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1 Terminology

exogenous determined “outside” the system under consideration, as we usually consider most “indepen-
dent variables”

endogenous determined “within” the system, as in “dependent variable”

predetermined in a time series model, a lagged endogenous variable is treated as if it were exogenous

2 Consider two regressions

Y1, = bo+b0X1;+el;

Y2i = ¢+ Clei + 621' (].)
You can run OLS on those equations, either
separately
or

after “stacking” them into one data frame and then using “dummy” variables to estimate band ¢ (and
possibly adjusting for heteroskedasticity). Let D represent the dichotomous variable, with 1 representing
the fact that the observation concerns Y 2;(and 0 otherwise). The combined regression would be like this:

Y11 = bo+b01X11+ely

Yis = bo+ b1 X1a+el; (2)
Yiy = by+0X1ly+ely

Y2, = b0+go*Di+b1Xli+gl(X11*D)+€21

Y2y = bo+go*Di+b1X1i+g1(X1N*D)+62N

Here, gg and g1 are “intercept shifter” and “slope shifter”, respectively. The estimate of the coefficient
c1is found by adding byand g;. One can easily employ tests for heteroskedasticity to find out if the error
term has the same variance in the two dependent variables.

3 Seemingly unrelated regressions

Recall the problem of autocorrelation? That refers to correlation in the error terms between units. If there
is autocorrelation, the parameter estimates are biased and the standard errors are wrong. Autocorrelation
has usually been thought of as a time series problem, since exogenous shocks persist over time.

However, if there are shocks that cause a correlation between el and e2 , then there are correlated
errors. This phenomenon is known as “Seemingly unrelated regression” (or SUR) and it was brought to the
forefront by U. of Chicago professor Edward Zellner.



4 Endogenous predictors

4.1 Cascade or “blocked” equations

Y1, = by+b0X1;+el;
Y2, = co+ca1Y1l;4+cX1;+e2; (3)

X1 goes into Y'1, and then Y1goes into Y2.
As long as el and e2 are uncorrelated, then OLS can be used to estimate this.

4.2 Simultaneous equations: OLS is not suitable

Yli = b() + b1Y2i + bQleL' + eli
Y2i=cot+ Y1+ cX1;+e2; (4)

This one strains the brain. Y1 is affected by Y2 and el simultaneously and Y2 is affected by Y1 and
e2 at the same time.

4.2.1 Correlation between predictor and error

Recall the fundamental assumption in regression that the error term is not correlated with the indepen-
dent variables. This is violated in equation system 4 because the endogenous predictors are related to the
error terms.

Consider this:

Y 2; has to be correlated with el;.

Because el is directly “going into” Y'1, and Y'1 “goes into” Y2, and Y2 “goes back into” Y1, then some
part of el has to be hidden inside Y2.

4.2.2 Consider the linkage between the error terms

Think of Y1 and Y2 as observed “known values.” The theoretical “exogenous shocks” el and e2 are alge-
braically constrained by the values of Y1 and Y2 that are observed. Consider the coefficients b and c as
“known” (or conjectured) values. Given values for the observed values Y'1; and Y2; and X1, then el; and
e2; are mathematically restricted because they have to be added in to produce the correct observed val-
ues of Y1; and Y2;. If el; is increased by a certain amount, then it is algebraically necessary that e2; be
adjusted so that the observed values stay at Y'1; and Y2;.

If you accept this argument that el and e2 constrained by each other, then you should easily see that
there will be correlation between the endogenous predictors and the error terms.

5 Two Stage Least Squares

This is the simplest “fix” for simultaneous equations. It is a “single equation” or “limited information” ap-
proach. As you will see, we create separate estimates of the equations for Y1 and Y'2.

Stage 1: calculate a “correlation purged” estimate for each endogenous predictor. Use any exogenous
variables Z1, Z2 (and so forth) on the right hand side

o

Y, =70+ mZ1; + 1222

Confusion: In the literature, the term “instrumental variable” is used for both Z; and for SV/Z
Stage 2: use the new estimate Y1 in place of Y1 in the regression

Y2, =co+ 01};11‘ +cX1; +el;

The estimates obtained in this second stage are



e consistent
e efficient

but not unbiased.
In stage 1, it is customary to use ALL EXOGENOUS predictors to predict ALL ENDOGENOUS
variables.

reduced form equations refers to the system equations in which the endogenous variables are arranged
on the left hand side and the exogenous predictors are on the right hand side:

Y1, = mo+muX1l+m2X2 4+ (1
Y?2; o0 + mo1 X 1; + T2 X 2; + (1;

6 The identification problem

If two stage squares worked all the time, our work would be done. But it doesn’t. And, somewhat to my
surprise, the problem all traces back to multicollinearity.

6.1 Perfect collinearity in stage 2

Recall the multicollinearity problem. One cannot obtain reliable, separate estimates of coefficients for sev-
eral parameters because the variables are redundant (intercorrelated). The redundancy of data makes esti-
mation unreliable or impossible.

Consider equation system 4. Suppose we have only one exogenous variable, X1 and we use it to calcu-
late the stage 1 estimate.

Yuli =79+ mX1; (5)
And then that is inserted into the system in stage 2

Y2, = o + c1(Fo + mX1;) + 2 X1 + e2; (6)
Don’t be a bonehead! Can’t you see that’s the definition of multicollinearity? The variable X1 can be
used in a linear combination to reproduce the part in parentheses.

Ouch! There’s perfect multicollinearity here! Essentially, X 1;is included twice. The coefficients c¢;and
coare not separately identified.

6.2 How do you fix that? You need more exogenous variables.

Imagine you have some more exogenous variables sitting around. Suppose, for example, you have X land
X2 in the first stage:

leiZfTo-l—ﬁ'lei-i-ﬁ'zXQi (7

Y2; = co + calm + @ mXL 4+ 7X2) 4+ Xl 4+ e2 (8)

Note, now the multicollinearity still exists, but it is not perfect multicollinearity. So the model can be
estimated.

The “trick” is to find some new exogenous variable X2 that is NOT INCLUDED in the equation for
Y2.

This works because there is an exogenous variable that is used to create the new predictor Y1land
that exogenous variable is not included in the model for Y2.



Y2, = co+car¥Y1+cX1;+e2; 9)

6.3 Order condition

This is the most common way that people use to check to see if an equation within a system can be esti-
mated by 2SLS. Basically, it says one must omit at least as many exogenous variables from an equation as
there are included endogenous variables.

In a 2 equation system, identification requires that at least one X must be excluded from each equa-
tion.

Please note, the order condition is necessary, but not sufficient for identification. So, it is mathemat-
ically wrong to assume the order condition provides all of the needed information. But people usually do,
because the disjuncture between sufficiency and necessity is not large in most cases.

6.4 Rank condition

This is a matrix algebra check that can be applied to a system to find out if its parameters are identified.
It gives an answer which is both necessary and sufficient.

7 2SLS with generalized linear models

In the mid 1980s, the logistic regression model had become well established. What if a logistic regression
model is included in one of these systems?

This has been a “fly by the seat of the pants” problem. One must specify a theoretical model that is
logically meaningful. And it is not always easy. For example, suppose Y1 is dichotomous, coded 0 and 1.
If Y1 is included in the equation for Y2, do we mean that the input variable is really 0 or 1, or is it the
probability of 1, representing the proclivity?

8 Full Information Maximum Likelihood versus Limited Informa-
tion models

2SLS is a “limited information” approach because the estimation of the equations is done separately.

A “full information” approach is one that tries to estimate the parameters for all equations jointly.

Three Stage Least Squares is the most commonly used full information approach. The process begins
with 2SLS, and then uses the 2SLS estimates to estimate the inter-correlation of the error terms from the
different equations. Then a sort of weighted least squares approach is used in the third stage.

The danger of full information approaches is that a mistake in specification of one equation will affect
the estimates from all equations.

9 Structural Equation Models

The econometric approach to these problems is to act as though the input variables are measured correctly
and then are used to predict the output variables.
Psychologists, on the other hand, often suppose that they can’t measure the real inputs. Rather, they
have multiple indicators. So the goal is to somehow, simultaneously, use the multiple indicators to get
an idea about a subject’s position on an “underlying” or “latent” variable, and then find out if that score
on the latent variable is affecting some other variables. The model known as LISREL was pioneered by
Joreskog to dramatically expand the kinds of structures that are investigated in systems modeling.
Structural Equation Modeling is a system in which systems are posited and estimated.



Identification is a major problem in SEM work, and some software programs will provide parameter
estimates for technically non-estimable problems.
Bayesian models using Gibbs Sampling offers an alternative estimation technique for these models.



