I suspect the reader will take my word for that, or else some background reading on
principal components might be in order.
The principal component scores are organized so that column 1 has the greatest variance and
the last column has the smallest variance.

5. Line 14. Suppose the standard deviation estimates are σ̂ = (σ̂1, . . . , σ̂p)T . Create Xu, a
“standardized” set of columns of XcV. In effect, we divide each column of XcV by its
observed standard deviation.

Xu = (XcV)


1
σ̂1

0 . . . 0
0 1

σ̂2
0

... . . .
0 0 1

σ̂p

 = (XcV)diag(1
σ̂

) (62)

It turns out that the variance of the columns of XcV can be calculated from the singular
values, which are also available from the SVD. The variance of the j’th column of the scores
in XcV is δ2/(n− 1), so the standard deviations are σ̂j = δj/

√
n− 1. Hence,

diag(1
σ̂

) = diag(
√
n− 1/δ) (63)

Steps 2 and 3 can be carried out in one single step, combining the de-correlating and re-scaling
effort.

Xu = Xc

(
V diag(

√
n− 1
δ

)
)

(64)

If we write it in that way, we see that the de-correlating matrix A in (58) is Vdiag(
√
n− 1/δ).

Because these changes purge the candidate matrix X of its randomized “individuality”, step 5 in the
algorithm will produce a data structure in which the observed mean and variance matrix exactly
match the user’s request.

21

SVD Implementation

The authors of mvrnorm choose to use singular value decomposition (SVD) of Xc because of its
superior numerical stability. Recall the SVD is a product of 3 matrices.

Xc = UDVT . (65)

U is an orthogonal matrix that is n× p, V is also orthogonal p× p, and D = diag(δ).
A de-correlating matrix consistent with (58) is obtained by replacing Xc in the variance formula

with UDVT .

V ar(Xc) = 1
(n− 1)XT

c Xc

= (1√
n− 1

DVT)T
(1√

n− 1
DVT

)
. (66)

Because the inverse of a product is the product of the inverses, in reverse order,

V ar(Xc)−1 = (V
√
n− 1D−1)(V

√
n− 1D−1)T

= Vdiag(
√
n− 1/δ) (Vdiag(

√
n− 1/δ))T (67)

The term Vdiag(
√
n− 1/δ) can be a square root of V ar(Xc)−1.

5.1.3 Implementation Details: Stata’s corr2data

The Stata corr2data function is in a file named corr2data.ado that is presented in Appendix
3.
Step 4.5 takes on a different appearance partly because this code is written in Stata, but mostly

because instead of using an SVD based square root of the variance matrix, they use the Cholesky
root of the inverse of the variance matrix.

6. Line 144. The mean-centered candidate matrix, Xc.

7. Recall the inverse of the variance matrix approach in (60) The Stata code explicitly calculates
XTX, inverts the variance matrix and extracts the square roots of the inverse calculating
ATA = Cholesky(V ar(Xc)−1). That approach uses several of the calculations that are
discouraged in Golub & Van Loan (1996). Other strategies might be more accurate.

8. The calculation that manufactures the de-correlated matrix Xu is found to be:

XcA (68)

The end product is a matrix in which, except for roundoff error, the mean of each column is 0 and
the columns are uncorrelated and have variance equal to 1.

5.2 What do they get when they do that?
I now appreciate the ambiguous commentary in the Stata documentation for corr2data, it “is
not a sample from an underlying population with the summary statistics specified.”
The n × p manufactured data set does not have rows drawn from MVN(µ,Σ), but what does

it have? Intuition suggests that this new data set is probably pretty close to multivariate normal,
perhaps it is a multivariate t distribution.

22

I do not (yet) know the distribution of these corr2data draws, but I see reasons to expect this is
more like a multivariate t than a normal distribution. We can see that the rows of the corr2data
draws are not independently and identically distributed.
Lets start by considering just one “standardized variable”. Let the input values be xi, let the

empirically standardized scores be Ẑi = 1
σ̂ (xi − µ̂). The vector Ẑ = (Ẑ1, Ẑ2, . . . , Ẑn)T collects

together n standardized values.
In introductory statistics, they told us to act as if Ẑi is a sample drawn from N(0, 1). That’s

obviously wrong. The values Ẑ are not statistically independent. Each element Ẑi depends on
fluctuations in any of the xi’s because the estimated mean and standard deviation include all of
those scores.
What can we say for sure?

1. If n > 1, the empirical average is 0 and the standard deviation is 1.

2. E[Ẑi] = 0 because E[xi] = µ.

3. From sample to sample, the mean µ̂ cannot change, it is fixed at 0, so its variance has to be
0. Hence, the standard error of the mean of Ẑ is 0.

Is the Stata method in corr2data more “wrong” than the method used in R’s mvrnorm?

The answers are “No” and “Yes”.
The answer is “No” in the sense that of these functions empirically standardizes the candidate

X matrix and then rescale the result. By showing that each one derives the matrix square root of
the inverse of a variance matrix, they more-or-less aiming at the same thing. I’ve compared quite
a few calculations using the two matrix methods and the calculated values are the same up to the
8th decimal place.
The answer is “Yes” because corr2data handles the random number stream very badly. Like

R, Stata uses a system-wide pseudo random generator (PRNG) stream that powers many different
calculations. If one runs drawnorm several times, it generates different MVN draws each time
because the position in the system-wide PRNG is advanced each time. In contrast, corr2data
gives the exact same data set every time we call it, unless we explicitly set the argument seed().
corr2data does not advance the system-wide PRNG and there is simply no way to feel confident
that one block of data returned after setting seed(234234) is not correlated with a block returned
from corr2data with seed(432432).
Aside from the numerical precision, and the peculiarity of calling corr2data, it is difficult to say

that we have fully understood the properties of corr2data. We end up with the same frustrating
“too many square roots” problem that frustrated the conclusion of theMVN generation discussion
in section 4.5. We have two seemingly different scaling matrices are equally good on theoretical
terms.

6 Conclusions
This discussion tries to combine lessons in matrix algebra with a detailed comparison of software
that generates multivariate normal samples. I have learned a good deal about the details of creating
simulated draws and have been reminded of many details in linear algebra that I had forgotten, or
never knew.
It has been shown that draws from a multivariate normal distribution can be created in a 5

step algorithm. This algorithm, which is similarly implemented in R and Stata, works in an

23

understandable way. The algorithm inspects the user’s request for internal coherence (the positive
definite variance matrix), creates a scaling matrix by extracting the square root of the variance
matrix, and then reshapes candidate draws that can be pulled from a standard normal distribution
N(0, 1). Since some software frameworks do not offer pre-packaged MVN data generators, an
understanding of this procedure might be helpful to some readers.

Appendix 1. mvrnorm
In the MASS package (Venables & Ripley, 2002) for R (R Core Team, 2015), one finds the file
“mvrnorm.R”, in which the mvrnorm function is found.

1 mvrnorm <−
2 f unc t i on (n = 1 , mu, Sigma , t o l = 1e−6, emp i r i c a l = FALSE, EISPACK = FALSE)
3 {
4 p <− l ength (mu)
5 i f (! a l l (dim(Sigma) == c (p , p))) stop (" incompat ib l e arguments ")
6 i f (miss ing (EISPACK)) EISPACK <− getOption ("mvnorm_use_EISPACK" , FALSE)
7 eS <− e i gen (Sigma , symmetric = TRUE, EISPACK = EISPACK)
8 ev <− eS$va lues
9 i f (! a l l (ev >= −t o l ∗abs (ev [1L]))) stop (" ' Sigma ' i s not p o s i t i v e d e f i n i t e ")

10 X <− matrix (rnorm (p ∗ n) , n)
11 i f (emp i r i c a l) {
12 X <− s c a l e (X, TRUE, FALSE) # remove means
13 X <− X %∗% svd (X, nu = 0) $v # ro ta t e to PCs
14 X <− s c a l e (X, FALSE, TRUE) # r e s c a l e PCs to un i t var i ance
15 }
16 X <− drop (mu) + eS$vector s %∗% diag (sq r t (pmax(ev , 0)) , p) %∗% t (X)
17 nm <− names (mu)
18 i f (i s . nu l l (nm) && ! i s . nu l l (dn <− dimnames (Sigma))) nm <− dn [[1 L]]
19 dimnames (X) <− l i s t (nm, NULL)
20 i f (n == 1) drop (X) e l s e t (X)
21 }

Appendix 2. drawnorm.ado

1 *! version 7.3.0 03feb2015
2 program define drawnorm
3 local xeqversion : di "version " string(_caller()) ":"
4 version 8.2
5 local version _caller()
6

7 gettoken first 0: 0, parse(",")
8 #del;
9 syntax [,

10 n(string)
11 SEED(string)
12 Double
13 CORR(string)
14 COV(string)
15 CStorage(string)
16 Means(string)
17 SDs(string)
18 CLEAR
19 FORCEPSD
20 TOL(passthru) // undocumented

24

21] ;
22 #del cr
23 quietly count
24 local curn = r(N)
25 if `"`n'"' != "" {
26 confirm integer n `n'
27 if `n' == `curn' {
28 local n
29 }
30 }
31 if `"`n'"' == "" { /* add newvarlist to existing dataset */
32 local nobs = r(N)
33 if `nobs' <= 0 {
34 error 2000
35 }
36 if "`clear'" != "" {
37 drop _all
38 qui set obs `nobs'
39 local n `nobs'
40 }
41 }
42 else { /* generate new dataset */
43 if `n' <= 0 {
44 error 2000
45 }
46 qui count
47 if `n' != r(N) {
48 qui des, short
49 if r(changed) & ("`clear'" == "") {
50 error 4
51 }
52 drop _all
53 }
54 local nobs = `n'
55 qui set obs `nobs'
56 }
57 local 0 "`first'"
58 syntax newvarlist
59 local k : word count `varlist'
60 if "`seed'" != "" {
61 `xeqversion' set seed `seed'
62 }
63 tempname C D L M P S
64 if "`cov'" != "" | "`corr'" != "" {
65 if "`cov'" != "" & "`corr'" != "" {
66 dis as err "cov() and corr() " ///
67 "may not be specified together"
68 exit 198
69 }
70

71 if `"`corr'"' != "" {
72 _m2matrix `C' corr `k' "`corr'" "`cstorage'"
73 local Cname `corr'
74 }
75 else {
76 _m2matrix `C' cov `k' "`cov'" "`cstorage'"
77 local Cname `cov'
78 }
79 _checkpd `C', matname(`Cname') check(psd) `forcepsd' `tol'

25

80 if r(npos)==`k' {
81 // C is positive definite;
82 // for backward compatibility: use Cholesky root
83 matrix `P' = cholesky(`C')
84 }
85 else {
86 // in the singular case, we use eigen decomposition
87 // already available from _checkpd
88 matrix `L' = r(L)
89 matrix `D' = r(Ev)
90 forvalues i = 1/`k' {
91 matrix `D'[1,`i'] = sqrt(max(0,`D'[1,`i']))
92 }
93 matrix `P' = `L'*diag(`D')
94 }
95 }
96 else {
97 matrix `P' = I(`k')
98 }
99 /* M = means */

100 if "`means'" != "" {
101 _m2matrix `M' means `k' "`means'"
102 }
103 else {
104 matrix `M' = J(1,`k', 0)
105 }
106 /* S = stds */
107 if `"`sds'"' != "" {
108 if `"`cov'"' != "" {
109 dis as err "cov() and sds() may not be specified together"
110 exit 198
111 }
112 _m2matrix `S' sds `k' "`sds'"
113 }
114 else {
115 matrix `S' = J(1,`k',1)
116 }
117 /* generate new variables */
118 tokenize `varlist'
119 local newlist `varlist'
120 foreach var of local newlist {
121 if `version' <= 10 {
122 qui gen `double' `var' = invnormal(uniform())
123 }
124 else {
125 qui gen `double' `var' = rnormal()
126 }
127 }
128 /* transform to desired corr */
129 mat roweq `P' = " "
130 mat coleq `P' = " " /* remove possible equation names from P */
131 mat rownames `P' = `varlist'
132 mat colnames `P' = `varlist'
133 forvalues i = 1 / `k' {
134 tempname new`i' row
135 mat `row' = `P'[`i', 1...]
136 mat score `new`i'' = `row'
137 }
138

26

139 /* transform to desired means and std */
140 tokenize `varlist'
141 forvalues i = 1 / `k' {
142 qui replace ``i'' = `new`i'' * `S'[1,`i'] + `M'[1,`i']
143 }
144

145 if "`n'" != "" {
146 local nobs = string(`nobs',"%12.0fc")
147 dis as txt "(obs `nobs')"
148 }
149 end

Appendix 3. corr2data.ado

1 *! version 7.3.0 03feb2015
2 program corr2data
3 version 8.2
4

5 query sortseed
6 local sortseed = r(sortseed)
7 local currseed = c(seed)
8 capture noisily Make `0'
9 set seed `currseed'

10 set sortseed `sortseed'
11 if _rc {
12 exit _rc
13 }
14 end
15

16 program Make
17 gettoken first 0: 0, parse(",")
18 #del ;
19 syntax [,
20 n(string)
21 CORR(string)
22 COV(string)
23 CStorage(string)
24 Means(string)
25 SDs(string)
26 SEED(int 0)
27 Double
28 CLEAR
29 FORCEPSD
30 TOL(passthru) // undocumented
31] ;
32 #del cr
33

34 if `"`n'"' != "" {
35 confirm integer n `n'
36 if `n' == _N {
37 local n
38 }
39 }
40 if "`n'" == "" { /* add newvarlist to existing dataset */
41 local nobs = _N
42 if `nobs' <= 0 {
43 error 2000
44 }

27

45 if "`clear'" != "" {
46 drop _all
47 qui set obs `nobs'
48 local n `nobs'
49 }
50 }
51 else { /* generate new dataset */
52 if `n' <= 0 {
53 error 2000
54 }
55 qui count
56 if `n' != r(N) {
57 qui des, short
58 if r(changed) & ("`clear'" == "") {
59 error 4
60 }
61 drop _all
62 }
63 local nobs = `n'
64 qui set obs `nobs'
65 }
66 local 0 "`first'"
67 syntax newvarlist
68 local k : word count `varlist'
69 if `nobs' <= `k' {
70 dis as err "number of observations should exceed number of variables"
71 exit 2001
72 }
73 tempname C D L M P S T
74

75 if "`cov'" != "" | "`corr'" != "" {
76 if "`cov'" != "" & "`corr'" != "" {
77 dis as err "cov() and corr() " ///
78 "may not be specified together"
79 exit 198
80 }
81 if `"`corr'"' != "" {
82 _m2matrix `C' corr `k' "`corr'" "`cstorage'"
83 local Cname `corr'
84 }
85 else {
86 _m2matrix `C' cov `k' "`cov'" "`cstorage'"
87 local Cname `cov'
88 }
89 tempname Cmatrix
90 matrix `Cmatrix' = `C'
91 local rows = rowsof(`"`Cmatrix'"')
92 local cols = colsof(`"`Cmatrix'"')
93 if `rows' != `cols' | `rows' != `k' | `cols' != `k' {
94 di as err "{p}" ///
95 "matrix is not conformable with the number of " ///
96 "variables requested: rows and columns must " ///
97 "equal the number of specified variables{p_end}"
98 exit 503
99 }

100 _checkpd `C', matname(`Cname') check(psd) `forcepsd' `tol'
101

102 if r(npos)==`k' {
103 // C is positive definite;

28

104 // for backward compatibility: use Cholesky root
105 matrix `P' = cholesky(`C')
106 }
107 else {
108 // in the singular case, we use eigen decomposition
109 // already available from _checkpd
110 matrix `L' = r(L)
111 matrix `D' = r(Ev)
112 forvalues i = 1/`k' {
113 matrix `D'[1,`i'] = sqrt(max(0,`D'[1,`i']))
114 }
115 matrix `P' = `L'*diag(`D')
116 }
117 }
118 else {
119 matrix `P' = I(`k')
120 }
121 /* M = means */
122 if `"`means'"' != "" {
123 _m2matrix `M' means `k' "`means'"
124 }
125 else {
126 matrix `M' = J(1,`k', 0)
127 }
128 /* S = stds */
129 if "`sds'" != "" {
130 if "`cov'" != "" {
131 dis as err "cov() and sds() may not be specified together"
132 exit 198
133 }
134 _m2matrix `S' sds `k' "`sds'"
135 }
136 else {
137 matrix `S' = J(1,`k',1)
138 }
139 /* generate new variables */
140 set seed0 `seed'
141 foreach var of local varlist {
142 qui gen `double' `var' = invnorm(uniform0())
143 qui sum `var'
144 qui replace `var' = `var' - r(mean)
145 }
146 /* reform them to be zero corr */
147 qui mat accum `T' = `varlist', noc dev
148 mat `T' = `T'/(`nobs'-1)
149 mat `T' = cholesky(syminv(`T'))
150 forvalues i = 1 / `k' {
151 tempname new`i' row
152 mat `row' = (`T'[1..., `i'])'
153 mat score `new`i'' = `row'
154 }
155 tokenize `varlist'
156 forvalues i = 1 / `k' {
157 qui replace ``i'' = `new`i''
158 }
159 /* transform to desired corr */
160 mat roweq `P' = " "
161 mat coleq `P' = " " /* remove possible equation names from P */
162 mat rownames `P' = `varlist'

29

163 mat colnames `P' = `varlist'
164 forvalues i = 1 / `k' {
165 tempname new`i' row
166 mat `row' = `P'[`i', 1...]
167 mat score `new`i'' = `row'
168 }
169

170 /* transform to desired means and std */
171 tokenize `varlist'
172 forvalues i = 1 / `k' {
173 qui replace ``i'' = `new`i'' * `S'[1,`i'] + `M'[1,`i']
174 }
175

176 if "`n'" != "" {
177 local nobs = string(`nobs',"%12.0fc")
178 dis as txt "(obs `nobs')"
179 }
180 end

References
Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer, 1986 edition edition.

Golub, G. H. & Van Loan, C. F. (1996). Matrix computations. Johns Hopkins studies in the
mathematical sciences. Baltimore: Johns Hopkins University Press, 3rd ed edition.

Greene, W. H. (2008). Econometric analysis. Upper Saddle River, N.J: Prentice Hall, 6th ed
edition.

Guo, S. & Fraser, M. W. (2015). Propensity Score Analysis: Statistical Methods and Applications.
Los Angeles: SAGE Publications, Inc, 2ed edition.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

Scheuer, E. M. & Stoller, D. S. (1962). On the Generation of Normal Random Vectors. Techno-
metrics, 4(2), 278.

StataCorp (2015). Stata 14 Base Reference Manual. Stata Press., College Station, TX.

Venables, W. N. & Ripley, B. D. (2002). Modern Applied Statistics with S. New York: Springer,
fourth edition. ISBN 0-387-95457-0.

30

	Normal and Multivariate Normal Distributions
	Understanding Sigma
	About the off-diagonal elements, ij.
	Sigma is symmetric
	Sigma is positive definite

	Checking if a Matrix is Positive Definite: Eigenvalues and Eigenvectors

	Rescaling Normal Random Variables
	Sigma is a Scaling Parameter
	The Multivariate Version of Re-scaling
	Square Root of a Matrix
	Decompositions

	Simulating draws
	Check positive definiteness
	Reforming the eigenvalues (and positive semi-definiteness).
	The Scaling Matrix: Eigenvalue-based weights? Or the Cholesky-based weights?
	Rescaling
	The $100,000 Question.
	There's More: Its reversible.

	Forcing the Average and Covariance to equal parameters
	How Do They Do That?
	The big picture: standardizing variables
	Implementation Details: mvrnorm with empirical = TRUE
	Implementation Details: Stata's corr2data

	What do they get when they do that?

	Conclusions

