Betas 1/7

Betas: Standardized Variables in Regression

Paul E. Johnson¹ ²

¹Department of Political Science

 $^{2}\mathsf{Center}$ for Research Methods and Data Analysis, University of Kansas

2014

Outline

- 1 Introduction
- 2 Interpreting $\hat{\beta}_j$'s
- 3 Rescale Variables: Standardization
- 4 Standardized Data
- 5 Practice Problems

Outline

- 1 Introduction
- 2 Interpreting $\hat{\beta}_j$'s
- 3 Rescale Variables: Standardization
- 4 Standardized Data
- 5 Practice Problems

Problem

- Regression pops out slope estimates
- How can we make sense of them?
- Can an "automatic" standardization of variables help?

Outline

- 1 Introduction
- 2 Interpreting $\hat{\beta}_j$'s
- 3 Rescale Variables: Standardization
- 4 Standardized Data
- 5 Practice Problems

Get Existential: What is Regression?

You theorize:

$$y_i = \beta_0 + \beta_1 x 1_i + \beta_2 x 2_i + ... + \beta_k x k_i + e_i \quad i = 1, ..., N$$
 (1)

and through procedure, you make estimates $\hat{\beta}_j$ with which to calculate predicted values:

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x 1_i + \widehat{\beta}_2 x 2_i + \dots + \widehat{\beta}_k x k_i \quad i = 1, \dots, N$$
 (2)

Everything else we do should be understood through this lens.

Yes, But What Do You DO with a Regression?

- Compare 2 cases, with inputs $(x1_0, x2_0, ..., xk_0)$ and $(x1_1, x2_1, ..., xk_1)$
- The predicted values $\hat{y_0}$ and $\hat{y_1}$ are different, some of the x's matter
- The focus is on developing substantively interesting comparisons!
- We'd like to narrow our attention down, to concentrate on one predictor at a time.
 - (x_1, x_2, \dots, x_n) and (x_1, x_2, \dots, x_n)
 - They only differ on x2, so the difference between predictions must be attributable to the change from $x2_0$ to $x2_1$.

Substantively Interesting $x2_0$ and $x2_1$

- $\hat{\beta}_i$ are "partial regression coefficients".
- Linear formula: "other things equal, a 1 unit increase in $x2_i$ causes an estimated $\hat{\beta}_2$ unit increase in the predicted value of y_i ".
- No reason to say researcher can only compare variables by changing "one unit at a time"
- Know the problem's context, pick interesting values of $x2_0$ and $x2_1$ for comparison.
 - $\times 2$ represents "last year school", $\times 2_0 = 8$ th grade, $\times 2_1 = 1$ high school
 - x2 represents income, $x2_0 = 10,000, x2_1 = 100,000$

Linear and Continuous X's: $\hat{\beta}$

■ Maybe the calculus says it best:

$$\frac{\partial y}{\partial x^2} = \hat{\beta}_2$$

- But there's no "absolute scale" for $\hat{\beta}_2$.
 - If x's or y are numerically re-scaled, then the coefficients will change too.

Outline

- 1 Introduction
- 2 Interpreting $\hat{\beta}_j$'s
- 3 Rescale Variables: Standardization
- 4 Standardized Data
- 5 Practice Problems

Recall Effect of Fiddling with X's

- If one re-scales $x2_i$, replacing it with $k \cdot x2_i$, then the regression coefficient is re-scaled to $\frac{1}{k}\hat{\beta}_2$.
- If one adds or subtracts from $x2_i$, $\hat{\beta}_2$ is not changed, but the intercept $\hat{\beta}_0$ does change.
- Both multiplication and addition are apparently "harmless".

Consider Fiddling with y

- What happens if one multiplies y_i by 2?
 - doubles all the $\hat{\beta}'s$. That seems obvious.
- What happens if y_i has something added or subtracted?
 - $\hat{\beta}_0$ changes

Occupational Prestige Data from car

```
library(car)
Prestige$income <- Prestige$income/10
presmod1 <- Im(prestige ~ income + education +
    women, data = Prestige)</pre>
```

My Professionally Acceptable Regression Table

	M1	
	Estimate	(S.E.)
(Intercept)	-6.794*	(3.239)
income	0.013***	(0.003)
education	4.187***	(0.389)
women	-0.009	(0.030)
N	102	
RMSE	7.846	
R^2	0.798	
adj R^2	0.792	
$*p \le 0.05**p \le 0.01***p \le 0.001$		

- We are superficial, don't know much about the "Prestige" dataset
- How do we know what the slopes for income or women mean?
- Can they be compared?

```
$income
   income education women
  61.100 10.73804 28.97902 38.70646
 410.600 10.73804 28.97902 43.29736
 593.050 10.73804 28.97902 45.69395
 818.725 10.73804 28.97902 48.65833
 2587.900 10.73804 28.97902 71.89751
$education
   income education women
                                 fit
 679.7902 6.3800 28.97902 28.58780
2 679.7902 8.4450 28.97902 37.23321
 679.7902 10.5400 28.97902 46.00421
```

```
4 679.7902 12.6475 28.97902 54.82755
5 679.7902 15.9700 28.97902 68.73766

$women
    income education women fit
1 679.7902 10.73804 0.0000 47.09140
2 679.7902 10.73804 3.5925 47.05940
3 679.7902 10.73804 13.6000 46.97029
4 679.7902 10.73804 52.2025 46.62652
5 679.7902 10.73804 97.5100 46.22305
```

```
predictOMatic(presmod1, predVals = "margins",
    divider = "std.dev.")
```

```
$income
   income
         education women
                                  fit
 -169.39
         10.73804 28.97902 35.67884
 255.20
         10.73804 28.97902 41.25608
 679.79 10.73804 28.97902 46.83333
 1104.38 10.73804 28.97902 52.41058
 1528.97 10.73804 28.97902 57.98782
$education
          education women
    income
                                   fit
 679.7902
                5.28 28.97902 23.98250
2 679.7902
               8.01 28.97902 35.41202
3 679.7902
              10.74 28.97902 46.84154
 679.7902
              13.47 28.97902 58.27106
 679.7902
              16.20 28.97902 69.70058
```

```
$women income education women fit  
1 679.7902 10.73804 -34.46 47.39827  
2 679.7902 10.73804 -2.74 47.11580  
3 679.7902 10.73804 28.98 46.83332  
4 679.7902 10.73804 60.70 46.55085  
5 679.7902 10.73804 92.42 46.26838
```

```
[[1]]
                                         fit
      income
              education
                            women
      61.100
                  6.3800
                           0.0000
                                   20.71900
2
                           0.0000
     410.600
                  6.3800
                                   25.30989
3
                                   27.70648
     593.050
                  6.3800
                           0.0000
4
     818.725
                  6.3800
                           0.0000
                                   30.67086
5
                  6.3800
                           0.0000
                                   53.91004
    2587.900
6
      61.100
                  8.4450
                           0.0000
                                   29.36440
                                   33.95530
     410.600
                  8.4450
                           0.0000
8
     593.050
                  8.4450
                           0.0000
                                   36.35189
9
     818.725
                  8.4450
                           0.0000
                                   39.31627
10
                                   62.55545
    2587.900
                  8.4450
                           0.0000
11
      61.100
                 10.5400
                           0.0000
                                   38.13541
12
     410.600
                 10.5400
                           0.0000
                                   42.72630
13
     593.050
                 10.5400
                           0.0000
                                   45.12289
14
     818.725
                 10.5400
                           0.0000
                                   48.08727
```

```
15
    2587.900
                10.5400
                           0.0000
                                  71.32645
16
      61.100
                12.6475
                           0.0000
                                  46.95875
17
     410.600
                12.6475
                           0.0000
                                  51.54964
18
     593.050
                12.6475
                           0.0000
                                  53.94623
19
                                  56.91061
     818.725
                12.6475
                           0.0000
20
                           0.0000
                                  80.14979
    2587.900
                12.6475
21
      61.100
                15.9700
                           0.0000
                                  60.86885
22
     410.600
                15.9700
                           0.0000
                                  65.45974
23
     593.050
                15.9700
                           0.0000
                                  67.85633
24
     818.725
                15.9700
                           0.0000
                                  70.82071
25
                                  94.05989
    2587.900
                15.9700
                           0.0000
26
      61.100
                 6.3800
                          3.5925
                                  20.68701
27
     410.600
                 6.3800
                          3.5925
                                  25.27790
28
     593.050
                 6.3800
                          3.5925
                                  27.67449
29
     818.725
                 6.3800
                          3.5925
                                  30.63887
30
    2587.900
                 6.3800
                          3.5925
                                  53.87805
31
      61.100
                 8.4450
                          3.5925
                                  29.33241
```

```
32
     410.600
                 8.4450
                          3.5925
                                  33.92330
33
     593.050
                 8.4450
                          3.5925
                                  36.31990
34
     818.725
                 8.4450
                          3.5925
                                  39.28427
35
    2587.900
                 8.4450
                          3.5925
                                 62.52346
36
      61.100
                          3.5925
                                  38.10342
                10.5400
37
     410.600
                10.5400
                                  42.69431
                          3.5925
38
     593.050
                10.5400
                          3.5925
                                  45.09090
39
     818.725
                10.5400
                          3.5925
                                  48.05528
40
    2587.900
                10.5400
                          3.5925
                                  71.29446
41
      61.100
                12.6475
                          3.5925
                                  46.92675
42
                                  51.51765
     410.600
                12.6475
                          3.5925
43
     593.050
                12.6475
                          3.5925
                                  53.91424
44
     818.725
                12.6475
                          3.5925
                                  56.87862
45
    2587.900
                12.6475
                          3.5925
                                  80.11780
46
      61.100
                15.9700
                          3.5925 60.83686
47
     410.600
                15.9700
                          3.5925
                                  65.42775
48
     593.050
                15.9700
                          3.5925 67.82434
```

```
49
     818.725
                15.9700
                          3.5925
                                  70.78872
50
    2587.900
                15.9700
                          3.5925
                                  94.02790
51
                 6.3800
      61.100
                         13.6000
                                  20.59789
52
     410.600
                 6.3800
                         13.6000
                                  25.18878
53
                 6.3800
                         13.6000
                                  27.58537
     593.050
54
                 6.3800
                         13.6000
                                  30.54975
     818.725
55
                 6.3800
                         13.6000
                                  53.78893
    2587.900
56
      61.100
                 8.4450
                         13.6000
                                  29.24329
57
     410.600
                 8.4450
                         13.6000
                                  33.83419
58
     593.050
                 8.4450
                         13.6000
                                  36.23078
59
     818.725
                 8.4450
                         13.6000
                                  39.19516
60
                         13.6000
                                  62.43434
    2587.900
                 8.4450
61
      61.100
                10.5400
                         13.6000
                                  38.01430
62
     410.600
                10.5400
                         13.6000
                                  42.60519
63
     593.050
                10.5400
                         13.6000
                                  45.00178
64
     818.725
                10.5400
                         13.6000
                                  47.96616
65
    2587.900
                10.5400
                         13.6000
                                  71.20534
```

```
66
      61.100
                12.6475
                         13.6000
                                  46.83764
67
     410.600
                12.6475
                         13.6000
                                  51.42853
68
     593.050
                12.6475
                         13.6000
                                  53.82512
69
     818.725
                12.6475
                         13.6000
                                  56.78950
70
                12.6475
                         13.6000
                                  80.02868
    2587.900
71
                         13.6000
                                  60.74774
      61.100
                15.9700
72
     410.600
                15.9700
                         13.6000
                                  65.33863
73
     593.050
                15.9700
                         13.6000
                                  67.73522
74
     818.725
                15.9700
                         13.6000
                                  70.69960
75
    2587.900
                15.9700
                         13.6000
                                  93.93878
76
      61.100
                 6.3800
                         52.2025
                                  20.25413
77
     410.600
                 6.3800
                         52.2025
                                  24.84502
78
                 6.3800
                         52.2025
                                  27.24161
     593.050
79
     818.725
                 6.3800
                         52.2025
                                  30.20599
80
    2587.900
                 6.3800
                         52.2025
                                  53.44517
                         52.2025
81
      61.100
                 8.4450
                                  28.89953
82
     410.600
                 8.4450
                         52.2025
                                  33.49043
```

```
83
     593.050
                 8.4450
                         52.2025
                                  35.88702
84
     818.725
                 8.4450
                         52.2025
                                  38.85139
85
    2587.900
                 8.4450
                         52.2025
                                  62.09058
86
      61.100
                10.5400
                         52.2025
                                  37.67054
87
     410.600
                10.5400
                         52.2025
                                  42.26143
88
                10.5400
                                  44.65802
     593.050
                         52.2025
89
     818.725
                10.5400
                         52.2025
                                  47.62240
90
    2587.900
                10.5400
                         52.2025
                                  70.86158
91
      61.100
                12.6475
                         52.2025
                                  46.49387
92
     410.600
                12.6475
                         52.2025
                                  51.08477
93
     593.050
                12.6475
                         52.2025
                                  53.48136
94
                         52.2025
     818.725
                12.6475
                                  56.44574
95
                12.6475
                         52.2025
                                  79.68492
    2587.900
                15.9700
96
      61.100
                         52.2025
                                  60.40398
97
     410.600
                15.9700
                         52.2025 64.99487
                15.9700
98
     593.050
                         52.2025
                                  67.39146
99
     818.725
                15.9700
                         52.2025 70.35584
```

```
100
    2587.900
                15.9700
                         52.2025
                                 93.59502
101
      61.100
                 6.3800
                         97.5100
                                  19.85066
                         97.5100
102
     410.600
                 6.3800
                                  24.44155
103
     593.050
                 6.3800
                         97.5100
                                  26.83814
104
     818.725
                         97.5100
                                  29.80252
                 6.3800
105
                 6.3800
                         97.5100
                                  53.04170
    2587.900
106
      61.100
                 8.4450
                         97.5100
                                  28.49606
107
     410.600
                 8.4450
                         97.5100
                                  33.08695
108
     593.050
                 8.4450
                         97.5100
                                  35.48355
109
     818.725
                 8.4450
                         97.5100
                                  38.44792
110
    2587.900
                 8.4450
                         97.5100
                                  61.68711
111
                         97.5100
                                  37.26707
      61.100
                10.5400
112
     410.600
                10.5400
                         97.5100
                                  41.85796
113
     593.050
                10.5400
                         97.5100
                                  44.25455
114
     818.725
                10.5400
                         97.5100
                                  47.21893
115
    2587.900
                10.5400
                         97.5100
                                  70.45811
116
      61.100
                12.6475
                        97.5100
                                  46.09040
```

```
117
     410.600
               12.6475 97.5100 50.68130
118
   593.050
               12.6475 97.5100 53.07789
119
   818.725
              12.6475 97.5100 56.04227
120
   2587.900
              12.6475 97.5100 79.28145
121
               15.9700 97.5100 60.00051
    61.100
122 410.600
              15.9700 97.5100 64.59140
123 593.050
               15.9700 97.5100 66.98799
124
    818.725
               15.9700 97.5100 69.95237
125 2587.900
               15.9700 97.5100 93.19155
```

```
[[1]]
             education women
                                       fit
     income
    -169.39
                   5.28 - 34.46 13.39294
     255.20
                   5.28 - 34.46 18.97019
3
     679.79
                   5.28 - 34.46 24.54743
4
    1104.38
                  5.28 - 34.46 \ 30.12468
5
    1528.97
                  5.28 - 34.46 \ 35.70193
6
    -169.39
                  8.01 - 34.46 24.82246
                   8.01 - 34.46 \ 30.39971
     255.20
8
     679.79
                   8.01 - 34.46 \ 35.97695
9
    1104.38
                   8.01 - 34.46 \ 41.55420
10
    1528.97
                   8.01 - 34.46 47.13145
11
    -169.39
                  10.74 - 34.46 \ 36.25198
12
    255.20
                  10.74 - 34.46 41.82923
13
    679.79
                  10.74 - 34.46 47.40647
14
    1104.38
                  10.74 - 34.46 52.98372
```

```
15
    1528.97
                 10.74 - 34.46 58.56097
16
    -169.39
                 13.47 - 34.46 47.68150
17
   255.20
                 13.47 - 34.46 53.25875
18
     679.79
                 13.47 - 34.46 58.83599
19
    1104.38
                 13.47 - 34.46 64.41324
20
    1528.97
                 13.47 - 34.46 69.99049
21
    -169.39
                 16.20 - 34.46 59.11102
22
   255.20
                 16.20 - 34.46 64.68827
23
   679.79
                 16.20 - 34.46 70.26551
24
    1104.38
                 16.20 - 34.46 75.84276
25
                 16.20 - 34.46 81.42001
    1528.97
26
    -169.39
                  5.28 -2.74 13.11047
27
   255.20
                  5.28
                        -2.74 18.68772
28
     679.79
                  5.28
                        -2.74 24.26496
29
    1104.38
                  5.28 -2.74 29.84221
30
    1528.97
                  5.28
                        -2.74 35.41946
31
    -169.39
                  8.01
                        -2.74 24.53999
```

```
32
     255.20
                  8.01
                        -2.74 30.11724
33
     679.79
                  8.01
                        -2.74 35.69448
34
    1104.38
                  8.01
                        -2.74 41.27173
35
    1528.97
                 8.01
                        -2.74 46.84898
36
    -169.39
                10.74
                        -2.74 35.96951
37
   255.20
                        -2.74 \ 41.54676
                10.74
38
     679.79
                        -2.74 \ 47.12400
                 10.74
39
    1104.38
                        -2.74 52.70125
                10.74
40
    1528.97
                10.74
                        -2.74 58.27850
41
    -169.39
                13.47
                        -2.74 47.39903
42
   255.20
                13.47
                        -2.74 52.97628
43
   679.79
                13.47
                        -2.74 58.55352
44
    1104.38
                13.47
                        -2.74 64.13077
45
    1528.97
                13.47
                        -2.74 69.70801
46
    -169.39
                16.20
                        -2.74 58.82855
47
    255.20
                 16.20
                        -2.74 64.40580
48
     679.79
                 16.20
                        -2.74 69.98304
```

```
49
    1104.38
                 16.20
                         -2.74 75.56029
50
    1528.97
                 16.20
                         -2.74 81.13753
51
    -169.39
                  5.28
                         28.98 12.82800
52
    255.20
                  5.28
                         28.98 18.40525
53
     679.79
                  5.28
                         28.98 23.98249
54
                  5.28
    1104.38
                         28.98
                               29.55974
55
                  5.28
                         28.98 35.13698
    1528.97
56
                  8.01
                         28.98 24.25752
    -169.39
57
     255.20
                  8.01
                         28.98
                               29.83477
58
     679.79
                  8.01
                         28.98 35.41201
59
    1104.38
                  8.01
                         28.98 40.98926
60
                  8.01
                                46.56650
    1528.97
                         28.98
61
    -169.39
                 10.74
                         28.98 35.68704
62
     255.20
                 10.74
                         28.98
                                41.26428
63
     679.79
                 10.74
                         28.98 46.84153
64
    1104.38
                 10.74
                         28.98 52.41878
65
    1528.97
                 10.74
                         28.98 57.99602
```

```
66
    -169.39
                 13.47
                         28.98
                                47.11656
67
     255.20
                 13.47
                         28.98 52.69380
68
     679.79
                 13.47
                         28.98
                                58.27105
69
    1104.38
                 13.47
                         28.98
                                63.84830
70
                                69.42554
    1528.97
                 13.47
                         28.98
71
                                58.54608
    -169.39
                 16.20
                         28.98
72
    255.20
                         28.98
                                64.12332
                 16.20
73
     679.79
                         28.98
                                69.70057
                 16.20
74
    1104.38
                 16.20
                         28.98
                                75.27782
75
                 16.20
    1528.97
                         28.98
                                80.85506
                         60.70
76
    -169.39
                   5.28
                                12.54553
77
     255.20
                   5.28
                         60.70
                                18.12277
78
     679.79
                   5.28
                         60.70
                                23.70002
79
    1104.38
                   5.28
                         60.70
                                29.27727
80
    1528.97
                   5.28
                         60.70 34.85451
81
    -169.39
                  8.01
                         60.70 23.97505
82
     255.20
                   8.01
                         60.70 29.55229
```

```
83
     679.79
                  8.01
                         60.70
                                35.12954
84
    1104.38
                  8.01
                         60.70
                                40.70679
85
    1528.97
                  8.01
                         60.70
                                46.28403
86
    -169.39
                 10.74
                         60.70 35.40457
87
     255.20
                         60.70 40.98181
                 10.74
88
                         60.70
                                46.55906
     679.79
                 10.74
89
    1104.38
                         60.70
                                52.13631
                 10.74
90
    1528.97
                         60.70
                                57.71355
                 10.74
91
    -169.39
                 13.47
                         60.70
                                46.83409
92
                         60.70
     255.20
                 13.47
                                52.41133
93
     679.79
                 13.47
                         60.70
                                57.98858
94
    1104.38
                         60.70
                                63.56583
                 13.47
95
                         60.70
                                69.14307
    1528.97
                 13.47
96
    -169.39
                 16.20
                         60.70
                                58.26361
97
     255.20
                 16.20
                         60.70 63.84085
                         60.70 69.41810
98
     679.79
                 16.20
99
    1104.38
                 16.20
                         60.70 74.99535
```

```
100
   1528.97
                16.20
                        60.70 80.57259
101
    -169.39
                  5.28
                        92.42 12.26306
102 255.20
                  5.28
                        92.42 17.84030
103 679.79
                 5.28
                        92.42 23.41755
104
   1104.38
                 5.28
                        92.42 28.99479
105
    1528.97
                 5.28
                        92.42 34.57204
106
   -169.39
                        92.42 23.69258
                 8.01
107 255.20
                 8.01
                        92.42 29.26982
108 679.79
                 8.01
                        92.42 34.84707
109
   1104.38
                 8.01
                        92.42 40.42431
110
    1528.97
                 8.01
                        92.42 46.00156
                        92.42 35.12210
111
    -169.39
                10.74
112 255.20
                        92.42 40.69934
                10.74
113 679.79
                10.74
                        92.42 46.27659
114 1104.38
                10.74
                        92.42 51.85383
115 1528.97
                10.74
                        92.42 57.43108
116
   -169.39
                13.47
                        92.42 46.55162
```

```
117
     255.20
                       92.42 52.12886
                13.47
118
     679.79
                13.47
                       92.42 57.70611
119
   1104.38
                13.47
                       92.42 63.28335
120
    1528.97
                13.47
                       92.42 68.86060
121
                       92.42 57.98114
    -169.39
                16.20
122 255.20
                       92.42 63.55838
                16.20
123 679.79
                16.20
                       92.42 69.13563
124 1104.38
                       92.42 74.71287
                16.20
125 1528 97
                       92.42 80.29012
                16.20
```

One School of Thought: Get Inside the Data

- Generally preferred by economists or political scientists (possibly statisticians)
- Why are you trying to compare the effects of "women" and "income"?
- Learn More About Your Data, look for meaningful comparison cases
- Make a predicted value table. rockchalk::predictOMatic does that

Outline

- 1 Introduction
- 2 Interpreting $\hat{\beta}_j$'s
- 3 Rescale Variables: Standardization
- 4 Standardized Data
- 5 Practice Problems

Another School of Thought: Try to Convert Variables to a Common Metric

- Preferred by psychologists (and many sociologists)
- A standardized variable is calculated like so:

standardized
$$y_i = \frac{y_i - Observed mean(y_i)}{Observed Std.Dev.(y_i)}$$

- I'm not calling that a "Z score" because Z score presumes we know the TRUF mean and standard deviation
- By definition, all standardized variables have a mean of 0 and a standard deviation of 1. See why?
- What is the common metric with standardized variables? (I'm asking, seriously)

- Replace y_i and $X1_i$ and $X2_i$ and $X3_i$ by standardized variables
- A standardized regression is like so:

$$\left(\frac{y_i - \bar{y}}{s_y}\right) = \beta_1^{st} \left(\frac{X1_i - \overline{X1}}{s_{X1}}\right) + \beta_2^{st} \left(\frac{X2_i - \overline{X2}}{s_{X2}}\right) + \beta_3^{st} \left(\frac{X3_i - \overline{X3}}{s_{X3}}\right) + u_i$$
(3)

- lacktriangle The estimated coefficients $eta^{\it st}$ are called "standardized regression coefficients"
- Coefficients we discussed until now are un-standardized parameter estimates, which in past I have labeled as b_j , just to avoid confusion with "Betas" slang
- If ALL variables are standardized, then the intercept is 0, I didn't even bother to write it in

Standardize the Numeric Data

 Unlike SPSS, R does not make standardization easy or automatic (not an oversight, probably).

```
stPrestige <- Prestige
stPrestige$income <- scale(stPrestige$income)
stPrestige$education <- scale(stPrestige$education
)
stPrestige$women <- scale(stPrestige$women)
stPrestige$prestige <- scale(stPrestige$prestige)
presmod1st <- Im(prestige ~ income + education +
    women, data = stPrestige)
summary(presmod1st)</pre>
```

Standardize the Numeric Data ...

```
Call:
Im(formula = prestige \sim income + education + women,
    data = stPrestige)
Residuals:
    Min 1Q Median 3Q Max
-1.15229 -0.30999 -0.00793 0.29984 1.01744
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.822e-17  4.516e-02  0.000  1.00
       3.242e-01 6.855e-02 4.729 7.58e-06
income
   * * *
education 6.640e-01 6.164e-02 10.771 < 2e-16
   * * *
          -1.642e-02 5.607e-02 -0.293 0.77
women
```

Standardize the Numeric Data ...

what you want.

Betas

standardize function in rockchalk will automate this

Recall: presmod1 <- Im(prestige $\tilde{}$ income + education + women, data = Prestige) standardize() will scan the model, rescale the variables, and give back

```
pres1st <- standardize(presmod1)
summary(pres1st)</pre>
```

standardize function in rockchalk will automate this ...

```
Call:
Im(formula = prestiges \sim incomes + educations + womens, data =
    stddat)
Residuals:
             1Q Median 3Q
                                       Max
-1.15229 - 0.30999 - 0.00793 - 0.29984 - 1.01744
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.822e-17  4.516e-02  0.000  1.00
incomes 3.242e-01 6.855e-02 4.729 7.58e-06 ***
educations 6.640e-01 6.164e-02 10.771 < 2e-16 ***
womens -1.642e-02 5.607e-02 -0.293 0.77
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' 1
Residual standard error: 0.4561 on 98 degrees of freedom
Multiple R^2: 0.7982, Adjusted R^2: 0.792
F-statistic: 129.2 on 3 and 98 DF, p-value: < 2.2e-16
```

Side By Side: UnStandardized and Standardized Regression Estimates

	Unstand	ardized	Standardized		
	Estimate	(S.E.)	Estimate	(S.E.)	
(Intercept)	-6.794*	(3.239)	0.000	(0.045)	
income	0.013***	(0.003)	0.324***	(0.069)	
education	4.187***	(0.389)	0.664***	(0.062)	
women	-0.009	(0.030)	-0.016	(0.056)	
N	102		102		
RMSE	7.846		0.456		
R^2	0.798		0.798		
adj R^2	0.792		0.792		

 $*p \le 0.05**p \le 0.01***p \le 0.001$

Force yourself to stop and try to interpret those parameters

Notice something interesting about the t statistics

	Estimate	t	value	Estimate	t	value	
(Intercept)	-6.79		-2.10	0.00		0.00	
income	0.01		4.73	0.32		4.73	
education	4.19		10.77	0.66		10.77	
women	-0.01		-0.29	-0.02		-0.29	

The estimated t values are identical, unstandardized on left and standardized on the right.

Why Do Some People Like Standardized Coefficients?

I'm an outsider, looking in. It seems like

They seek an easy comparison, like "a one standard deviation rise in X1 causes a $\hat{\beta}_1^{st}$ -standard-deviation-increase in y."

So, if X1 is measured in "dollars" and y is measured in pounds of elephant fat per cubic yard of shipping container, or "bushels of wheat per year", the standardization TRIES to make them comparable.

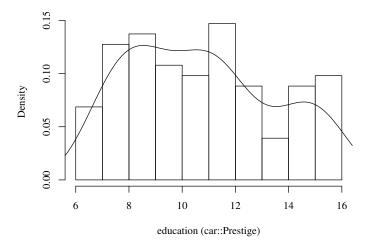
Translate between β and β^{st}

- How does the beta, say β_1^{st} differ from the unstandardized coefficient, β_1 ?
- Answer: its a rescaled value (recall my theme on rescaled predictors?)

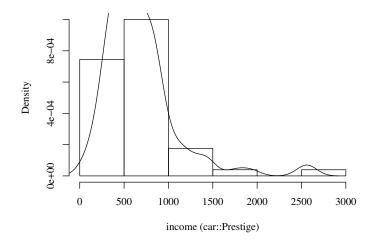
$$\beta_1^{st} = \frac{s_{X1}}{s_v} \hat{\beta}_1$$

You can prove this to yourself by multiplying 3 by s_y

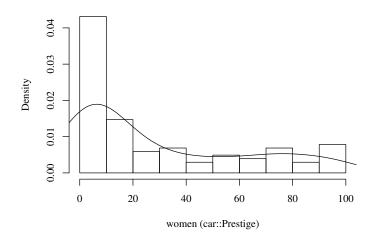
$$(y_i - \overline{y}) = \beta_1 \left[\frac{s_y}{s_{X1}} \right] (X1_i - \overline{X1}) + \beta_2 s_y \left(\frac{X2_i - \overline{X2}}{s_{X2}} \right) + \beta_3 s_y \left(\frac{X3_i - \overline{X3}}{s_{X3}} \right) + u_i$$
(4)


Does Standardization Make education, income, and women Comparable?

	education	income	women	prestige
Min.	6.380	61.1	0.000	14.80
1st Qu	8.445	410.6	3.592	35.23
Median	10.540	593.0	13.600	43.60
Mean	10.738	679.8	28.979	46.83
3rd Qu	12.648	818.7	52.203	59.27
Max	15.970	2587.9	97.510	87.20
Std. Dev.	2.73	424.59	31.72	17.20


What about non-normal variables?

- Part of the motivation for standardization is the "normality" of many observed variables.
- We develop an intuition for the mean as a center point, and that a standard deviation is a step across "about" 34% of the observations.
- A two standard deviation change in a variable would be a huge step, from average to the edge.


Review education

Review income

Review women

Suppose there's a Categorical Predictor "type"

- Recall that R creates "dummy variables"
- A 3 category predictor {bc, prof, wc} will be converted to dummy variables
- When we standardize education and income, should we standardize typeprof and typewc as well?

Suppose there's a Categorical Predictor "type"

■ Step 1. Imagine fitting the model with unstandardized coefficients.

```
\begin{array}{lll} {\sf presmod2} < & {\sf Im(prestige} \sim {\sf income} + {\sf education} + \\ {\sf women} + {\sf type} \,, \,\, {\sf data=stPrestige)} \end{array}
```

- Step 2. Standardize. If we want to "norm" the coefficients to become comparable, should we Standardize
 - all of the variables,
 - or just the numeric ones?
- SPSS historically standardized all of the variables, even 0, 1 variables like "male" or "female".
- If we must standardize, lets only bother with numeric variables.

In rockchalk, meanCenter can be used

The ordinary, nothing standardized regression is:

```
presmod1 <- Im(prestige \sim income + education + women + type, data = Prestige)
```

 This use of the meanCenter function will standardize all numeric predictors and re-fit the regression

```
\begin{array}{lll} presmod2mc <& - meanCenter(presmod1\,, centerDV = \\ TRUE, centerOnlyInteractors = FALSE\,, \\ standardize = TRUE) \end{array}
```

Compare the factor's estimates with the Standardized Numeric Variables

	Unstand	ardized	Partly Standardized		
	Estimate	(S.E.)	Estimate	(S.E.)	
(Intercept)	-0.814	(5.331)	-0.061	(0.108)	
income	0.010***	(0.003)	0.257***	(0.065)	
education	3.662***	(0.646)	0.581***	(0.102)	
women	0.006	(0.030)	0.012	(0.056)	
typeprof	5.905	(3.938)	0.343	(0.229)	
typewc	-2.917	(2.665)	-0.170	(0.155)	
N	98		98		
RMSE	7.132		0.415		
R^2	0.835		0.835		
adj R^2	0.826		0.826		

 $*p \le 0.05**p \le 0.01***p \le 0.001$

If you really want to Standardize everything

- R will resist you when you want to convert the model and get standardized coefficients. Its not easy to get the dummy variables out and smooth them over.
- Persuading R to do this is tough, so I wrote standardize() in rockchalk can handle it. Note the output scolds you for doing this.

```
presmod3st <- standardize(presmod2)
summary(presmod3st)</pre>
```

```
All variables in the model matrix and the dependent variable were centered. The centered variables have the letter "s" appended to their non-centered counterparts, even constructed variables like `x1:x2` and poly(x1,2). We agree, that's probably ill-advised, but you asked for it by running standardize().

The rockchalk function meanCenter is a smarter option, probably.

The summary statistics of the variables in the design matrix.

mean std.dev.
prestiges 0 1
```

If you really want to Standardize everything ...

```
incomes
educations
womens
typeprofs
typewcs
Call:
Im(formula = prestiges \sim incomes + educations + womens + typeprofs +
   tvpewcs. data = stddat)
Residuals:
    Min
              1Q Median
                               3Q
                                       Max
-0.86274 -0.26217 0.01824 0.30698 1.08206
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.318e-16
                      4.214e - 02
                                  0.000 1.000000
incomes
            2 579e-01
                      6.487e-02 3.976 0.000139 ***
educations 5.889e-01 1.039e-01 5.671 1.63e-07 ***
          1.183e-02 5.577e-02 0.212 0.832494
womens
typeprofs 1.615e-01 1.077e-01 1.500 0.137127
typewcs -7.269e-02
                       6.642e - 02
                                 -1.094 0.276626
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

If you really want to Standardize everything ...

```
Residual standard error: 0.4172 on 92 degrees of freedom
```

Multiple R^2 : 0.8349, Adjusted R^2 : 0.826 F-statistic: 93.07 on 5 and 92 DF, p-value: < 2.2e-16

Standardized Categorical Predictors Too

Unctandardized

	Unstand	ardized	Standardiz	Standardized (except type)		All Standardized	
	Estimate	(S.E.)	Estimate	(S.E.)	Estimate	(S.E.)	
(Intercept)	-0.814	(5.331)	-0.061	(0.108)	0.000	(0.042	
income	0.010***	(0.003)	0.257***	(0.065)	-		
education	3.662***	(0.646)	0.581***	(0.102)	-		
women	0.006	(0.030)	0.012	(0.056)	-		
typeprof	5.905	(3.938)	0.343	(0.229)	-		
typewc	-2.917	(2.665)	-0.170	(0.155)	•		
incomes					0.258***	(0.065	
educations					0.589***	(0.104)	
womens			-		0.012	(0.056	
typeprofs					0.161	(0.108	
typewcs			-		-0.073	(0.066	
N	98		98		98		
RMSE	7.132		0.415		0.417		
R^2	0.835		0.835		0.835		
adj R^2	0.826		0.826		0.826		
0.05 0.001							

Standardized (except type)

 $*p \le 0.05 ** p \le 0.01 *** p \le 0.001$

Standardized Categorical Predictors Too ...

Note the summary stats in the stantardize output

- And the musical question is, DO YOU GAIN INSIGHT BY STANDARDIZING the categorical variables?
- Do you really think there is any way to formalize a comparison of $Sex \in \{0,1\}$ and income in dollars?

Here's my answer

Consider standardizing a dichotomous variable. What does "the mean" mean?

Run this in R to test your understanding. Create a variable "male" equal to 0 or 1

```
male <- rbinom (1000, 1, p = 0.55) 
mean ( male ) 
sd ( male )
```

When I ran that, I got male as a string of 0's and 1's with a mean of male is 0.542 and the standard deviation of 0.49.

If you like standardized variables, tell me what a one standard deviation in male means to you?

- "A one standard deviation increase in male raises the "average male" from 0.542 to 1.04."
- 3 "A two standard deviation increase in male results in change from 0.542 to 1.53"

Here's my answer ...

4 Can you then put that to use in interpreting a regression model?

More Problems: unknown σ .

Gary King's fine essay "How not to lie with statistics" explores many other flaws in the use of standardized coefficients. I'll summarize a couple of the points I found most persuasive.

- I Problem: We estimate by the sample standard deviation, s_{X1} , s_{X2} . But we act "as if" they were "true" values. (We don't know σ_{X1} , σ_{X2} , ...)
 - I Suppose unstandardized $\beta_1=\beta_2$. Two variables have same effect. And they are measured on the same scale.
 - 2 If observed std.dev. are different, $s_{x1} \neq s_{x2}$, that will cause β_1^{st} and β_2^{st} to differ.
- 2 Along those lines, take a subset of the data. Even if the relationship is the same, the β^{st} will flop about because estimated standard deviations change..
 - betas are not comparable across regressions. and they are not comparable within regressions.

Different y variances are a Problem Too

Suppose we have two groups of respondents, and the same slopes apply to both

group 1:
$$y_i = \beta_0 + \beta_1 x 1_i + \beta_2 x 2_i + e 1_i, e 1_i \sim N(0, \sigma_{e1}^2)$$
 (5)

group 2:
$$y_i = \beta_0 + \beta_1 x 1_i + \beta_2 x 2_i + e 2_i, \ e 2_i \sim N(0, \sigma_{e2}^2)$$
 (6)

- This is a case of "Heteroskedasticity".
- Note only the error variances differ, so we expect the regression coefficients should be similar. Standardization of y_i has a multiplier effect across the whole line, so all of the coefficients will shrink or expand
- If we standardize the y data, we will cause the β^{st} estimates to flop about.
- Standardization complicates problem of comparing coefficients across groups.

Outline

- 1 Introduction
- 2 Interpreting $\hat{\beta}_j$'s
- 3 Rescale Variables: Standardization
- 4 Standardized Data
- 5 Practice Problems

Standardized Regression Coefficients

- Take any "real life" data set you want that has (at least) 3 numeric variables. For ease of exposition, I will call the DV y and the IV x1, x2, and so forth, but you of course can use the "real names" when you describe the model.
 - Regress y on x1. Do the usual chores: Create a scatterplot, draw the regression line, write a sentence to describe the estimated relationship. From the line you drew, pick 2 interesting values of x1 and write a sentence comparing the predicted values.
 - 2 Create histograms for y and x1 and super-impose the kernel density curves in order to get a mental image of the distributions. Calculate the mean and standard deviations.
 - 3 Create standardized variables yst and x1st. Run the regression of yst on x1st. Create a scatterplot of yst on x1st, draw the predicted line. For the 2 interesting values of x1 from the previous case, calculate the corresponding values of xst and figure out what the predicted value of yst is for those particular values. Then write a sentence comparing the predicted values of yst for those two cases.

Standardized Regression Coefficients ...

- 4 In your opinion, did standardization improve your ability to interpret the effect of x1 and x1st?
- Repeat the same exercise, except this time include two or more numeric predictors. When you conduct part a), pick interesting values for all of your IV's, and make a predicted value table of this sort (I've included example "interesting values" for x1 and x2).

value combinations					
×1	x2	predicted y			
9	3.2	?			
9	4.6	?			
32	3.2	?			
32	4.7	?			

I could show you how to make a 3D scatterplot (see the Multicollinearity lecture), but it is probably not worth your effort.

Standardized Regression Coefficients ...

- Find a dataset with a dichotomous predictors. Or create your own dichotomous predictor by categorizing a numeric variable (In R I use the "cut" function for that). Conduct the same exercise again. Try to describe the regression model with unstandardized data, and then conduct the standardized model.
- Let's concentrate on categorical predictors with many categories. We need data with a numeric variable for y and multi-category predictor. If x1 is type of profession, for example, then when R fits the regression of y on x1, R will create the "dummy variables" for g-1 categories when it fits a regression. You can create your own dummy variables if you want, but in R there is an easier way because you can ask the regression model to keep the data for you after it is done fitting. So instead of just running mod1 <- Im(y ~ x, data=dat) run this mod2 <- Im(y1~x2, data=dat, x=T, y=T)

Standardized Regression Coefficients ...

After that, the dependent variable will be saved in the model object as mod2\$y and the matrix of input variables will be saved as mod2\$x. So you can grab those into a new data frame like so

myNewDF <- data.frame(mod2\$y, mod2\$x)

Here's a "real life" example I just ran to make sure that works.

library(car)

 $mod1 <- Im(prestige \ \tilde{\ } type, \ data = Prestige, \ x = TRUE, \ y = TRUE)$

dat2 <- data.frame(mod1\$y, mod1\$x)

In dat2, the variables now are:

mod1.y X.Intercept. typeprof typewc

But I can beautify the names like so

colnames(dat2) <- c("prestige", "int", "prof", "wc")

The "baseline" value of the "type" is "bc", but that variable disappeared into the intercept, but we can re-create it easily.

dat2\$bc <- dat2\$int - dat2\$prof - dat2wc

See what I mean? bc is what remains after you remove the prof and wc.

Standardized Regression Coefficients ...

After that, you can create standardized variables for "prestige", 'bc" "prof" and "wc" and then run a regression with them.

I'm a little worried that the separate standardization of the dummy variables prof and wc throws away the information that flows from the fact that they are indicators for the same variable. Do you know what I mean? When they are "bc" "prof" and "wc", we know that they are 0 or 1 in a logical pattern. I'll have to think harder on that when I get some free time. Or else, you will work it out for me and then I'll not have to do any hard thinking.