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1 Introduction

Bivariate Regression¨The Famous SPSS “bank dataset” is bank.sav. I’ve been seeing this dataset
for more than 20 years. I think I’ve got it this time!

There is an accompanying R program “bankReg.R”. It requires some user interaction at 2 points,
so you can’t just run it all through at once. Instead, you have to step through. If you do, it will
create all the figures presented here, plus some more.

2 Consider Education and Beginning Salary
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We could plot current salary, but there’s no benefit.
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3 Ordinary Least Squares

Here’s the table that pops out of R’s xtable() routine. The only change I made by hand was to add
in the R2, the root mean squared error, RMSE, and the sample size N.

Estimate Std. Error t value Pr(>|t|)
(Intercept) −2516.3869 536.3679 −4.69 0.0000

EDLEVEL 691.0113 38.8788 17.77 0.0000
R2 = 0.40 RMSE =2439 N = 474
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The plot() function, applied to a linear regression model, activates the custom plotting facility built
into lm. That will print out four figures, one at a time, and you can either step through those one at
a time with commands like this (for a regression myReg1).

> par(ask=TRUE)

> plot(myReg1)

> par(ask=N)

It is important to turn off the “ask” option when you don’t want it anymore, because it gets really
boring to keep hitting the enter button when you want a graph. I did not bother to print out those
graphs, but if you run bankReg.R, you will find them called “importfigs/myReg1Diag01.eps”, ”im-
portfigs/myReg1Diag02.eps”, ”importfigs/myReg1Diag03.eps”, ”importfigs/myReg1Diag04.eps”.

Instead of printing out all 4 separately, I’ve positioned them into a single graph.
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par(mfcol=c(2,2))

plot(myReg1)

dev.copy2eps(file="myReg12by2.eps", horizontal=F)

par(mfcol=c(1,1))
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Several problems are obvious. The residuals don’t appear to scatter evenly above and below the
line as you look from side to side. There are some extremely influential cases, and I’ve seen better
Q-Q plots, come to think of it.

It is a useful exercise to take a model object and then use its attributes to reconstruct graphs of this
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sort. The top left is done as:

plot(myReg1$fitted.values, myReg1$residuals,

main="Bank Salary: Residuals and fitted values",

xlab="fitted (predicted) values",

ylab="OLS residuals")
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4 Smoothed Curves: Loess, Lowess

In R, there is a “loess” program in the R-base, and there is “lowess” as well. The help page for
lowess says it is older and implies that one ought to use loess. I tried both.
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4.1 Loess works OK (If you know the secret)

The loess output from my first effort did not look right to me. But this version looks fine:
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In contrast to lowess object, a loess will not answer to the simple

lines(myLowess1)

and that was fooling me for a while. But here is the secret recipe:

myReg.lo <- loess(SALBEG~EDLEVEL, data=bank, span=0.67,

control=loess.control(surface="direct"), family="symmetric")

EDRange <- seq(min(EDLEVEL),max(EDLEVEL),1)

lo.pred <- predict(myReg.lo,EDRange, se=TRUE)

plot(EDLEVEL,SALBEG,main="Loess: Education and Beginning

Salary in a Bank",xlab="Education (years)",
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ylab="Entry level salary")

lines(EDRange, lo.pred$fit)

Further, if note I added the flag se=T for the predict method. That means it will calculate and
output the standard error of the predicted value, and those can be added to the plot:

lines(EDRange,lo.pred$fit +1.96*lo.pred$se, lty=4)

lines(EDRange,lo.pred$fit -1.96*lo.pred$se, lty=4)

I believe these are the standard error of the fitted value, rather than the standard error about predic-
tions for individual cases. In any case, we obtain:
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4.2 Lowess is a little easier

Let’s compare with “lowess”. The main parameter is a setting which controls the proportion of
all points that are entered into the “local window” around a point. By default, lowess uses a very
broad window. Plotting is slightly easier, since lines() can be directly applied to a lowess object,
as in:

myReg1.low <- lowess(EDLEVEL, SALBEG,f=.2)

salBegPlot1("Lowess(MASS): Education and Salary, f=.2")

lines(myReg1.low)
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If you like to see more abrupt curves, tune that parameter down:
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Or:
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5 Put a Knot in there

To my eye, it appears we need to consider the possibility that the relationship between education
is not a single “straight line.” It appears rather more likely that up to some level of education, say
14, the people who work at the bank don’t gain all that much from additional schooling. With
additional years, however, the increase is steep.

Consider a regression model with a “slope shift” and an “intercept shift”. The R command:

myReg2 <- lm(SALBEG~EDLEVEL*I(EDLEVEL > 14), data=bank)

does the work easily. It estimates a regression with a threshold value set at 14. We estimate slope
and intercept shift at 14,

ˆsalary = b0 +b1education+b2threshold +b3education∗ threshold

R will “automatically” estimate all of these parameters with the command:

myReg4 <- lm(SALBEG~EDLEVEL*I(EDLEVEL > 14), data=bank3)

summary(myReg4)

The “indicator” I(EDLEVEL > 14) is a True/False variable, which lm treats as a factor. R creates
a “dummy variable”, a 0-1 variable, to enter in the model. The R jargon for this is that the coding
creates a “contrast.”

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4862.6493 834.1845 5.83 0.0000

EDLEVEL 39.4700 73.6675 0.54 0.5924
I(EDLEVEL > 14)TRUE −27024.2122 1690.2222 −15.99 0.0000

EDLEVEL:I(EDLEVEL > 14)TRUE 1871.1925 117.3404 15.95 0.0000
R2 = 0.61 RMSE = 1965 N = 474
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6 Outliers

Rather than worry too much on the fitting of a model with some egregious outliers, let’s pursue the
wiser course. In the diagnostic plots above, it is apparent that cases 2, 56, and 122 are inordinately
influential. As a result, we should get rid of them, see what happens.

The linear model appears to be much more desirable!

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4862.6493 645.1940 7.54 0.0000

EDLEVEL 39.4700 56.9776 0.69 0.4888
I(EDLEVEL > 14)TRUE −25371.0827 1316.0651 −19.28 0.0000

EDLEVEL:I(EDLEVEL > 14)TRUE 1755.0430 91.2908 19.22 0.0000
R2 = 0.69 adj-R2=0.69 RMSE = 1520 N = 471
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The only problem here is that the graph is a little bogus because, between 14 and 15, the line looks
like it has a 3rd slope, and they don’t.

I didn’t yet find a perfectly good way to make a line that has a kink. Here are 2 lines to give you
the idea of what’s going on.
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I <= 14

I > 14

It might be cute to plot the 95% confidence interval on the fitted values. Again, this is the con-
fidence we have in the point prediction, not confidence about predictions on individual cases. It
means something like: “With probability 0.95, the estimate of the fitted value would be inside this
range.” It does not mean: “With probability 0.95, a randomly drawn individual will fit inside this
range.” In order to get that estimate, a different calculation is required.

13



8 10 12 14 16 18 20

5
0
0
0

1
0
0
0
0

1
5
0
0
0

Education and Beginning Salary: cases 

   2, 56, and 122 removed

Education (years)

E
n
tr

y
 L

e
v
e
l 
S

a
la

ry

I almost forgot to do a diagnostic plot on this final fitted model. Its not too bad, really.
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