Diag 1/7

Regression Diagnostics

Paul E. Johnson¹ ²

¹Department of Political Science

 $^{2}\mathsf{Center}$ for Research Methods and Data Analysis, University of Kansas

2015

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

Problem

- Recall the lecture about diagnostic plots?
- Remember some plots used terms "leverage" and "Cook's Distance"?
- I said we'd come to a day when I had to try to explain that?
 - The day of reckoning has come.

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

Recall the Public Spending Example Data Set

To get the publicspending dataset, download publicspending.txt in a Web browser, or run

```
 \begin{array}{lll} {\tt dat} <& {\tt read.table("http://pj.freefaculty.org/guides/stat/DataSets/PublicSpending/publicspending.txt", header} && {\tt TRUE}) \end{array}
```

```
summarize (dat)
```

```
$numerics
                                               WEST
       ECAB
                 FX
                       GROW
                                MFT
                                       OLD
                                                     YOUNG
0%
      57.40
             183.00
                      -7.400
                               0.00
                                     5.400
                                             0.0000
                                                    24.000
25%
      85.40
             253.50
                       6.975
                              24.10
                                    7.950
                                             0.0000
                                                    26.400
50%
      95.30
             285.50
                    14.050
                              46.15
                                     9.450
                                             0.5000
                                                    28.000
75%
     105.10
             324.00
                     22.670
                              69.97
                                    10.420
                                             1.0000
                                                    29.630
100% 205.00
             454.00
                     77.800
                              86.50
                                    11.900
                                             1.0000 32.900
     96 75
                     18 730
                             46.17
                                    9 212
                                             0.5000 28.110
mean
             286.60
sd
      22.25
              58.79
                     18.870
                              26.94 1.639
                                             0.5053 2.149
var
     495.20
            3457.00
                     356.300
                             725.70
                                    2.687
                                             0.2553 4.616
NA 's
       0.00
               0.00
                       0.000
                               0.00
                                     0.000
                                             0.0000
                                                     0.000
      48.00
              48.00
                      48.000
                              48.00 48.000 48.0000 48.000
N
$factors
           STATE
```

Recall the Public Spending Example Data Set ...

```
AL
             : 1.000
AR
           : 1.000
Α7
           : 1.000
CA
            : 1.000
(All Others) :44.000
NA's
         : 0.000
          : 5.585
entropy
normedEntropy: 1.000
N
             ·48 000
```

This time, I decided to create MET squared before running the model, but you will recall there are at least 4 different ways to run this regression.

```
\label{eq:datsmets} \begin{array}{ll} \text{dat} \\ \text{METSQ} & <- \text{ dat} \\ \text{MET} \\ \text{dat} \\ \text{dat
```

Recall the Public Spending Example Data Set ...

```
Call:
Im (formula = EX ~ ECAB + MET + METSQ + GROW + YOUNG + OLD + WEST.
   data = dat)
Residuals:
   Min
           1Q Median
                       3Q
                                Max
-63.974 -16.620 -2.647 20.898 68.234
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 119.118461 280.911921 0.424 0.673807
ECAB
           MFT
            -3.042142 0.758040 -4.013 0.000256 ***
METSQ
           0.030914 0.008958 3.451 0.001332 **
           0.695336  0.379504  1.832  0.074371
GROW
YOUNG
           0.607602 6.975082 0.087 0.931018
OLD
           4.120784 6.574827 0.627 0.534383
WEST
           34 073079 12 245464 2 783 0 008192 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 35.41 on 40 degrees of freedom
Multiple R^2: 0.6913, Adjusted R^2: 0.6373
F-statistic: 12.8 on 7 and 40 DF, p-value: 1.717e-08
```

Recall the Public Spending Example Data Set ...

Recall the Public Spending Example Data Set

influence.measures() provides one line per case in data

```
EXfull2infl <- influence.measures(EXfull2)
print(EXfull2infl)</pre>
```

```
Influence measures of
   Im (formula = EX ~ ECAB + MET + METSQ + GROW + YOUNG + OLD + WEST,
                                                                                data = dat) :
               dfb.ECAB
                                    dfb.METS
                                               dfb.GROW
      dfb.1_
                           dfb.MFT
                                                          dfb.YOUN
                                   -6.35e - 03 - 1.62e - 02
    0.033614
             -0.022425
   -0.020224
              0.009687
                          5.87e - 03
                                    1.17e-02 -1.33e-02
                                                          0.022675
   -0.108585
              0.061042 -2.81e-01
                                    2.31e - 01
                                               1.08e - 01
    0.025615 - 0.010965
                         3.09e-02 -4.89e-02
                                               8.70e - 03
                                                         -0.025093
              0.083028
                                               1.44e - 01
   -0.039827
                         1.45e-01 -2.02e-01
    0.000317
              0.001048
                        -5.45e - 04
                                    7.85e - 04
                                              -4.75e - 04
    0.495158 - 0.327230 - 3.87e - 01
                                    3.95e-01 -4.08e-01
   -0.282785
              0.105075
                          8.03e - 02 - 4.54e - 02
                                              1.24e - 01
                                                          0.287801
   -0.026774
              0.015032
                                              8.23e - 02
                         2.62e-02 -5.00e-02
                                                          0.025474
    0.169823 - 0.028564 7.67e - 02 - 1.31e - 01
                                              6.67e-02 -0.171571
                         4.37e-05 -5.17e-05
   -0.000078
              0.000091
                                              1.09e - 05
                                                          0.000061
   -0.017406
              0.014434 -8.41e-03
                                   1.25e-02
                                              3.20e - 03
                                                         0.015895
   -0.124846
              0.124751
                        1.17e - 02
                                    5.18e - 02 - 2.43e - 02
                                                          0.135831
    0.023257 - 0.033842 - 1.58e - 02
                                    5.30e - 03
                                              2.77e-03 -0.022143
    0.029090 -0.065832 -6.53e-02
                                    6.98e-02 -5.72e-03
                                                         -0.022790
   -0.002857 -0.045190
                         5.38e-03 -1.85e-02
                                              5.57e - 02
                                                          0.006605
   -0.083721
              0.141726
                        1.60e-01 -1.68e-01
                                              2.94e - 02
                                                          0.065519
    0.036471 - 0.041965 - 2.67e - 02
                                   2.05e - 02
                                              3.05e-02 -0.039134
19
    0.030433 - 0.017238 - 5.85e - 02
                                    5.73e - 02
                                              2.38e - 02 - 0.035057
20
                                   -4.21e-02 -1.83e-02
    0.030090 - 0.028983
                        3.63e - 02
   -0.118448
              0.054141 -3.84e-02
                                   1.05e-01
                                              6.57e - 02
    0.075539 - 0.022198 - 4.17e - 02
                                    2.03e - 02 - 3.34e - 03 - 0.103346
    0.058924 - 0.061339
                        7.13e-02 -8.06e-02 -2.87e-02 -0.043911
  -0.007277 -0.041392 -5.50e-03 3.33e-05
                                              1.12e-01 0.003200
```

influence.measures() provides one line per case in data ...

```
25 - 0.044660
              0.072497 -7.19e-02
                                    5.41e - 02
                                              7.14e - 02
                                                          0.033730
    0.089479
              0.118208
                         2.39e-01 -2.66e-01
                                               1.66e - 02
                                                        -0.137563
   -0.358113
              0.221774
                         2.42e - 01
                                   -9.86e - 02
                                               4.08e - 02
                                                          0.332909
    0.003968
              -0.004455 -6.01e-03
                                               6.55e - 04
                                                        -0.002415
                                    5.57e - 03
   -0.224326
              0.179601
                        -2.88e - 01
                                    2.80e - 01
                                               1.64e - 01
                                                          0.289007
   -0.157029
              0.181030
                                    1.95e-01 -1.21e-01
                        -2.10e-01
                                                         0.176432
    0.000623
              0.000917
                         1.40e - 02
                                   -9.22e - 03
                                              2.41e-03
   -0.051931
              0.012917
                        -1.05e-01
                                    1.23e - 01
                                              4.26e - 02
                                                         0.074303
              0.003556
                                              5.70e - 03
   -0.016213
                        -2.70e - 02
                                    3.35e - 02
                                                          0.021540
    0.000775
             -0.000616
                        -8.68e - 04
                                    4.79e - 04
                                             -1.52e-05
   0.006423
              0.188257
                         5.94e-02 -7.03e-02
                                              1.42e - 01 - 0.013179
    0.087929 - 0.083146
                         9.76e-02 -1.05e-01 -5.93e-02 -0.098041
   -0.066354
              0.052002 -1.51e-01
                                    9.00e - 02
                                              1.25e - 01
   0.184503 - 0.140312
                         6.37e-02 -1.26e-01
                                              3.28e-02 -0.152311
   0.050217
              0.041654
                         1.41e-02 -4.00e-02 -1.53e-01 -0.056807
   0.001382
              0.038629
40
                        3.81e-02 -6.53e-02 -1.44e-02 -0.008998
41
    0.252860 - 0.184320
                        7.63e-01 -6.93e-01 -9.92e-02
                                    4.09e-01 -3.66e-01
    0.290308
              0.360149 -7.12e-01
                                                        -0.253964
   -0.025624
              0.017844
                        1.91e-02 -4.69e-03 -9.48e-03
                                                         0.025327
   -0.336514
              0.176489
                                    1.13e - 01
                                              3.02e - 02
                                                         0.364581
   -0.028611
              -0.003324
                         1.27e-01 -6.34e-02 -4.25e-02
                                                          0.015223
   -0.062138
              0.045225
                         3.00e - 01 - 2.43e - 01 - 3.50e - 02
    0.861857 - 2.918265
                        -5.85e - 01
                                    6.66e-01 -6.48e-01
48 -0.010704 -0.055297 -1.11e-01
                                    1.53e-01 7.18e-02
     dfb.OLD
              dfb.WEST
                             dffit cov.r
                                            cook.d
   -3.63e - 02
              0.031058
                        -0.045912 1.597 2.70e-04 0.2342
              0.021366
                        -0.056073 1.480 4.03e-04 0.1753
    1.76e - 01 - 0.215227
                         0.412026 1.536 2.15e-02 0.2730
                        -0.079188 1.490 8.03e-04 0.1828
   -3.28e - 02
              0.014115
    1.69e - 02 - 0.020465
                        -0.358119 1.407 1.62e-02 0.2108
   -1.59e - 04 - 0.001485
                         0.004951 1.330 3.14e-06 0.0796
   -3.81e - 01
              0.112238
                         1.071230 0.571 1.30e-01 0.1860
              0.026803 -0.531560 0.871 3.42e-02 0.1098
```

influence.measures() provides one line per case in data ...

```
-0.180159 1.271 4.13e-03 0.0954
                         0.413144 1.004 2.11e-02 0.1011
             -0.122726
              0.000013
                        -0.000198 1.399 5.01e-09 0.1250
    1.87e - 02
              0.002122
                        -0.026210 1.472 8.81e-05 0.1689
              -0.128755
                         0.266670 1.166 8.95e-03 0.0910
   -1.63e - 02
                        -0.070823 1.288 6.42e-04 0.0635
              0.038732
   -2.38e - 02
              0.073352
                        -0.124525 1.342 1.98e-03 0.1107
    8.00e - 03
              0.036101
                       -0.146118 1.287 2.72e-03 0.0897
                         0.313702 1.151 1.23e-02 0.1042
    9.49e - 02 - 0.187099
   -2.17e - 02
              0.049963
                        -0.090979 1.395 1.06e-03 0.1320
   -2.61e - 02
             0.090962 - 0.163803 \ 1.266 \ 3.42e - 03 \ 0.0869
   -3.24e - 02 - 0.021449
                         0.080554 1.334 8.31e-04 0.0941
    1.97e - 01
             0.161291
                        -0.405586 1.148 2.05e-02 0.1363
             0.119993 -0.256660 1.462 8.39e-03 0.2049
   -5.31e - 03
   -8.61e - 02 - 0.049377
                         0.184803 1.321 4.35e-03 0.1197
                         0.125601 3.191 2.02e-03 0.6170
    4.40e - 02 - 0.033024
    6.86e-02 -0.103774 -0.181256 1.365 4.19e-03 0.1392
                        -0.487214 1.180 2.96e-02 0.1740
   -7.37e - 02 - 0.105768
    3.52e - 01
              0.109990
                        0.555259 0.936 3.76e-02 0.1310
   -6.94e - 03 - 0.004108
                        -0.016054 1.405 3.30e-05 0.1287
    4.63e-02 -0.450227
                        -0.750865 0.753 6.67e-02 0.1469
              0.097552
                         0.544326 0.770 3.54e-02 0.0944
   -7.30e - 03 - 0.013034
                        -0.039647 1.325 2.01e-04 0.0794
                        -0.236830 1.301 7.12e-03 0.1291
   -5.65e - 04 - 0.108433
    4.69e - 03 - 0.026457
                        -0.057511 1.375 4.24e-04 0.1141
  -8.00e - 04
              0.000487
                         0.001533 1.485 3.01e-07 0.1755
  -1.19e - 01 - 0.286860
                        -0.668537 0.660 5.23e-02 0.1069
   -5.07e - 02
              0.132798
                         0.211626 1.303 5.69e-03 0.1208
                        -0.410324 0.971 2.07e-02 0.0931
    1.46e - 01 - 0.264082
  -2.66e - 01
              0.130278
                         0.430561
                                  1.323 2.33e-02 0.2021
39 -4.97e-02 -0.025216
                        -0.204538 1.791 5.35e-03 0.3283
              0.082729
                         0.221315 1.106 6.15e-03 0.0580
41 -2.14e-01 -0.028788 -1.005408 0.646 1.17e-01 0.1883
```

influence.measures() provides one line per case in data ...

```
42 -4.48e-01 0.179969 1.359365 0.611 2.09e-01 0.2625 *
43 1.81e-02 -0.012487 -0.042528 1.536 2.32e-04 0.2039
44 1.99e-01 0.040530 0.493618 1.566 3.08e-02 0.3027
45 3.73e-02 0.200785 0.319108 1.034 1.27e-02 0.0764
46 1.09e-01 0.254456 0.522983 0.739 3.26e-02 0.0837
47 -9.65e-02 0.16290 -4.256153 0.602 1.86e+00 0.6527 *
48 2.56e-02 0.111797 0.259679 1.487 8.59e-03 0.2168
```

What is All that Stuff About?

- dfbetas. Change in $\hat{\beta}$ when row i is removed.
- dffits. Change in prediction for i from N-{i}
- cook.d. Cook's d summary of a case's damage
- hat value. Commonly called "leverage.
- Can ask for these one-by-one when you want them, see ?influence.measures

influence.measures Creates a Summary Object

- influence.measures is row-by-row, perhaps necessary in some situations, but excessive most of the time.
- More simply, ask which rows are potentially troublesome with the summary function:

```
summary (EXfull2infl)
```

```
Potentially influential observations of
  Im(formula = EX \sim ECAB + MET + METSQ + GROW + YOUNG + OLD + WEST,
             data = dat):
   dfb.1_ dfb.ECAB dfb.MET dfb.METS dfb.GROW dfb.YOUN dfb.OLD
24 - 0.01 - 0.04 - 0.01 0.00 0.11
                                            0.00 0.04
39 0.05
        0.04 0.01 -0.04 -0.15 -0.06 -0.05
42 \quad 0.29 \quad 0.36 \quad -0.71 \quad 0.41 \quad -0.37 \quad -0.25 \quad -0.45
47 0 86
       -2.92* -0.59 0.67 -0.65
                                         -0.64 -0.10
dfb.WEST dffit cov.r cook.d hat 24 -0.03 0.13 3.19_* 0.00 0.62_*
39 -0.03 -0.20 1.79_* 0.01 0.33
42 0.18 1.36_* 0.61 0.21 0.26
47 0.16 -4.26_* 0.60 1.86_*
                                   0.65_*
```

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

Bear With Me for A Moment, Please

■ The "solution" for the OLS estimator in matrix format is

$$\hat{\beta} = (X^T X)^{-1} X^T y \tag{1}$$

And so the predicted value is calculated as

$$\hat{y} = X\hat{\beta} \\ X(X^TX)^{-1}X^Ty$$

Definition: The Hat Matrix is that big glob of X's.

$$H = X(X^T X)^{-1} X^T \tag{2}$$

Just One More Moment ...

The hat matrix is just a matrix

$$H = \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1(N-1)} & h_{1N} \\ h_{21} & h_{22} & \vdots & h_{2(N-1)} & h_{2N} \\ & & & & h_{(N-1)N} \\ h_{N1} & h_{N2} & \dots & h_{N(N-1)} & h_{NN} \end{bmatrix}$$

LEVERAGE: The h_{ii} values (the "main diagonal" values of this matrix)

But it is a Very Informative Matrix!

- It is a matrix that translates observed y into predicted \hat{y} .
- Write out the prediction for the *i'th* row

$$\hat{y}_i = h_{i1}y_1 + h_{i2}y_2 + \ldots + h_{iN}y_N \tag{3}$$

That's looking at H "from side to side," to see if one case is influencing the predicted value from another.

Be clear, Could Write Out Each Case

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2^2 \\ \hat{y}_3^2 \\ \vdots \\ \hat{y}_{N-1} \\ \hat{y}_N^2 \end{bmatrix} = \begin{bmatrix} h_{11}y_1 & +h_{12}y_2 & & +h_{1N}y_N \\ h_{21}y_1 & + & & +h_{2N}y_N \\ h_{31}y_1 & + & \ddots & \vdots \\ \vdots & & & & \\ h_{N1}y_1 & + & \cdots & +h_{(N-1)(N-1)}y_{N-1} & +h_{(N-1)N}y_N \\ h_{N1}y_1 & + & \cdots & +h_{N(N-1)}y_{N-1} & +h_{NN}y_N \end{bmatrix}$$

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

Diagonal Elements of H

• Consider at the diagonal of the hat matrix:

- h_{ii} are customarily called "leverage" indicators
- h_{ii} DEPEND ONLY ON THE X's. In a sense, h_{ii} measures how far a case is from "the center" or all cases.

leverage

Diag

- The sum of the leverage estimates is *p*, the number of parameters estimated (including the intercept).
- the most "pleasant" result would be that all of the elements are the same, so pleasant hat values would be p/N
- \blacksquare small h_{ii} means that the positioning of an observation in the X space is not in position to exert an extraordinary influence.

Follow Cohen, et al on this

- The hat value is a summary of how far "out of the usual" a case is on the IVs
- In a model with only one predictor, CCWA claim (p. 394)

$$h_{ii} = \frac{1}{N} + \frac{(x_i - \bar{x})^2}{\sum x_i^2}$$
 (5)

• If a case is "at the mean," the h_{ii} is as small as it can get

Hat Values in the State Spending Data

```
dat$hat <- hatvalues(EXfull2)
sum(dat$hat)</pre>
```

```
[1] 8
```

data.frame(dat\$STATE, dat\$hat)

```
dat.STATE
                 dat.hat
          ME 0.23415534
2
          NH 0 17526633
          VT 0.27304741
4
          MA 0 18281108
5
           RI 0.21080976
6
           CT 0.07958478
7
          NY 0.18604721
8
           NJ 0.10979861
9
           PA 0 09538661
10
           DE 0.10110559
11
          MD 0.12496151
```

Hat Values in the State Spending Data ...

```
12
           VA 0 16889251
13
           MI 0.09095306
14
           OH 0.06345230
15
           IN 0.11065150
16
              0.08972339
17
           WL 0 10423534
18
          WV 0.13199636
19
           KY 0 08691080
20
           TF 0 09405849
21
           NC 0.13631340
22
           SC 0 20486326
23
           GA 0.11973012
24
           FL 0.61700902
25
           AL 0 13918706
26
          MS 0.17395231
27
          MN 0.13098872
28
           IA 0.12868998
29
          MO 0.14694238
30
          ND 0.09435984
31
           SD 0.07937192
32
           NB 0.12906992
```

Hat Values in the State Spending Data ...

```
KS 0 11410482
33
34
           LA 0.17548605
35
          AR 0.10690714
36
          OK 0 12079254
37
          TX 0.09309054
38
          NM 0.20211747
39
          A7 0 32825519
40
          MT 0.05800827
41
           ID 0.18825921
42
          WY 0.26252732
43
          CO 0.20389684
44
           UT 0 30268011
45
          WA 0.07639581
46
          OR 0.08367912
47
          NV 0.65270615
48
           CA 0.21676752
```

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

Fun Regression Fact

- All of the "unmeasured error terms" e_i have the same variance, σ_e^2
- For each case, we make a prediction \hat{y}_i and calculate a residual, \hat{e}_i
- Here's the fun fact: The variance of a residual estimate $Var(\hat{e}_i)$ is not a constant, it varies from one value of x to another.

Many Magical Properties of H

- The column of residuals is $\hat{e} = (I H)y$
 - Proof $\hat{e} = y X\hat{\beta} = y Hy = (I H)y$
- The elements on the diagonal of *H* are the important ones in many cases, because you can take, say, the 10'th observation, and you calculate the variance of the residual for that observation:

$$Var(\hat{e}_{10}) = \hat{\sigma}_e^2 (1 - h_{10,10})$$

And the estimated standard deviation of the residual is

$$Std.Err.(\hat{e}_{10}) = \hat{\sigma}_e \sqrt{1 - h_{10,10}}$$
 (6)

Standartized Residuals (Internal Studentized Residuals)

- Recall the *Std.Err.*(\hat{e}_i) is $\hat{\sigma}_e \sqrt{1 h_{ii}}$
- A standardized residual is the observed residual divided by its standard error

standardized residual
$$r_i = \frac{\hat{e}_i}{\hat{\sigma}_e \sqrt{1 - h_{ii}}}$$
 (7)

■ Sometimes called an internally studentized residual because case i is left in the data for the calculation of $\hat{\sigma}_e$ (same number we call RMSE sometimes)

Studentized residual (External) are t distributed

- Problem: *i* is included in the calculation of $\hat{\sigma}_e$.
- Fix: Recalculate the RMSE after omitting observation i, call that $\widehat{\sigma_{e(-i)}^2}$. (external, in sense i is omitted)

studentized residual:
$$r_i = \frac{\hat{e}_i}{\sqrt{\widehat{\sigma_{e(-i)}^2}(1 - h_{ii})}} = \frac{\hat{e}_i}{\widehat{\sigma_{e(-i)}}\sqrt{1 - h_{ii}}}$$
 (8)

- Sometimes called R_i-Student
- That follows the Student's t distribution. That helps us set a scale.
- Have to be careful about how to set the α level (multiple comparisons problem)
- lacktriangle Bonferroni correction (or something like that) would have us shrink the required lpha level because we are making many comparisons, not just one,

The Hat in $\widehat{\sigma_{e(-i)}^2}$

• Quick Note: Not actually necessary to run new regressions to get each $\widehat{\sigma_{e(-i)}^2}$. There is a formula to calculate that from the hat matrix itself

$$\widehat{\sigma_{e(-i)}^2} = \frac{(N-p)\widehat{\sigma}_e^2 - \frac{e_i^2}{(1-h_{ii})}}{N-p-1}$$
 (9)

student Residuals in the State Spending Data

```
dat$rstudent <- rstudent(EXfull2)
data.frame(dat$STATE, dat$rstudent)</pre>
```

```
dat STATE dat rstudent
          ME - 0.0830314752
          NH - 0.1216363463
3
          VT 0.6722932872
4
          MA - 0.1674253027
5
6
7
           RI = 0.6929036305
          CT 0.0168367085
          NY 2.2406338622
8
          NJ - 1.5135538944
9
          PA -0.5548082074
10
          DF 1 2318804298
11
          MD = 0.0005230868
12
          VA -0.0581410616
13
          MI 0 8430612398
14
          OH = 0.2720936729
15
           IN - 0.3530324532
16
           11 - 0.4654124666
```

student Residuals in the State Spending Data ...

```
17
           WI
               0 9196178134
18
          WV = 0.2333031142
19
          KY - 0.5309363436
20
               0.2499986692
21
           NC - 1.0209190989
22
           SC = 0.5056470467
23
           GA 0.5010905339
24
           FI
               0.0989555890
25
           Al -0.4507623775
26
          MS -1.0617123811
27
          MN
              1 4301821503
28
           IA - 0.0417738620
29
          MO - 1.8091618788
30
          ND
              1 6863319733
31
           SD - 0.1350260816
32
           NB - 0.6152002188
33
           KS = 0.1602475953
34
               0.0033229393
35
          AR -1.9322821966
36
          OK 0.5709463362
37
          TX -1.2807244666
```

student Residuals in the State Spending Data ...

```
38
               0 8554655578
39
          A7 - 0.2925974799
40
          MT 0.8918466200
41
          ID -2.0877223703
42
          WY
               2.2783571429
43
          CO - 0.0840338916
          UT 0.7492301404
44
45
          WA 1.1095461540
46
          OR
              1 7306240332
47
          NV - 3.1046093219
48
          CA 0.4936107841
```

DFFIT, DFFITs

■ Calculate the change in predicted value of the j'th observation due to the deletion of observation j from the dataset. Call that the DFFIT:

$$DFFIT_j = \hat{y}_j - \hat{y}_{(-j)} \tag{10}$$

Standardize that ("studentize"? that):

$$DFFITS_{j} = \frac{\hat{y}_{j} - \hat{y}_{(-j)}}{\hat{\sigma}_{e(-j)}\sqrt{h_{jj}}}$$
(11)

■ If *DFFITS_j* is large, the *j*'th observation is influential on the model's predicted value for the *j*'th observation. In other words, the model does not fit observation *j*.

Everybody is looking around for a good rule of thumb. Perhaps $DFFITS > 2\sqrt{p/N}$ means "trouble"!

DFFIT in the State Spending Data

```
dat$dffits <- dffits(EXfull2)
data.frame(dat$STATE, dat$dffits)</pre>
```

```
dat STATE
                 dat dffits
          ME - 0.0459118130
2
          NH - 0.0560732529
          VT 0.4120261306
4
          MA - 0.0791883166
5
6
7
           RI - 0.3581189852
           CT 0.0049508563
          NY 1.0712303640
8
           NJ - 0.5315598532
9
           PA -0.1801586328
10
           DF 0 4131443379
11
          MD - 0.0001976734
12
          VA -0.0262095498
13
           MI 0 2666702817
14
           OH = 0.0708234677
15
           IN - 0.1245252143
16
           IL -0.1461181439
```

DFFIT in the State Spending Data ...

```
17
           WI
               0 3137024408
18
          WV = 0.0909789124
19
          KY - 0.1638033342
20
               0.0805539105
21
           NC - 0.4055855845
22
           SC = 0.2566602418
23
           GA 0.1848034155
24
           FI
               0 1256006284
25
           Al -0.1812561277
26
          MS - 0.4872136170
27
          MN
               0.5552589741
28
           IA - 0.0160542728
29
          MO - 0.7508648469
30
          ND
               0 5443256931
31
           SD -0.0396468795
32
           NB - 0.2368303532
33
           KS = 0.0575111888
34
               0.0015330090
35
          AR -0.6685372163
36
          OK
               0.2116263097
37
           TX -0.4103236169
```

DFFIT in the State Spending Data ...

```
38
              0 4305612881
39
          AZ -0.2045381030
40
          MT 0.2213153782
41
          ID -1.0054076251
42
          WY
              1.3593650114
43
          CO - 0.0425280086
44
          UT 0.4936181869
45
          WA
              0.3191076238
46
          OR
              0 5229829043
47
          NV = 4.2561533241
48
          CA 0.2596787408
```

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

"drop-one-at-a-time" analysis of slopes

- Find out if an observation influences the estimate of a slope parameter.
- Let
 - $\hat{\beta}$ a vector of regression slopes estimate using all of the data points
 - $\hat{\beta}_{(-j)}$ slopes estimate after removing observation j.
- The **DFBETA** value, a measure of influence of observation *j* on the parameter estimate, is

$$d_j = \hat{\beta} - \hat{\beta}_{(-j)} \tag{12}$$

If an element in this vector is huge, it means you should be cautious about observation j.

DFBETAS is Standardized DFBETA

The notation is getting tedious here

DFBETAS is considered one-variable-at-a-time, one data row at a time.

Let $d[i]_i$ be the change in the estimate of $\hat{\beta}_i$ when row j is omitted.

Standardize that:

$$d[i]_{j}* = \frac{d[i]_{j}}{\sqrt{Var(\hat{\beta}_{i(-j)})}}$$

$$\tag{13}$$

The denominator is the standard error of the estimated coefficient when j is omitted.

A rule of thumb that is often brought to bear: If the DFBETAS value for a particular coefficient is greater than $2/\sqrt{N}$ then the influence is large.

dfbetas in the State Spending Data

4.0

dfbetas in the State Spending Data ...

٥٥

30

Comes Back To The Hat

- Of course, you are wondering why I introduced DFBETA relates to the hat matrix.
- Well, the matrix calculation is:

$$d[i]_{j} = \frac{\hat{e}(X'X)^{-1}X_{j}}{1 - h_{ii}}$$
 (14)

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

Cook: Integrating the DFBETA

- The DFBETA analysis is unsatisfying because we can calculate a whole vector of DFBETAS, one for each parameter, but we only analyze them one-by-one. Can't we combine all of those parameters?
- The Cook distance derives from this question:

Is the vector of estimates obtained with observation j omitted, $\hat{\beta}_{(-j)}$, meaningfully different from the vector obtained when all observations are used?

■ I.e., evaluate the overall distance between the point $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2, ..., \hat{\beta}_p)$ and the point $\hat{\beta}_{(-j)} = (\hat{\beta}_{1(-j)}, \hat{\beta}_{2(-j)}, ..., \hat{\beta}_{p(-j)})$.

My Kingdom for Reasonable Weights

If we were interested only in raw, unstandardized distance, we could use the usual "straight line between two points" measure of distance.

Pythagorean Theorem

$$\sqrt{(\hat{\beta}_1 - \hat{\beta}_{1(-j)})^2 + (\hat{\beta}_2 - \hat{\beta}_{2(-j)})^2 + \dots (\hat{\beta}_p - \hat{\beta}_{p(-j)})^2}$$
 (15)

- Cook proposed we weight the distance calculations in order to bring them into a meaningful scale.
- The weights use the estimated $\widehat{Var(\hat{\beta})}$ to scale the results

car Package's "influencePlot" Interesting!

Matrix Explanation of Cook's Proposal

Cook's weights: the cross product matrix divided by the number of parameters that are estimated and the MSE.

$$\frac{X'X}{p\cdot\hat{\sigma}_e^2}$$

• Cook's distance D_j summarizes the size of the difference in parameter estimates when j is omitted.

$$D_{j} = \frac{(\hat{\beta}_{(-j)} - \hat{\beta})'X'X(\hat{\beta}_{(-j)} - \hat{\beta})}{p \cdot \hat{\sigma}_{e}^{2}}$$

Cook D Explanation (cont)

- Think of the change in predicted value as $X(\hat{\beta}_{(-i)} \hat{\beta})$.
- $lackbox{D}_j$ is thus a squared change in predicted value divided by a normalizing factor.
- To see that, regroup as

$$D_{j} = \frac{[X(\hat{\beta}_{(-j)} - \hat{\beta})]'[X(\hat{\beta}_{(-j)} - \hat{\beta})]}{p \cdot \hat{\sigma}_{\alpha}^{2}}$$

The denominator includes p because there are p parameters that can change and $\hat{\sigma}_e^2$ is, of course, your friend, the MSE, the estimate of the variance of the error term.

You know what's coming. Cook's distance can be calculated as:

$$D_{j} = \frac{r_{j}^{2}}{p} \frac{h_{jj}}{(1 - h_{jj})} \tag{16}$$

 r_i^2 is the squared standardized residual.

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

Omit or Re-Estimate

- Fix the data!
- Omit the suspicious case
- Use a "robust" estimator with a "high breakdown" point (median versus mean).
 - in R, look at ?rlm
- Revise the whole model as a "mixture" of different random processes.
 - in R, look at package flexmix

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

$$y_i = 2 + 0.2 * x1 + 0.2 * x2 + e_i$$

	M1
	Estimate
	(S.E.)
(Intercept)	-2.143
	(6.649)
×1	0.239*
	(0.104)
x2	0.216
	(0.115)
N	15
RMSE	3.952
R^2	0.492
adi R^2	0.408

 $[*]p \le 0.05**p \le 0.01***p \le 0.001$

rstudent: scan for large values (t distributed)

rstudent (modbase)

```
1.1932211 - 3.1179432
                      0.1592772
                                 0.8196170
                                            0.3207992
                                                   10
-0.1677531 -1.6399001 -0.6538475 0.8271355 1.5196840
-0.9913500 -0.5159835 -0.3251802 0.4815630 0.9391112
```

dfbetas

<u>le</u>verage

Add high h_{ii} case, observation 16 (x1=50, x2=0, y=30)

	M1
	Estimate
	(S.E.)
(Intercept)	8.270
	(7.240)
×1	0.294*
	(0.131)
x2	-0.060
	(0.089)
N	16
RMSE	5.035
R^2	0.282
adj R^2	0.172

 $*p \le 0.05**p \le 0.01***p \le 0.001$

rstudent: scan for large values (t distributed)

rstudent (mod3A)

dfbetas

leverage

Set the 16th case at (mean(x1), 0), but set y=-10

	M1	
	Estimate	
	(S.E.)	
(Intercept)	-12.338	
	(7.175)	
×1	0.184	
	(0.130)	
x2	0.485***	
	(0.089)	
N	16	
RMSE	4.989	
R^2	0.736	
adj R^2	0.695	
$*p \le 0.05**p \le 0.01***p \le 0.001$		

rstudent: scan for large values (t distributed)

rstudent (mod3B)

dfbetas

<u>le</u>verage

Add a case at (mean(x1), 0), but set y[16]=-30

	M1	
	Estimate	
	(S.E.)	
(Intercept)	-22.643	
	(10.837)	
×1	0.130	
	(0.196)	
x2	0.757***	
	(0.134)	
N	16	
RMSE	7.535	
R^2	0.730	
adj R^2	0.688	
$*p \le 0.05**p \le 0.01***p \le 0.001$		

rstudent: scan for large values (t distributed)

rstudent (mod3C)

dfbetas

<u>le</u>verage

Outline

- 1 Introduction
- 2 Quick Summary Before Too Many Details
- 3 The Hat Matrix
- 4 Spot Extreme Cases
- 5 Vertical Perspective
- 6 DFBETA
- 7 Cook's distance
- 8 So What? (Are You Supposed to Do?)
- 9 A Simulation Example
- 10 Practice Problems

Regression Diagnostics

- Run the R function influence.measures() on a fitted regression model. Try to understand the output.
- 2 Here's some code for an example that I had planned to show in class, but did not think there would be time. This shows several variations on the "not all extreme points are dangerous outliers" theme. I hope you can easily enough cut-and paste the code into an R file that you can step through. The file "outliers.R" in the same folder as this document has this code in it.

```
set.seed(22323)
stde <- 3
x <- rnorm(15, m=50, s=10)
y <- 2 + 0.4 *x + stde * rnorm(15,m=0,s=1)
plot(y~x)
mod1 <- lm(y~x)
summary(mod1)
abline(mod1)
## add in an extreme case</pre>
```

Regression Diagnostics ...

```
x[16] < -100
v[16] <-
predict(mod1, newdata=data.frame(x=100))+ stde*rnorm(1)
plot(v~x)
mod2 \leftarrow lm(y^x, x=T)
summary(mod2)
abline(mod2)
hatvalues(mod2)
rstudent(mod2)
mod2x <- mod2$x
fullHat <-
mod2x %*% solve(t(mod2x) %*% mod2x) %*% t(mod2x)
round(fullHat, 2)
colSums(fullHat) ##all 1
sum(diag(fullHat))
##
x[16] < -100
v[16] <- 10
```

Regression Diagnostics ...

```
plot(y~x)
abline(mod2, lty=1)
mod3 \leftarrow lm(v^x, x=T)
summary(mod3)
abline(mod3, ltv=2)
hatvalues(mod3) ##hat values same
rstudent(mod3)
mod3x <- mod3$x
fullHat <-
mod3x %*% solve(t(mod3x) %*% mod3x) %*% t(mod3x)
round(fullHat, 2)
colSums(fullHat) ##all 1
sum(diag(fullHat))
round(dffits(mod3),2)
dfbetasPlots(mod2)
dfbetasPlots(mod3)
stde <-3
x1 \leftarrow rnorm(15, m=50, s=10)
```

```
x2 <- rnorm(15, m=50, s=10)
y <- 2 + 0.2 *x1 + 0.2*x2 + stde * rnorm(15,m=0,s=1)
plot(y~x)
mod4 <- lm(y~x1 + x2)
summary(mod4)
abline(mod1)</pre>
```