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Introduction

Problem

Recall the lecture about diagnostic plots?

Remember some plots used terms “leverage” and “Cook’s Distance”?

I said we’d come to a day when I had to try to explain that?

The day of reckoning has come.
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Quick Summary Before Too Many Details

Recall the Public Spending Example Data Set

To get the publicspending dataset, download publicspending.txt in a Web
browser, or run

dat <− r e a d . t a b l e ( ”h t tp : // p j . f r e e f a c u l t y . o r g / gu i d e s / s t a t /DataSets /
Pub l i cSpend i ng / p u b l i c s p e n d i n g . t x t ” , heade r = TRUE)

summarize ( dat )

$ numer i c s
ECAB EX GROW MET OLD WEST YOUNG

0% 57 .40 183 .00 −7.400 0 .00 5 .400 0 .0000 24 .000
25% 85 .40 253 .50 6 .975 24 .10 7 .950 0 .0000 26 .400
50% 95 .30 285 .50 14 .050 46 .15 9 .450 0 .5000 28 .000
75% 105 .10 324 .00 22 .670 69 .97 10 .420 1 .0000 29 .630
100% 205 .00 454 .00 77 .800 86 .50 11 .900 1 .0000 32 .900
mean 96 .75 286 .60 18 .730 46 .17 9 .212 0 .5000 28 .110
sd 22 .25 58 .79 18 .870 26 .94 1 .639 0 .5053 2 .149
va r 495 .20 3457 .00 356 .300 725 .70 2 .687 0 .2553 4 .616
NA ' s 0 . 00 0 .00 0 .000 0 .00 0 .000 0 .0000 0 .000
N 48 .00 48 .00 48 .000 48 .00 48 .000 48 .0000 48 .000

$ f a c t o r s
STATE
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Quick Summary Before Too Many Details

Recall the Public Spending Example Data Set ...

AL : 1 .000
AR : 1 .000
AZ : 1 .000
CA : 1 .000
( A l l Others ) : 44 .000
NA ' s : 0 .000
en t ropy : 5 .585
normedEntropy : 1 .000
N :48 .000

This time, I decided to create MET squared before running the model,
but you will recall there are at least 4 different ways to run this regression.

dat $METSQ <− dat $MET*dat $MET
EXfu l l 2 <− lm (EX ∼ ECAB + MET + METSQ + GROW + YOUNG + OLD + WEST,

data=dat )
summary ( EX fu l l 2 )
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Quick Summary Before Too Many Details

Recall the Public Spending Example Data Set ...

Ca l l :
lm ( fo rmu la = EX ∼ ECAB + MET + METSQ + GROW + YOUNG + OLD + WEST,

data = dat )

R e s i d u a l s :
Min 1Q Median 3Q Max

−63.974 −16.620 −2.647 20 .898 68 .234

C o e f f i c i e n t s :
Es t imate S td . E r r o r t v a l u e Pr (>| t | )

( I n t e r c e p t ) 119 .118461 280 .911921 0 .424 0 .673807
ECAB 1 .395420 0 .382255 3 .650 0 .000749 ***

MET −3.042142 0 .758040 −4.013 0 .000256 ***

METSQ 0 .030914 0 .008958 3 .451 0 .001332 **

GROW 0 .695336 0 .379504 1 .832 0 .074371 .
YOUNG 0 .607602 6 .975082 0 .087 0 .931018
OLD 4 .120784 6 .574827 0 .627 0 .534383
WEST 34 .073079 12 .245464 2 .783 0 .008192 **

−−−
S i g n i f . codes : 0 ' *** ' 0 .001 ' ** ' 0 .01 ' * ' 0 .05 ' . ' 0 . 1 ' ' 1

Re s i d u a l s t anda rd e r r o r : 35 . 41 on 40 deg r e e s o f f reedom
Mu l t i p l e R2 : 0 .6913 , Ad jus ted R2 : 0 .6373
F− s t a t i s t i c : 12 . 8 on 7 and 40 DF, p−value : 1 .717e−08
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Quick Summary Before Too Many Details

Recall the Public Spending Example Data Set ...
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Quick Summary Before Too Many Details

Recall the Public Spending Example Data Set
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Quick Summary Before Too Many Details

influence.measures() provides one line per case in data

EX f u l l 2 i n f l <− i n f l u e n c e .m e a s u r e s ( EX fu l l 2 )
p r i n t ( E X f u l l 2 i n f l )

I n f l u e n c e measures o f
lm ( fo rmu la = EX ∼ ECAB + MET + METSQ + GROW + YOUNG + OLD + WEST, data = dat ) :

d f b . 1 dfb.ECAB dfb.MET dfb.METS dfb.GROW dfb.YOUN
1 0 .033614 −0.022425 3.24e−03 −6.35e−03 −1.62e−02 −0.033207
2 −0.020224 0 .009687 5.87e−03 1.17e−02 −1.33e−02 0 .022675
3 −0.108585 0 .061042 −2.81e−01 2.31e−01 1.08e−01 0 .115471
4 0 .025615 −0.010965 3.09e−02 −4.89e−02 8.70e−03 −0.025093
5 −0.039827 0 .083028 1.45e−01 −2.02e−01 1.44e−01 0 .029069
6 0 .000317 0 .001048 −5.45e−04 7.85e−04 −4.75e−04 −0.000477
7 0 .495158 −0.327230 −3.87e−01 3.95e−01 −4.08e−01 −0.491621
8 −0.282785 0 .105075 8.03e−02 −4.54e−02 1.24e−01 0 .287801
9 −0.026774 0 .015032 2.62e−02 −5.00e−02 8.23e−02 0 .025474
10 0 .169823 −0.028564 7.67e−02 −1.31e−01 6.67e−02 −0.171571
11 −0.000078 0 .000091 4.37e−05 −5.17e−05 1.09e−05 0 .000061
12 −0.017406 0 .014434 −8.41e−03 1.25e−02 3.20e−03 0 .015895
13 −0.124846 0 .124751 1.17e−02 5.18e−02 −2.43e−02 0 .135831
14 0 .023257 −0.033842 −1.58e−02 5.30e−03 2.77e−03 −0.022143
15 0 .029090 −0.065832 −6.53e−02 6.98e−02 −5.72e−03 −0.022790
16 −0.002857 −0.045190 5.38e−03 −1.85e−02 5.57e−02 0 .006605
17 −0.083721 0 .141726 1.60e−01 −1.68e−01 2.94e−02 0 .065519
18 0 .036471 −0.041965 −2.67e−02 2.05e−02 3.05e−02 −0.039134
19 0 .030433 −0.017238 −5.85e−02 5.73e−02 2.38e−02 −0.035057
20 0 .030090 −0.028983 3.63e−02 −4.21e−02 −1.83e−02 −0.026316
21 −0.118448 0 .054141 −3.84e−02 1.05e−01 6.57e−02 0 .080258
22 0 .075539 −0.022198 −4.17e−02 2.03e−02 −3.34e−03 −0.103346
23 0 .058924 −0.061339 7.13e−02 −8.06e−02 −2.87e−02 −0.043911
24 −0.007277 −0.041392 −5.50e−03 3.33e−05 1.12e−01 0 .003200
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Quick Summary Before Too Many Details

influence.measures() provides one line per case in data ...

25 −0.044660 0 .072497 −7.19e−02 5.41e−02 7.14e−02 0 .033730
26 0 .089479 0 .118208 2.39e−01 −2.66e−01 1.66e−02 −0.137563
27 −0.358113 0 .221774 2.42e−01 −9.86e−02 4.08e−02 0 .332909
28 0 .003968 −0.004455 −6.01e−03 5.57e−03 6.55e−04 −0.002415
29 −0.224326 0 .179601 −2.88e−01 2.80e−01 1.64e−01 0 .289007
30 −0.157029 0 .181030 −2.10e−01 1.95e−01 −1.21e−01 0 .176432
31 0 .000623 0 .000917 1.40e−02 −9.22e−03 2.41e−03 −0.000312
32 −0.051931 0 .012917 −1.05e−01 1.23e−01 4.26e−02 0 .074303
33 −0.016213 0 .003556 −2.70e−02 3.35e−02 5.70e−03 0 .021540
34 0 .000775 −0.000616 −8.68e−04 4.79e−04 −1.52e−05 −0.000655
35 0 .006423 0 .188257 5.94e−02 −7.03e−02 1.42e−01 −0.013179
36 0 .087929 −0.083146 9.76e−02 −1.05e−01 −5.93e−02 −0.098041
37 −0.066354 0 .052002 −1.51e−01 9.00e−02 1.25e−01 0 .053882
38 0 .184503 −0.140312 6.37e−02 −1.26e−01 3.28e−02 −0.152311
39 0 .050217 0 .041654 1.41e−02 −4.00e−02 −1.53e−01 −0.056807
40 0 .001382 0 .038629 3.81e−02 −6.53e−02 −1.44e−02 −0.008998
41 0 .252860 −0.184320 7.63e−01 −6.93e−01 −9.92e−02 −0.311904
42 0 .290308 0 .360149 −7.12e−01 4.09e−01 −3.66e−01 −0.253964
43 −0.025624 0 .017844 1.91e−02 −4.69e−03 −9.48e−03 0 .025327
44 −0.336514 0 .176489 5.03e−02 1.13e−01 3.02e−02 0 .364581
45 −0.028611 −0.003324 1.27e−01 −6.34e−02 −4.25e−02 0 .015223
46 −0.062138 0 .045225 3.00e−01 −2.43e−01 −3.50e−02 0 .024796
47 0 .861857 −2.918265 −5.85e−01 6.66e−01 −6.48e−01 −0.637764
48 −0.010704 −0.055297 −1.11e−01 1.53e−01 7.18e−02 0 .013846

dfb.OLD dfb.WEST d f f i t c o v . r cook .d hat i n f
1 −3.63e−02 0 .031058 −0.045912 1 .597 2.70e−04 0 .2342
2 3.91e−03 0 .021366 −0.056073 1 .480 4.03e−04 0 .1753
3 1.76e−01 −0.215227 0 .412026 1 .536 2.15e−02 0 .2730
4 −3.28e−02 0 .014115 −0.079188 1 .490 8.03e−04 0 .1828
5 1.69e−02 −0.020465 −0.358119 1 .407 1.62e−02 0 .2108
6 −1.59e−04 −0.001485 0 .004951 1 .330 3.14e−06 0 .0796
7 −3.81e−01 0 .112238 1 .071230 0 .571 1.30e−01 0 .1860
8 2.51e−01 0 .026803 −0.531560 0 .871 3.42e−02 0 .1098
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Quick Summary Before Too Many Details

influence.measures() provides one line per case in data ...

9 2.01e−02 0 .015488 −0.180159 1 .271 4.13e−03 0 .0954
10 −1.84e−01 −0.122726 0 .413144 1 .004 2.11e−02 0 .1011
11 9.55e−05 0 .000013 −0.000198 1 .399 5.01e−09 0 .1250
12 1.87e−02 0 .002122 −0.026210 1 .472 8.81e−05 0 .1689
13 6.12e−02 −0.128755 0 .266670 1 .166 8.95e−03 0 .0910
14 −1.63e−02 0 .038732 −0.070823 1 .288 6.42e−04 0 .0635
15 −2.38e−02 0 .073352 −0.124525 1 .342 1.98e−03 0 .1107
16 8.00e−03 0 .036101 −0.146118 1 .287 2.72e−03 0 .0897
17 9.49e−02 −0.187099 0 .313702 1 .151 1.23e−02 0 .1042
18 −2.17e−02 0 .049963 −0.090979 1 .395 1.06e−03 0 .1320
19 −2.61e−02 0 .090962 −0.163803 1 .266 3.42e−03 0 .0869
20 −3.24e−02 −0.021449 0 .080554 1 .334 8.31e−04 0 .0941
21 1.97e−01 0 .161291 −0.405586 1 .148 2.05e−02 0 .1363
22 −5.31e−03 0 .119993 −0.256660 1 .462 8.39e−03 0 .2049
23 −8.61e−02 −0.049377 0 .184803 1 .321 4.35e−03 0 .1197
24 4.40e−02 −0.033024 0 .125601 3 .191 2.02e−03 0 .6170 *

25 6.86e−02 −0.103774 −0.181256 1 .365 4.19e−03 0 .1392
26 −7.37e−02 −0.105768 −0.487214 1 .180 2.96e−02 0 .1740
27 3.52e−01 0 .109990 0 .555259 0 .936 3.76e−02 0 .1310
28 −6.94e−03 −0.004108 −0.016054 1 .405 3.30e−05 0 .1287
29 4.63e−02 −0.450227 −0.750865 0 .753 6.67e−02 0 .1469
30 1.12e−01 0 .097552 0 .544326 0 .770 3.54e−02 0 .0944
31 −7.30e−03 −0.013034 −0.039647 1 .325 2.01e−04 0 .0794
32 −5.65e−04 −0.108433 −0.236830 1 .301 7.12e−03 0 .1291
33 4.69e−03 −0.026457 −0.057511 1 .375 4.24e−04 0 .1141
34 −8.00e−04 0 .000487 0 .001533 1 .485 3.01e−07 0 .1755
35 −1.19e−01 −0.286860 −0.668537 0 .660 5.23e−02 0 .1069
36 −5.07e−02 0 .132798 0 .211626 1 .303 5.69e−03 0 .1208
37 1.46e−01 −0.264082 −0.410324 0 .971 2.07e−02 0 .0931
38 −2.66e−01 0 .130278 0 .430561 1 .323 2.33e−02 0 .2021
39 −4.97e−02 −0.025216 −0.204538 1 .791 5.35e−03 0 .3283 *

40 9.06e−03 0 .082729 0 .221315 1 .106 6.15e−03 0 .0580
41 −2.14e−01 −0.028788 −1.005408 0 .646 1.17e−01 0 .1883
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Quick Summary Before Too Many Details

influence.measures() provides one line per case in data ...

42 −4.48e−01 0 .179969 1 .359365 0 .611 2.09e−01 0 .2625 *

43 1.81e−02 −0.012487 −0.042528 1 .536 2.32e−04 0 .2039
44 1.99e−01 0 .040530 0 .493618 1 .566 3.08e−02 0 .3027
45 3.73e−02 0 .200785 0 .319108 1 .034 1.27e−02 0 .0764
46 1.09e−01 0 .254456 0 .522983 0 .739 3.26e−02 0 .0837
47 −9.65e−02 0 .162920 −4.256153 0 .602 1 . 86e+00 0 .6527 *

48 2.56e−02 0 .111797 0 .259679 1 .487 8.59e−03 0 .2168
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Quick Summary Before Too Many Details

What is All that Stuff About?

dfbetas. Change in β̂ when row i is removed.

dffits. Change in prediction for i from N-{i}
cook.d. Cook’s d summary of a case’s damage

hat value. Commonly called “leverage.

Can ask for these one-by-one when you want them, see
?influence.measures
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Quick Summary Before Too Many Details

influence.measures Creates a Summary Object

influence.measures is row-by-row, perhaps necessary in some
situations, but excessive most of the time.

More simply, ask which rows are potentially troublesome with the
summary function:

summary ( E X f u l l 2 i n f l )

P o t e n t i a l l y i n f l u e n t i a l o b s e r v a t i o n s o f
lm ( fo rmu la = EX ∼ ECAB + MET + METSQ + GROW + YOUNG + OLD + WEST,

data = dat ) :

d f b . 1 dfb.ECAB dfb.MET dfb.METS dfb.GROW dfb.YOUN dfb.OLD
24 −0.01 −0.04 −0.01 0 .00 0 .11 0 .00 0 .04
39 0 .05 0 .04 0 .01 −0.04 −0.15 −0.06 −0.05
42 0 .29 0 .36 −0.71 0 .41 −0.37 −0.25 −0.45
47 0 .86 −2.92 * −0.59 0 .67 −0.65 −0.64 −0.10

dfb.WEST d f f i t c o v . r cook .d hat
24 −0.03 0 .13 3 . 1 9 * 0 .00 0 . 6 2 *

39 −0.03 −0.20 1 . 7 9 * 0 .01 0 .33
42 0 .18 1 . 3 6 * 0 .61 0 .21 0 .26
47 0 .16 −4.26 * 0 .60 1 . 8 6 * 0 . 6 5 *



Diag 17 / 78

The Hat Matrix
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The Hat Matrix

Bear With Me for A Moment, Please

The “solution” for the OLS estimator in matrix format is

β̂ = (XTX )−1XT y (1)

And so the predicted value is calculated as

ŷ = X β̂

X (XTX )−1XT y

Definiton: The Hat Matrix is that big glob of X ’s.

H = X (XTX )−1XT (2)
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The Hat Matrix

Just One More Moment ...

The hat matrix is just a matrix

H =


h11 h12 . . . h1(N−1) h1N

h21 h22

... h2(N−1) h2N

h(N−1)N
hN1 hN2 . . . hN(N−1) hNN


LEVERAGE: The hii values (the “main diagonal” values of this matrix)
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The Hat Matrix

But it is a Very Informative Matrix!

It is a matrix that translates observed y into predicted ŷ .

Write out the prediction for the i ′th row

ŷi = hi1y1 + hi2y2 + . . .+ hiNyN (3)

That’s looking at H “from side to side,” to see if one case is
influencing the predicted value from another.
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The Hat Matrix

Be clear, Could Write Out Each Case



ŷ1
ŷ2
ŷ3
...

ŷN−1
ŷN


=



h11y1 +h12y2 +h1NyN
h21y1 + +h2NyN

h31y1 +
.. .

...
...

h(N−1)(N−1)yN−1 +h(N−1)NyN
hN1y1 + · · · +hN(N−1)yN−1 +hNNyN
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Spot Extreme Cases
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Spot Extreme Cases

Diagonal Elements of H

Consider at the diagonal of the hat matrix:
h11

h22

. . .

hN−1,N−1
hNN

 (4)

hii are customarily called “leverage” indicators

hii DEPEND ONLY ON THE X’s. In a sense, hii measures how far a
case is from “the center” or all cases.
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Spot Extreme Cases

leverage

The sum of the leverage estimates is p, the number of parameters
estimated (including the intercept).

the most “pleasant” result would be that all of the elements are the
same, so pleasant hat values would be p/N

small hii means that the positioning of an observation in the X space
is not in position to exert an extraordinary influence.
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Spot Extreme Cases

Follow Cohen, et al on this

The hat value is a summary of how far“out of the usual”a case is on
the IVs

In a model with only one predictor, CCWA claim (p. 394)

hii =
1

N
+

(xi − x̄)2∑
x2
i

(5)

If a case is “at the mean,” the hii is as small as it can get
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Spot Extreme Cases

Hat Values in the State Spending Data

dat $ hat <− h a t v a l u e s ( EX fu l l 2 )
sum( dat $ hat )

[ 1 ] 8

da t a . f r ame ( dat $STATE, dat $ hat )

dat.STATE da t . h a t
1 ME 0 .23415534
2 NH 0 .17526633
3 VT 0 .27304741
4 MA 0 .18281108
5 RI 0 .21080976
6 CT 0 .07958478
7 NY 0 .18604721
8 NJ 0 .10979861
9 PA 0 .09538661
10 DE 0 .10110559
11 MD 0 .12496151
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Spot Extreme Cases

Hat Values in the State Spending Data ...

12 VA 0 .16889251
13 MI 0 .09095306
14 OH 0 .06345230
15 IN 0 .11065150
16 IL 0 .08972339
17 WI 0 .10423534
18 WV 0 .13199636
19 KY 0 .08691080
20 TE 0 .09405849
21 NC 0 .13631340
22 SC 0 .20486326
23 GA 0 .11973012
24 FL 0 .61700902
25 AL 0 .13918706
26 MS 0 .17395231
27 MN 0 .13098872
28 IA 0 .12868998
29 MO 0 .14694238
30 ND 0 .09435984
31 SD 0 .07937192
32 NB 0 .12906992
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Spot Extreme Cases

Hat Values in the State Spending Data ...

33 KS 0 .11410482
34 LA 0 .17548605
35 AR 0 .10690714
36 OK 0 .12079254
37 TX 0 .09309054
38 NM 0 .20211747
39 AZ 0 .32825519
40 MT 0 .05800827
41 ID 0 .18825921
42 WY 0 .26252732
43 CO 0 .20389684
44 UT 0 .30268011
45 WA 0 .07639581
46 OR 0 .08367912
47 NV 0 .65270615
48 CA 0 .21676752
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Vertical Perspective
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Vertical Perspective

Fun Regression Fact

All of the “unmeasured error terms” ei have the same variance, σ2
e

For each case, we make a prediction ŷi and calculate a residual, êi

Here’s the fun fact: The variance of a residual estimate Var(êi ) is
not a constant, it varies from one value of x to another.
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Vertical Perspective

Many Magical Properties of H

The column of residuals is ê = (I − H)y

Proof
ê = y − X β̂= y − Hy= (I − H)y

The elements on the diagonal of H are the important ones in many
cases, because you can take, say, the 10’th observation, and you
calculate the variance of the residual for that observation:

Var(ê10) = σ̂2
e (1− h10,10)

And the estimated standard deviation of the residual is

Std .Err .(ê10) = σ̂e
√

1− h10,10 (6)
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Vertical Perspective

Standartized Residuals (Internal Studentized Residuals)

Recall the Std .Err .(êi ) is σ̂e
√

1− hii

A standardized residual is the observed residual divided by its
standard error

standardized residual ri =
êi

σ̂e
√

1− hii

(7)

Sometimes called an internally studentized residual because case i is
left in the data for the calculation of σ̂e (same number we call
RMSE sometimes)
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Vertical Perspective

Studentized residual (External) are t distributed

Problem: i is included in the calculation of σ̂e .

Fix: Recalculate the RMSE after omitting observation i, call that

σ̂2
e(−i). (external, in sense i is omitted)

studentized residual : ri =
êi√

σ̂2
e(−i)(1− hii )

=
êi

σ̂e(−i)
√

1− hii

(8)

Sometimes called Ri -Student

That follows the Student’s t distribution. That helps us set a scale.

Have to be careful about how to set the α level (multiple
comparisons problem)

Bonferroni correction (or something like that) would have us shrink
the required α level because we are making many comparisons, not
just one,
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Vertical Perspective

The Hat in σ̂2
e(−i)

Quick Note: Not actually necessary to run new regressions to get

each σ̂2
e(−i). There is a formula to calculate that from the hat matrix

itself

σ̂2
e(−i) =

(N − p)σ̂2
e −

e2i
(1−hii )

N − p − 1
(9)
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Vertical Perspective

student Residuals in the State Spending Data

dat $ r s t u d e n t <− r s t u d e n t ( EX fu l l 2 )
da t a . f r ame ( dat $STATE, dat $ r s t u d e n t )

dat.STATE d a t . r s t u d e n t
1 ME −0.0830314752
2 NH −0.1216363463
3 VT 0 .6722932872
4 MA −0.1674253027
5 RI −0.6929036305
6 CT 0 .0168367085
7 NY 2 .2406338622
8 NJ −1.5135538944
9 PA −0.5548082074
10 DE 1 .2318804298
11 MD −0.0005230868
12 VA −0.0581410616
13 MI 0 .8430612398
14 OH −0.2720936729
15 IN −0.3530324532
16 IL −0.4654124666
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Vertical Perspective

student Residuals in the State Spending Data ...

17 WI 0 .9196178134
18 WV −0.2333031142
19 KY −0.5309363436
20 TE 0 .2499986692
21 NC −1.0209190989
22 SC −0.5056470467
23 GA 0 .5010905339
24 FL 0 .0989555890
25 AL −0.4507623775
26 MS −1.0617123811
27 MN 1 .4301821503
28 IA −0.0417738620
29 MO −1.8091618788
30 ND 1 .6863319733
31 SD −0.1350260816
32 NB −0.6152002188
33 KS −0.1602475953
34 LA 0 .0033229393
35 AR −1.9322821966
36 OK 0 .5709463362
37 TX −1.2807244666
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Vertical Perspective

student Residuals in the State Spending Data ...

38 NM 0 .8554655578
39 AZ −0.2925974799
40 MT 0 .8918466200
41 ID −2.0877223703
42 WY 2 .2783571429
43 CO −0.0840338916
44 UT 0 .7492301404
45 WA 1 .1095461540
46 OR 1 .7306240332
47 NV −3.1046093219
48 CA 0 .4936107841
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Vertical Perspective

DFFIT, DFFITs

Calculate the change in predicted value of the j’th observation due to
the deletion of observation j from the dataset. Call that the DFFIT:

DFFITj = ŷj − ŷ(−j) (10)

Standardize that (“studentize”? that):

DFFITSj =
ŷj − ŷ(−j)

σ̂e(−j)
√

hjj

(11)

If DFFITSj is large, the j ’th observation is influential on the model’s
predicted value for the j ’th observation. In other words, the model
does not fit observation j .

Everybody is looking around for a good rule of thumb. Perhaps
DFFITS > 2

√
p/N means “trouble”!
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Vertical Perspective

DFFIT in the State Spending Data

dat $ d f f i t s <− d f f i t s ( EX fu l l 2 )
da t a . f r ame ( dat $STATE, dat $ d f f i t s )

dat.STATE d a t . d f f i t s
1 ME −0.0459118130
2 NH −0.0560732529
3 VT 0 .4120261306
4 MA −0.0791883166
5 RI −0.3581189852
6 CT 0 .0049508563
7 NY 1 .0712303640
8 NJ −0.5315598532
9 PA −0.1801586328
10 DE 0 .4131443379
11 MD −0.0001976734
12 VA −0.0262095498
13 MI 0 .2666702817
14 OH −0.0708234677
15 IN −0.1245252143
16 IL −0.1461181439



Diag 40 / 78

Vertical Perspective

DFFIT in the State Spending Data ...

17 WI 0 .3137024408
18 WV −0.0909789124
19 KY −0.1638033342
20 TE 0 .0805539105
21 NC −0.4055855845
22 SC −0.2566602418
23 GA 0 .1848034155
24 FL 0 .1256006284
25 AL −0.1812561277
26 MS −0.4872136170
27 MN 0 .5552589741
28 IA −0.0160542728
29 MO −0.7508648469
30 ND 0 .5443256931
31 SD −0.0396468795
32 NB −0.2368303532
33 KS −0.0575111888
34 LA 0 .0015330090
35 AR −0.6685372163
36 OK 0 .2116263097
37 TX −0.4103236169
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Vertical Perspective

DFFIT in the State Spending Data ...

38 NM 0 .4305612881
39 AZ −0.2045381030
40 MT 0 .2213153782
41 ID −1.0054076251
42 WY 1 .3593650114
43 CO −0.0425280086
44 UT 0 .4936181869
45 WA 0 .3191076238
46 OR 0 .5229829043
47 NV −4.2561533241
48 CA 0 .2596787408
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DFBETA

“drop-one-at-a-time” analysis of slopes

Find out if an observation influences the estimate of a slope
parameter.

Let

β̂ a vector of regression slopes estimate using all of the data points
β̂(−j) slopes estimate after removing observation j .

The DFBETA value, a measure of influence of observation j on the
parameter estimate, is

dj = β̂ − β̂(−j) (12)

If an element in this vector is huge, it means you should be cautious
about observation j .
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DFBETA

DFBETAS is Standardized DFBETA

The notation is getting tedious here
DFBETAS is considered one-variable-at-a-time, one data row at a time.
Let d [i ]j be the change in the estimate of β̂i when row j is omitted.
Standardize that:

d [i ]j∗ =
d [i ]j√

Var(β̂i(−j))
(13)

The denominator is the standard error of the estimated coefficient when j
is omitted.
A rule of thumb that is often brought to bear: If the DFBETAS value for
a particular coefficient is greater than 2/

√
N then the influence is large.
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DFBETA

dfbetas in the State Spending Data
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DFBETA

dfbetas in the State Spending Data ...
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DFBETA

Comes Back To The Hat

Of course, you are wondering why I introduced DFBETA relates to
the hat matrix.

Well, the matrix calculation is:

d [i ]j =
ê(X ′X )−1Xj

1− hii
(14)
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Cook’s distance
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Cook’s distance

Cook: Integrating the DFBETA

The DFBETA analysis is unsatisfying because we can calculate a
whole vector of DFBETAS, one for each parameter, but we only
analyze them one-by-one. Can’t we combine all of those parameters?

The Cook distance derives from this question:

Is the vector of estimates obtained with observation j omitted,
β̂(−j), meaningfully different from the vector obtained when all
observations are used?

I.e., evaluate the overall distance between the point
β̂ = (β̂1, β̂2, ..., β̂p) and the point β̂(−j) = (β̂1(−j), β̂2(−j), ..., β̂p(−j)) .
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Cook’s distance

My Kingdom for Reasonable Weights

If we were interested only in raw, unstandardized distance, we could use
the usual “straight line between two points” measure of distance.

Pythagorean Theorem√
(β̂1 − β̂1(−j))2 + (β̂2 − β̂2(−j))2 + . . . (β̂p − β̂p(−j))2 (15)

Cook proposed we weight the distance calculations in order to bring
them into a meaningful scale.

The weights use the estimated V̂ar(β̂) to scale the results
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Cook’s distance

car Package’s ”influencePlot” Interesting!

0.1 0.2 0.3 0.4 0.5 0.6

−
3

−
2

−
1

0
1

2

Hat−Values

S
tu

de
nt

iz
ed

 R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

47



Diag 52 / 78

Cook’s distance

Matrix Explanation of Cook’s Proposal

Cook’s weights: the cross product matrix divided by the number of
parameters that are estimated and the MSE.

X ′X

p · σ̂2
e

Cook’s distance Dj summarizes the size of the difference in
parameter estimates when j is omitted.

Dj =
(β̂(−j) − β̂)′X ′X (β̂(−j) − β̂)

p · σ̂2
e
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Cook’s distance

Cook D Explanation (cont)

Think of the change in predicted value as X (β̂(−j) − β̂).

Dj is thus a squared change in predicted value divided by a
normalizing factor.

To see that, regroup as

Dj =
[X (β̂(−j) − β̂)]′[X (β̂(−j) − β̂)]

p · σ̂2
e

The denominator includes p because there are p parameters that can
change and σ̂2

e is, of course, your friend, the MSE, the estimate of
the variance of the error term.
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Cook’s distance

How does the hat matrix figure into that?

You know what’s coming. Cook’s distance can be calculated as:

Dj =
r2j
p

hjj

(1− hjj)
(16)

r2j is the squared standardized residual.
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So What? (Are You Supposed to Do?)
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So What? (Are You Supposed to Do?)

Omit or Re-Estimate

Fix the data!

Omit the suspicious case

Use a “robust” estimator with a “high breakdown” point (median
versus mean).

in R, look at ?rlm

Revise the whole model as a “mixture” of different random processes.

in R, look at package flexmix
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A Simulation Example
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A Simulation Example

yi = 2 + 0.2 ∗ x1 + 0.2 ∗ x2 + ei

M1
Estimate
(S.E.)

(Intercept) -2.143
(6.649)

x1 0.239*
(0.104)

x2 0.216
(0.115)

N 15
RMSE 3.952
R2 0.492
adj R2 0.408

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

15 cases observed
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y
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A Simulation Example

rstudent: scan for large values (t distributed)

r s t u d e n t (modbase )

1 2 3 4 5
1 .1932211 −3.1179432 0 .1592772 0 .8196170 0 .3207992

6 7 8 9 10
−0.1677531 −1.6399001 −0.6538475 0 .8271355 1 .5196840

11 12 13 14 15
−0.9913500 −0.5159835 −0.3251802 0 .4815630 0 .9391112
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A Simulation Example

dfbetas
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A Simulation Example

leverage
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A Simulation Example

Add high hii case, observation 16 (x1=50, x2=0, y=30)

M1
Estimate
(S.E.)

(Intercept) 8.270
(7.240)

x1 0.294*
(0.131)

x2 -0.060
(0.089)

N 16
RMSE 5.035
R2 0.282
adj R2 0.172

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001

x1

x2
y
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A Simulation Example

rstudent: scan for large values (t distributed)

r s t u d e n t (mod3A)

1 2 3 4 5
1 .36895742 −3.28392466 −0.24788355 0 .57688376 0 .18713207

6 7 8 9 10
0 .26649771 −0.82186122 −1.08070319 0 .87301547 0 .90171360

11 12 13 14 15
0 .12919324 −1.59407046 0 .09820715 0 .25411801 −0.11766132

16
3 .01671778
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A Simulation Example

dfbetas
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A Simulation Example

leverage
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A Simulation Example

Set the 16th case at (mean(x1), 0), but set y=-10

M1
Estimate
(S.E.)

(Intercept) -12.338
(7.175)

x1 0.184
(0.130)

x2 0.485***
(0.089)

N 16
RMSE 4.989
R2 0.736
adj R2 0.695

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001
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A Simulation Example

rstudent: scan for large values (t distributed)

r s t u d e n t (mod3B)

1 2 3 4 5
0 .48503229 −1.11129635 0 .49618474 0 .70301679 0 .31878666

6 7 8 9 10
−0.52805632 −1.65798723 0 .03912669 0 .42338176 1 .40456830

11 12 13 14 15
−1.69095670 0 .74456352 −0.60918063 0 .50339289 1 .59667282

16
−2.95368681
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A Simulation Example

dfbetas
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A Simulation Example

leverage
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A Simulation Example

Add a case at (mean(x1), 0), but set y[16]=-30

M1
Estimate
(S.E.)

(Intercept) -22.643
(10.837)

x1 0.130
( 0.196)

x2 0.757***
( 0.134)

N 16
RMSE 7.535
R2 0.730
adj R2 0.688

∗p ≤ 0.05∗∗ p ≤ 0.01∗∗∗p ≤ 0.001
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A Simulation Example

rstudent: scan for large values (t distributed)

r s t u d e n t (mod3C)

1 2 3 4 5
0 .05177934 −0.25553304 0 .57832227 0 .49929803 0 .25354062

6 7 8 9 10
−0.61678953 −1.30133514 0 .38586627 0 .13470213 1 .04592272

11 12 13 14 15
−1.73649745 1 .28737808 −0.63930398 0 .41301422 1 .63620854

16
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A Simulation Example
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A Simulation Example
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Practice Problems
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Practice Problems

Regression Diagnostics

1 Run the R function influence.measures() on a fitted regression model. Try
to understand the output.

2 Here’s some code for an example that I had planned to show in class, but
did not think there would be time. This shows several variations on the
“not all extreme points are dangerous outliers” theme. I hope you can
easily enough cut-and paste the code into an R file that you can step
through. The file “outliers.R” in the same folder as this document has this
code in it.

set.seed(22323)

stde <- 3

x <- rnorm(15, m=50, s=10)

y <- 2 + 0.4 *x + stde * rnorm(15,m=0,s=1)

plot(y~x)

mod1 <- lm(y~x)

summary(mod1)

abline(mod1)

## add in an extreme case
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Practice Problems

Regression Diagnostics ...

x[16] <- 100

y[16] <-

predict(mod1, newdata=data.frame(x=100))+ stde*rnorm(1)

plot(y~x)

mod2 <- lm(y~x, x=T)

summary(mod2)

abline(mod2)

hatvalues(mod2)

rstudent(mod2)

mod2x <- mod2$x

fullHat <-

mod2x %*% solve(t(mod2x) %*% mod2x) %*% t(mod2x)

round(fullHat, 2)

colSums(fullHat) ##all 1

sum(diag(fullHat))

##

x[16] <- 100

y[16] <- 10
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Practice Problems

Regression Diagnostics ...

plot(y~x)

abline(mod2, lty=1)

mod3 <- lm(y~x, x=T)

summary(mod3)

abline(mod3, lty=2)

hatvalues(mod3) ##hat values same

rstudent(mod3)

mod3x <- mod3$x

fullHat <-

mod3x %*% solve(t(mod3x) %*% mod3x) %*% t(mod3x)

round(fullHat, 2)

colSums(fullHat) ##all 1

sum(diag(fullHat))

round(dffits(mod3),2)

dfbetasPlots(mod2)

dfbetasPlots(mod3)

stde <- 3

x1 <- rnorm(15, m=50, s=10)
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Practice Problems

Regression Diagnostics ...

x2 <- rnorm(15, m=50, s=10)

y <- 2 + 0.2 *x1 + 0.2*x2 + stde * rnorm(15,m=0,s=1)

plot(y~x)

mod4 <- lm(y~x1 + x2)

summary(mod4)

abline(mod1)


	Introduction
	Quick Summary Before Too Many Details
	The Hat Matrix
	Spot Extreme Cases
	Vertical Perspective
	DFBETA
	Cook's distance
	So What? (Are You Supposed to Do?)
	A Simulation Example
	Practice Problems

