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1 The problem.
Recall

yi = b0 + b1xi + ei

We typically assume the ei’s are drawn from the same distribution, so that

E(ei) = 0 for all i

and the variance is homogeneous as well:

V ar(ei) = E[(ei − E(ei))
2] = σ2

i = σ2

In other words, all error terms have the same variance. They are drawn from the same distribution.
Almost always, we cling with vigor to the first assumption, but there is a pretty literature on the

impact of violations of the second one. The problem of heteroskedasticity (or heteroscedasticity)
arises when the assumption of homogeneous variance is violated.

If this is violated
1. Estimates of b0 and b1 are still unbiased and consistent.
Proof: For simplicity, consider the OLS estimate of the slope from data in deviations form:

b̂1 =

∑
xi · yi∑

x2
i

=

∑
xi(b · xi + ei)∑

x2
i

=
b1

∑
x2

i +
∑

xi · ei∑
x2

i

= b1 +

∑
xi · ei∑

x2
i

Usually the textbook will then use the following argument to show that b̂1 is unbiased by taking
either of two routes. No matter which route you plan to take, start by applying the Expected value
operator to both sides:

E(b̂) = E(b1 +

∑
xi · ei∑

x2
i

)

= E(b1) + E(

∑
xi · ei∑

x2
i

)

= b1 + E(

∑
xi · ei∑

x2
i

)

Route 1 claims “xi is not a random variable.” Rather, it is a fixed constant value representing an
individual attribute. Since xi is a constant, it means that E(xiei) = xiE(ei). Furthermore, recall
the assumption that E(ei) = 0, so it is clear that

E(b̂1) = b1 + 0 = b1

Route 2 claims that even though xi may be thought of as a random variable, we can assume
that it is uncorrelated with ei. If two variables are uncorrelated, it means they have no covariance,
so E(xiei) = 0.
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Either route leads to the same answer.

E(b̂1) = b1

Meaning that variance of ei plays no role in the question of whether or not the OLS estimate b̂1 is
unbiased.

2. Variance (and hence standard error of b1) is estimated incorrectly (underestimated, in fact)
by the OLS formulas.

This means the t-tests with the computer printout from any standard program are WRONG.
If there is no covariance between errors, it can be shown (for the “nonstochastic xi case”, as

discussed in route 1 above):

V ar(b̂1) = V ar

[∑
xi · ei∑

x2
i

]
=

V ar[
∑

xiei]

(
∑

x2
i )

2 =

∑
V ar(xiei)

(
∑

x2
i )

2 =

∑
x2

i · V ar(ei)

(
∑

x2
i )

2

=

∑
x2

i · σ2
i

(
∑

x2
i )

2

And, note that the variance of each individual error term, σ2
i , can be written as the sum of a

mean variance s2 and an individualized variance s2
i , so σ2

i = s2 + s2
i . Plug this into the expression

above: ∑
x2

i · σ2
i

(
∑

x2
i )

2 =

∑
x2

i (s
2 + s2

i )

(
∑

x2
i )

2 =
s2∑
x2

i

+

∑
xi · s2

i

(
∑

x2
i )

2

The first term is "roughly" what OLS would calculate for the variance of b̂1. The second term
is the additional "true variance" in the OLS estimator. That variance is “really in there” but the
OLS formula for the variance does not include it.

3. b̂OLS
i is inefficient, meaning we can find another linear estimator with lower variance. That

alternative estimator is known as the WLS, or Weighted Least Squares estimator, b̂WLS
1 .

2 Information Sandwiches and the White HCE approach

If you are willing to ignore the problem of inefficiency in b̂OLS , there is a widely used short-cut
that can be used to deal with the problem of heteroskedasticity. This is known as a robust estimate
of the variance of b̂ because it is not built on the assumption that all observations are drawn from a
homogeneous distribution.

This robust approach allows us to get consistent standard errors, and hence the t-test is mean-
ingful again. The most famous approach is White’s Heteroskedasticity Consistent Estimator (HCE)
(also known as the Heteroskedasticity Consistent Covariance Matrix, or HCCM) approach. There
have been several variants of the HCE, here’s one:

V ar(b̂1) =

∑
x2

i · ê2
i

(
∑

x2
i )

2
(1)

Basically, this substitutes the observed “residual” êi
2 for the unknown error variance.
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Matrix digression on White’s formula
This formula works for a model in which there is one independent variable. If there are several
input variables, then the matrix form is called for. Recall the OLS estimator

b̂ = (X ′X)−1X ′Y (2)

Recall, if the assumption of homogeneous variance is met, then the “true variance” of the estimates
of the b’s is

true V ar(b̂) = σ2 · (X ′X)−1 (3)

and we estimate those values by replacing the “true variance of the error term”, σ2, with the Mean
Squared Error (MSE). In the OLS model, then, we estimate the variance of b̂ by

estimated V ar(b̂) = MSE · (X ′X)−1 (4)

How do we arrive at this formula? Well, there’s a straightforward application of the variance
operator to b̂ and at the second-to-last step, we arrive at this step:

true V ar(b̂) = (X ′X)−1(X ′V ar(e)X)(X ′X)−1 (5)

With OLS assuming homoskedasticity, all of the error terms have the same variance. In matrix
form, e is a column of N error terms. And V ar(e) is a matrix showing the Variance/Covariance of
the individual observations. Consider:

V ar(e) = E(e · e′|X) =


σ2 0 0 0 0
0 σ2 0 0 0
0 0 σ2 0 0
. . . . . . . . . 0
0 0 0 0 σ2

 = σ2


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
. . . . . . . . . 0
0 0 0 0 1

 = σ2 · I (6)

On the diagonal, all values are σ2. Off the diagonal, we assume there is no covariance (no autocor-
relation). Putting that knowledge to use, then the expression in 5 is radically simplified.

true V ar(b̂) = (X ′X)−1(X ′ · σ2 · IX)(X ′X)−1 = σ2(X ′X)−1(X ′X)(X ′X)−1 (7)

And since (X ′X)−1(X ′X) = I , this reduces to the result given in 3.
The simple formula for V ar(b̂) in equation 4 is valid only if the matrix of error term variance

is the sort given by 6. If, instead of homoskedastic errors, we have heteroskedasticity, then there’s
trouble. We are using the wrong formula to estimate the variance of b̂.

White’s idea
In the heteroskedasticity corrected covariance approach that White proposed, the assumptions that
led to this simple result are undone. One instead begins with the idea the variances of the error
terms are not all the same. If we look at a particular observation,

V ar(ei) = E[(ei − E(ei))
2] = E[e2

i ] = σ2
i .
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If we still insist there is no autocorrelation, but we allow variances to differ, we get this:

V ar(e) = E[e · e′|X] =



σ2
1 0 0 0 0
0 σ2

2 0 0 0

0 0
. . . · · · 0

0 0 0 σ2
N−1 0

0 0 0 0 σ2
N


which looks slightly nicer if we factor out a “common variance” σ2 and then assume all of the
observations have error variances that are proportional to σ2.

V ar(e) = σ2



w1 0 0 0 0
0 w2 0 0 0

0 0
. . . · · · 0

0 0 0 wN−1 0
0 0 0 0 wN

 = σ2Ω (8)

In William Greene’s Econometric Analysis, 5ed (p. 218), he shows that the OLS b̂ has “true
variance” given by

true V ar(b̂) = (X ′X)−1(X ′V ar(e)X)(X ′X)−1 (9)

= σ2(X ′X)−1(X ′ΩX)(X ′X)−1

The expression given in 9 does not reduce to something that is estimated by the OLS formula
for the variance in 6.

Recall that in OLS, we replace the true variance σ2 with an estimate, MSE, a value we calculate
from the fitted regression. We just need something to “plug in” for V ar(e) or σ2Ω and then we
proceed as usual.

White’s idea, which was a major breakthrough (Econometrica, 1980), was to estimate the vari-
ances of the individual observations. The variance of e1, for example, is never observed, but the
best estimate we have for it is the mean square for that one case:

ê1
2 = (y1 −X1b̂)(y1 −X1b̂)

Hence, the “middle part” of the expression 9 can be estimated. Instead of V ar(e), we use a matrix
of estimates like this:

̂V ar(e) =


ê1

2

ê2
2

̂eN−1
2

êN
2


The “heteroskedasticity consistent covariance matrix of b̂” is going to use this matrix in place

of V ar(e) in the formula to calculate estimated variance.

hccm V ar(b̂) = (X ′X)−1(X ′ ̂V ar(e)X)(X ′X)−1
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White proved that the estimator is consistent, i.e, for large samples, the value converges to the true
V ar(b̂).

This is sometimes called an “information sandwich” estimator. The matrix (X ′X)−1 is the
“information matrix”, a term drawn from Maximum Likelihood estimation. If you want to know
more details on that, I’ve written handouts on Maximum Likelihood estimation. Note this equation
gives us a “sandwich” of X ′V ar(e)X between two pieces of information matrix.

3 Weighted Least Squares

If you are concerned about inefficiency of the OLS estimator, b̂OLS , there is an alternative estimator
which is known to have lower variance. In fact, that’s how we know that OLS is inefficient, because
we can demonstrate a lower variance alternative.

If we put less weight on the cases that have high variance, we might protect the estimation
process from the uncertainty they impose. The WLS estimator assumes these weights, wi, and
then uses the estimating criterion

minimize SS(b̂) =
N∑

i=1

wi(y − ŷ)2

The idea of WLS is to homogenize the variances. Recall that

V ar(
ei

σi

) =
1

σ2
i

V ar(ei) =
σ2

i

σ2
i

= 1

Hence, if we transform the residuals in the regression model, we can homogenize the variances
of the error terms. You can look at this from either of two perspectives. In both, you multiply by
wi = 1

σi
to implement a "weighting" procedure.

WLS Approach 1: minimize a weighted sum of squares. In OLS, you would minimize∑
(yi − ŷi)

2

Instead, minimize this: ∑ [
(yi − ŷi)

σi

]2

=
∑ [

yi − b̂WLS
0 − b̂WLS

1 xi

σi

]2

=
∑ [

yi

σi

− b̂WLS
0

σi

− b̂WLS
1 xi

σi

]2

Note, this ASSUMES you have the “true” value of σi and can insert it into the calculations.
If you use an estimate of σi from your sample, you probably don’t have an exactly correct value.
Sometimes to differentiate a WLS based on the true values of σi from an analysis based on the
estimates, they call the latter an FWLS, “Feasible Weighted Least Squares.”
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WLS Approach 2: Divide each term in the original equation by the weighting factor σi.

yi

σi

=
b̂WLS
0

σi

+
b̂WLS
1

σi

xi +
ei

σi

If you did an OLS estimation on this revised equation, it would be equivalent to doing the WLS
approach 1.

It is easy to see with the formula for estimating b1 that the WLS estimate obtained with this
model has lower variance than the b1 from the OLS model. (DO SO!)

4 Feasible Weights.
Where do you get the σi to plug into the WLS model? This depends on the theory you have, and
what might be causing the heteroskedasticity. Often, this is treated as a matter of “special cases,”
substantively justified specifications for the variance.

4.1 Look at the scatterplot, try to “eyeball” it. (I know, it sounds awful.)
Suppose it looks like variance is proportional to xi, σ2

i = k2 · xi. That means the right weight
would be

σi = k ·
√

xi

Variance is proportional to x2
i , σ2

i = k2 · x2
i . That means the weight should be:

σi = k · xi

Note that the weight coefficient k does not matter. If it is unknown, just
√

xi or xi, as the case
may be. The coefficient k is for scaling, and no matter what value you put in for it, the parameter
estimates are the same. In other words, k is unimportant. Try to prove this to yourself.

There has been some interesting discussion about whether it is better to use OLS, knowing that
the assumption about the variance of ei is wrong, or should one instead use WLS, knowing the
estimate of σi is wrong. You see radically different opinions, with many “high brow” econometric
theorists in favor of WLS, but some “applied researchers” are not. They would rather use OLS and
then use a robust estimator of the standard error.

4.2 Random coefficient model
The kind of heteroskedasticity discussed in the previous section can arise if your theory was not
correctly specified at the outset.

Suppose, for example, that there is a "random coefficient"

bi = b1 + ui

We proceed as though this error inside the coefficient is very well behaved, with a mean of 0 and a
variance σ2

u for all i.
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Instead of the original theoretical model,

yi = b0 + b1xi + ei

the theory is now
yi = b0 + bixi

If you insert the equation for bi, this reduces to

yi = b0 + (b1 + ui)xi

= b0 + b1xi + uixi

The unmeasured term, the error term, is uixi. Apply the variance operator to that, what do you
get?

V ar[uixi] = σ2
u · x2

i

In this case, the parameter σ2
u plays the role of k in the previous subsection.

4.3 With grouped data, the variance is proportional to sample size.
Recall from the fundamentals of statistics that mean of y is

ȳ =

∑
yi

N

Recall also that the variance of the mean is the variance of y divided by N.

V ar(ȳ) =
V ar(yi)

N
=

σ2
y

As you will recall, the so-called “standard error of the mean” is the square root of this quantity,

Std.Err.(ȳ) =
σy√
N

Anyway, suppose your data represents groups, not individual people. You have the average on
some variable for many different groups. If you observe groups of different sizes, say Ni, then the
means observed will have different variances if the groups are different sizes. Rather than acting as
though the variances of your observed means for the groups are homogeneous, you should instead
find out how many cases were used in each unit to calculate the means, and then proceed as if the
variance of the error term is inversely proportional to Ni.

4.4 Meta analysis
Suppose you have many different data sets and you fit a regression yi = bxi + ei in each one. You
would observe different b’s across the analysis. Label the estimates b1, b2, etc. If you then wanted
to find out if there was a pattern in the b’s, say they are related to a variable Z, you might want to
run a regression

bj = c0 + c1Zj + uj

We ran each regression model already, so we have estimated the standard error (or variance) of
each bj . So we know there is heteroskedasticity. And we can use the estimates from the individual
regressions as weights in WLS.
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5 Testing for heteroskedasticity
Many tests exist for specialized forms of heteroskedasticity. Here’s a brief list of the ones with
which I’m most familiar.

5.1 Categorical X’s: Bartlett’s test for grouped X’s
Basically, this estimates the error variances for the subgroups and contrasts that against the variance
for the combined dataset. It uses a χ2 test to compare them.

5.2 Continuous X’s: Goldfield Quandt test to determine if

σ2
i = σ2 · x2

i

An F test results if you calculate the Error Sum of Squares for 2 pieces of data, usually we
compare the “lower set” ESS1 against the “upper set” ESS2 after excluding some observations in
the middle. Check your stats books, basically it is

F =
ESS2

ESS1

and the degrees of freedom for both numerator and denominator are (N − d − 4)/2 , where d is
the number of excluded observations. The more observations you exclude, the smaller will be your
degrees of freedom, meaning your F value must be larger.

5.3 Breusch-Pagan test/White test
Versions of this test were proposed in 1979 & 1980 by Breusch & Pagan and White. The idea is the
same. If there is no heteroskedasticity, then the estimate of the coefficients from Ordinary Least
Squares , bOLS , should not be grossly different from a maximum likelihood estimator bMLE . After
a long series of gyrations, we arive at the conclusion that the variance of the residuals should not
be predictable with the use of input variables. The squared residuals can be used as estimates. The
in the BP test with 2 input variables is:

êi
2

σ̂2
= γo + γ1Z11 + γ2Z2i

Here, σ2 = MSE. If the error is Normal, the coefficients γ0, γ1, and γ2 will all equal zero.
The input variables Z can be the same as the original regression, but usually they are also going to
include squared values of those variables.

BP contend that 1
2
RSS (the regression sum of squares) should be distributed as χ2 with degrees

of freedom equal to the number of Z variables.
The original form of the BP test assumed Normality. White’s version got rid of that assumption.

In fact, he has a simpler result. Run the regression

êi
2 = γo + γ1Z11 + γ2Z2i
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White claimed that, under the assumption of homoskedasticity,

N ·R2 ∼ χ2
p

where N is the sample size, R2 is the coefficient of determination from the fitted model, and p is
the number of variables used in the regression.

Many statistical programs will provide variants of these tests. It is vital to read the MANUAL.
There are several different White’s tests, and not all programs are completely clear which they use.

You can also calculate these things on your own. Just use your statistical program to output the
residuals, and square those to estimate the error Variances. They become a “new column” of data
you can analyze.
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