Splines, Loess, etc

Paul Johnson <pauljohn@ku.edu>

Oct 6, 2011 Updated for newer
Orig: Jan 29, 2006

Contents

1

1

Everything good in life is linear
Oops.

Square that x!

Polynomial

A straight line spline

A Smoother Spline

Local Smoothing Regressions: Lowess (Loess)

R, IyX, etc

Smoothing Splines: marriage of Splines and Loess

AVAS

Everything good in life is linear

13

25

29

31

The linear equation is the basis of much social science research. In the following, the “inter-
cept” (or “constant”) is 30 and the slope is 1.4.

y=30+14 -z

Note how the slope does not change as x moves from left to right.

x « seq(from = 0, to = 50, length.out =
y < 30 + 1.4 * x + 6 * rnorm(200)
plot (x, y, main = ”"Linear Equation”, xlim

~10, 100))
abline (Im(y ~ x))

200)

Linear Equation

60 80 100

40

20

2 Oops.

What if your data is not a “straight line”. Suppose it is created by this process, which I've
borrowed from the documentation on the locfit program for R.

set.seed (2314)

X < 10 % runif(100)

y < 5 x sin(x) 4+ rnorm(100)

plot (x, y, main = ”"Curvish data from Locfit example”, pch = 16)
abline (Im(y ~ x))

Curvish data from Locfit example

3 Square that x!

Sometimes people say “there might be nonlinearity” and then they throw in a squared input
variable. This is one of the simplest (short-sighted, silly, etc) things to do.

y=3+4-2—0.09- 22

If you run a regression with 22 as an in put variable, and the coefficient is not significantly
different from 0, then you are “home free.” Right? Well, it is not completely wrong, but
almost all wrong. Many political scientists seem to think that it is a sufficient test for
nonlinearity.

That is called a “quadratic” equation. The plot illustrating that curve is either a “hill”
or a “bowl,” depending on whether the coefficient on the squared term is negative (hill) or
positive (bowl).

It is completely easy to see the hill or bowl does nothing to help us with the curvy locfit
data.

Adding x squared

© — Se
< -
o
>
o —
N
[.‘. -,
< o... * . B
| . ..
| | | | | |
0 2 4 6 8 10
X
summary (mymod1)
Call:
Im(formula =y ~ x + I(x"2))
Residuals:
Min 1Q Median 3Q Max

—-5.5108 —2.6118 0.8003 2.4781 5.8356

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.84765 0.96066 4.005 0.000121 =*x*x
X —1.13643 0.44710 —2.542 0.012612 «
I(x"2) 0.09083 0.04239 2.142 0.034657 =«

!

Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.'" 0.1 ' '1
Residual standard error: 3.047 on 97 degrees of freedom
Multiple R?: 0.07998, Adjusted R?: 0.06101

F—statistic: 4.216 on 2 and 97 DF, p-—value: 0.01755

The good news is that the significance of the squared term in the regression would give
you a warning that there is nonlinearity. Unfortunatly, to most people, it would just be
evidence that “the quadratic model is right”.

4 Polynomial

If you add in many more terms, say 2> and z*, then you have a polynomial. See my handout
on approximations. There’s a theorem that states that if you keep adding terms, you can
approximate any function as closely as you like. To approximate this one, we really do need
to add a lot of terms.

A polynomial has one fewer “hump” than it has terms. Since our graph has 3 “humps”,
the fitted model would need to include

gji = Eo + lei + Bgmf + 63$§ + ZA)4$;1

mymodl <+ lm(y ~ x + I(x"2) + I(x"3) + I(x"4))
summary (mymod1)

Call:
Im(formula =y ~ x + I(x"2) + I(x"3) + I(x"4))

Residuals:
Min 1Q Median 3Q Max
—2.67548 —0.74047 —0.03925 0.77174 2.88683

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) —1.485342 0.633429 —2.345 0.0211 =

X 11.319873 0.793773 14.261 <2e—16 *xx

I(x"2) —6.170693 0.324063 —19.042 <2e—16 *xx

I(x"3) 1.033545 0.049191 21.011 <2e—16 *xx

I(x"4) —0.053369 0.002442 —21.855 <2e—16 *xx

Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.'" 0.1 ' ' 1

Residual standard error: 1.221 on 95 degrees of freedom
Multiple R%*: 0.8554, Adjusted R?: 0.8493
F—statistic: 140.5 on 4 and 95 DF, p-—value: < 2.2e—16

newx < seq (0, 10, length.out = 100)

predict2 <« predict (mymodl, newdata = data.frame(x = newx))
plot (x, y, main = 7Adding x"2, x*3, and x"4”, pch = 16)
lines (newx, predict2)

Adding x"2, x*3, and x4

If the data has any more random noise in it, then fitting a polynomial like that will be
pretty dicey. Work out an example for yourself.

Why isn’t this good enough? Sometimes the data is not quite so regular as this example,
so one must add many powers. Perhaps the degress of freedom are used up. Usually, the
most serious problem is that there is severe multicollinearity between z;, 2, 7, and so the
parameter estimates are very unstable, often not statistically significantly different from 0.
There is a way to transform those variables so that they are not correlated with each other
at all. That method is known as “orthogonal polynomials.” The predicted values from an
orthogonal polynomial model are the same as in a model fit with the ordinary values of
af. The standard errors are smaller, however, and one may get some hints about whether
the higher order terms are really needed. It is quite unclear to me, however, how to decide
because the transformed orthogonal polynomial coding does not translate into something
that is understandable in terms of the original problem. I've been working on an example of
that.

5 A straight line spline

If you divide the x-axis into sections, and estimate lines, then you can approximate the
underlying relationship. If you start with the idea that the underlying truth is y = by + b1z
up to some “break point” 77, and then after that the line changes slope, then a convenient
way to do that is to construct a new variable that is equal to 0 if x; < 7 and x; — 7y if
x; > 7. Represent that by this symbol:

(zi —71)4

The underlying truth is then represented by
y = bo + by + ba(w; — 714

If there is no change at 71, then by = 0. The coefficient by represents the additional (or
lessened) slope to the right of 71. Of course, you can put in as many break points as you
want. For the curvy data considered here, we need 3 breakpoints.

You can specify the break points manually and estimate the model with this R code. The
fiddling about with newdf is necessary in order to make the plotted lines look nice.

knot <« c¢(1.8, 4.2, 8)
thedf <« data.frame(x = x, y =y)
thedf <« thedf[order(thedf$x),]
createplusvar < function (input, k) {

it « ifelse (input > k, input — k, 0)
}

thedf$xpl <« createplusvar (thedf$x, knot[1])
thedf$xp2 <« createplusvar (thedf$x, knot[2])
thedf$xp3 <« createplusvar (thedf$x, knot[3])

mymod0 <+ Im(y ~ x 4+ xpl + xp2 + xp3, data = thedf)

newx < seq(round(min(x), 1), round(max(x) + 0.5, 1), by = 0.1)

newdf < data.frame(x = newx, xpl = createplusvar (newx, knot[1]),
xp2 = createplusvar (newx, knot[2]), xp3 = createplusvar (newx,
knot [3]))

newdf$pred <« predict (mymod0, newdata = newdf)

mytitle « paste(”Manual Regression spline knots”, knot[1], knot
(2], knot[3])

plot (thedf$x, thedf$y, main = mytitle, type = "n”)

points (thedf$x, thedf$y, pch = 16, cex = 0.5)

lines (newdf$x, newdf$pred)

rm(thedf , mymod0, newdf)

Manual Regression spline knots 1.8 4.2 8

thedf$y

thedf$x

You can see in the figure that I did not guess the splines quite right. I wanted to have a
model estimate the break points. I tested 2 packages, “segmented” and “mda”.

I've heard that developing algorithms to calculate the knots is quite a difficult business.
This shows that the “segmented” package does work, but only in a fragile way. If you don’t
specify the starting estimates for the break points (the option psi) correctly—with the correct
number and values of the break points—then the estimator blows up. This particular example
is not one that allows it to guess the correct number of break points and give you everything
you want. I found it very tough to use the ordinary predict() function with this model, and
so to make a plotted line, I had to take some steps that seemed unusual to me.

library (segmented)

mymod0 <+ lm(y ~ x)

segmod < segmented (mymod0, seg.Z = ~x, psi = list(x = ¢(1.8, 4.2
, 8)), it.max = 200)

summary (segmod)

xxk Regression Model with Segmented Relationship (s)s#%x*

Call:
segmented.lm (obj = mymod0, seg.Z = ~x, psi = list(x = ¢(1.8,
4.2, 8)), it.max = 200)

Estimated Break—Point(s):
Est. St.Err

psil.x 1.617 0.06576

psi2.x 4.769 0.07349

psid.x 7.936 0.06339

t value for the gap—variable(s) V: —1.964132e—15 —2.308255e—15 8
.321184e—15

Meaningful coefficients of the linear terms:
Estimate Std. Error t value Pr(>|t])

(Intercept) —0.2450 0.4746 —0.516 0.607
5% 3.7483 0.4500 8.330 7.39e—13 *xx
Ul.x —7.5239 0.4915 —15.310 NA
U2.x 7.6758 0.2875 26.695 NA
U3.x —8.4214 0.3705 —22.727 NA

Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.'" 0.1 ' ' 1

Residual standard error: 0.9125 on 92 degrees of freedom
Multiple R—Squared: 0.9218, Adjusted R?: 0.9158

Convergence attained in 4 iterations with relative change 3
.710174e—16

mynewdf < data.frame(x = x, fitted = segmod$fitted.values)

mynewdf < mynewdf[order (mynewdf$x), |

plot (x, y, main = ”Lines, cutpoints estimated by segmented”, pch
= 16)

lines (mynewdf$x, mynewdf$fitted)

detach (”package:segmented”)

Lines, cutpoints estimated by segmented

Except for the difficulty of fitting this, the result is pretty encouraging, at least to the
eye. The predicted line seems to “go along” with the data pretty well. Oh, I should mention,
we also assumed away the possibility of gaps, or discontinuities. segmented() provides a test
for the significance of the assumption that the line segments connect at the break points.

In Venables & Ripley, 4ed p. 235, the MARS (Multiple Adaptive Regression Splines)
method is mentioned, which can be found in the “mda” package. This is a linear spline
model in which the knots are estimated from the data and the estimation is much more
robust:

library (mda)
mymars < mars(x, y, degree = 1)
summary (mymars)

Length Class Mode
call 4 —none— call

all.terms 7 —none— numeric
selected.terms 7 —none— numeric
penalty 1 —none— numeric
degree 1 —none— numeric
nk 1 —none— numeric
thresh 1 —none— numeric
gev 1 —none— numeric
factor 11 —none— numeric
cuts 11 —none— numeric
residuals 100 —none— numeric
fitted.values 100 —none— numeric

10

lenb 1 —none— numeric
coefficients 7 —none— numeric
X 700 —none— numeric

mymars$cuts

(1)
.000000
.496526
.496526
.338125
.338125
.547249
.547249
.286836
.286836
111152
111152

—

DO NN 00RO

_ = — ————
— O © 00 ~1 O UL W N

—

mymars$gev

[[1] 1.777441

mydf <« data.frame(x, y, fitted = mymars$fitted)
mydf2 < mydf|[order (mydf$x), |

plot (x, y, main = ”"Linear splines: mars output”, pch = 16)
lines (mydf2$x, mydf2§fitted)
rm (mymars)

11

Linear splines: mars output

It could be worse. I tried this with a restricted number of cutpoints.
library (mda)
mymars2 < mars(x, y, degree = 1, nk = 5)
summary (mymars2)

Length Class Mode
call) —none— call

all.terms 4 —none— numeric
selected.terms 4 —none— numeric
penalty 1 —none— numeric
degree 1 —none— numeric
nk 1 —none— numeric
thresh 1 —none— numeric
gev 1 —none— numeric
factor 5 —none— numeric
cuts 5 —none— numeric
residuals 100 —none— numeric
fitted.values 100 —none— numeric
lenb 1 —none— numeric
coefficients 4 —none— numeric
X 400 —none— numeric
mymars2$gcv

[1] 4.60265

12

mymars2$cuts

[,1]
[1,] 0.000000
[2,] 4.496526
[3,] 4.496526
[4,] 8.338125
[5,] 8.338125

mydf < data.frame(x, y, fitted = mymars2$fitted)

mydf2 < mydf|[order (mydf$x), |

plot (x, y, main = ”"Linear splines: mars output nk=5", pch = 16)
lines (mydf2%$x, mydf2$fitted)

rm(mymars2, mydf, mydf2)

detach (”package:mda”)

Linear splines: mars output nk=5

A big philosophical objection against this model is the “kinked” nature of this result.
There are sharp turns that we know, for a fact, are “wrong” (in the sense that the true
relationship does not have kinks).

6 A Smoother Spline

There are more splines models than you can shake a stick at. There seem to be statisticians
who spend their whole lives debating whether we should use “tensor product splines” or “b-
splines” or whatever else. Let’s focus on the simpler idea of a cubic spline. Consider an input

13

variable z; and it is defined on an interval with end points (7p,7%+1) that is subdivided into
k segments. Here’s an example of how the x axis might be segmented with 4 knots in the
interior of the line.

On each interval, we can imagine a cubic model,
Js = b+ bys + bua? + by
Y = o+ 01x; + 2$i+ 3T

A cubic model will be “curvy enough” to fit most relationships. If it does not fit, add
more break points (called “knots”).

How to “link together” all of these separate cubic models? This is where the adventure
begins. If you were completely barefoot, you might just allow them to be completely separate
from each other. How much uglier could it get than this? Here’s just a phony example I
created to get the idea across:

Unrestricted cubic splines

o
o
> 8
¢
o
o
o
S
F
I [[[[[[
0 20 40 60 80 100
X

This shows what happens if you fit 4 separate cubic polynomials to the sine wave data
that we have been investigating.

14

Unrestricted cubic splines

(Connected) Cubic Splines: First Fix

If you think the unconnected, discontinuous splines are no good, what do you do to fix it?
What do you want?
Each segment’s spline must blend smoothly into the next. So assume:

1. No gaps at the knots.

2. Smooth Connections between parts. No pointy kinks at the knots.

Those 2 assumptions have VERY MUCH power on simplifying the problem. In particular,
they mean that the slope and second derivatives at the knot points have to match exactly.

Recall that the “pluss function” notation (x; — 7). refers to a variable that is equal to 0
if ; < 7 and it is equal to z; if z; > 7. Similarly, one can define (z; — 7)% or (2; — 7)% to
refer to variables that are 0 up to 7 and are then equal to 27 or z? after.

I believe these are called “truncated power basis” splines. Note how there is obviously a
lot of multicollinearity in data columns that are created in this way. (Obvious, right?)

There is an alternative encoding of the spline variables called the b-spline the multi-
collinearity is reduced. Harrell’s Regression Modeling Strategies states that the difference is
not usually substantial (and I trust his judgment).

A first try at a formula for a cubic spline might have us trying to write down a cubic
equation for each knot, something silly like

§i = bo+biz; + box? + byad +
by + bs(z; — 71y + be(xi — 71)2 + br(ws — 1)2 (after first knot)

bs + l;g(xi — T4 + 510(%‘ - 7'2)%r + Bll(ati — 7‘2)3’r (after second knot)

15

But you should see right off that we can’t really use all of this detail. Because of the
restriction that the cubic equations must meet at the knots (no gaps!), it must be that by, =
bg = 0. So kick those parameters out. And because the slopes of the cubics must be the same
at the knots, we are not allowed to have bs and bg be nonzero. And there is the condition
that the second derivatives must match as well, so bgand b1y have to be eliminated.

After throwing away the gaps and changes in slope and curvature at the knots, the cubic
spline formula is just

A~

§i = bo+ by, + boa? + byad +

+hy(z; —)3 (after first knot) (1)
+bs(zi —)3 (after second knot)
and so forth (2)

We suppose that the “basic part” of the relationship—which applies all across the range of x;—
is bo—i-blxz—l—ng —i—ng and then as x;moves from left to right, the model “picks up” additional
terms. After the first interior knot, we have added a quantity b4(x, - 7'1)‘3_. If 54 equals 0,
it means the relationship on the second segment is the same as the first. After the second
knot, we have BOTH the additional curvature from the first knot and the second knot, so
we add on: 134(% —)3+ 135(% — 72)3. That means there are 4 parameters estimated for
the basic cubic equation and then there is one additional parameter for each of the segments
after the first.

You still have “knots” when you use smooth splines. But you don’t have kinks.

These can be estimated manually, in a method that exactly matches the linear spline
discussed above. There does not seem to be a pre-packaged routine to estimate this primitive
version of the model. It is considered a bad idea.“The truncated power basis is attractive
because the plus-function terms are intuitive and maybe entered as covariates in standard
regression packages. However, the number of plus-functions requiring evaluation increase
with the number of breakpoints, and these terms often become collinear, just as terms in a
standard polynomial regression do.” (Lynn A Sleeper and David P. Harrington, “Regression
Splines in a Cox Model with Application to Covariate Effects in Liver Disease”, Journal of
the American Statistical Association, 85(412) December 1990, p.943 (941-949)).

I want to emphasize very much that a change in the coefficient for one segment may have
a “ripple effect” across all of the others. If one segment’s coefficient gets tuned “way high”
then the others have to adjust to compensate. So it is not really as if the cubic model with
x;, #2, and 2?2 is estimated on the first piece, then the rest are “layered on”. Rather, they are
all estlmated at once, so all of those Vs influence each other.

Restricted (“natural”) cubic splines

Note that the coherence and structure of the splined relationship flows from the fact that the
curvature within any segment depends on its relationship to its neighboring segment. For
the segments on the left end and the right end, there is no stabilizing influence of a neighbor.

16

A restricted cubic spline is one that insists that, on those outer segments, the prediction
is based on a linear model, rather than a cubic one. In the unrestricted cubic spline model,
there are k + 4 parameters to estimate (including the intercept). Harrell observes that the
number of parameters (including the intercept) is reduced to k if we adopt a restricted cubic
spline.

It is a bit difficult to understand how we lose 4 parameters in the transition from unre-
stricted to restricted spline. The only no-brainer is this:

Linear Segment 1: by = b3 =0

I think the two other boundary conditions are
Spline Coefficients sum to 0: Z?Zl ?)j+3 =0
?7?How To Name this one??: Z?Zl le;k+3 =0

Harrell says Stone and Koo found a way to recode the input variable. Suppose you could
somehow magically create these new variables zy;, z9;, and z3; so that you could estimate a
model with 5 knots as

§i = bo + b1; + G121 + Cazay + G2y (3)

and after estimating that, translate the estimates of these coefficients back into the form
given by a more substantively appealing expression like

gi = [;0 + lei + [SQ(Z’Z — T1>3 + Bg(ﬂfl — Tg)i_ + ...
What is the magical encoding? See Harrell p. 20.

T — T
sl e e T

What the hell is that? Will you settle for examples?
I load the Design package with the library () command first:
library (Design)

Design has a function “rcs” that can create the new component variables for us. That
loads the splines library as well because Design requires it.

asequence < 1:20
splineMatrix < rcs(asequence, 4)

splineMatrix

asequence asequence ' asequence''
[1,] 1 0.000000000 0.0000000000
[2,] 2 0.000000000 0.0000000000
[3,] 3 0.000000000 0.0000000000
[4,] 4 0.000000000 0.0000000000
[5,] 5 0.000000000 0.0000000000

17

[6,] 6 0.008264463 0.0000000000
[7,] 7 0.066115702 0.0000000000
[8,] 8 0.223140496 0.0003543388
[9,] 9 0.528925620 0.0203336777
[10,] 10 1.033057851 0.1072551653
[11,] 11 1.785123967 0.3107055785
[12] 12 2.834710744 0.6802716942
[13,] 13 4.231404959 1.2655402893
[14,] 14 6.015372291 2.1089466708
[15,] 15 8.110359036 3.1645532512
[16,] 16 10.361590909 4.3268181818
[17,] 17 12.638863636 5.5068595041
[18,] 18 14.916136364 6.6869008264
[19,] 19 17.193409091 7.8669421488
[20,] 20 19.470681818 9.0469834711
attr (,”class”)
[1] 7Design”
attr (,”name”)
[1] ”asequence”
attr (,”label”)
[1] ”asequence”
attr (,”assume”)
[1] "recspline”
attr (,”assume.code”)
[1] 4
attr (,”parms”)
[1] 5.00 7.65 13.35 16.00
attr (,”nonlinear”)
[1] FALSE TRUE TRUE
attr (,”colnames”)
[1] ”asequence” "asequence'” asequence''”

We have to specify either the number of knots or a vector of positions for knots. If
we don’t specify the exact positions of the knots, rcs will position them so that the data
is divided into equally sized subgroups (quintiles, etc.). We can use recs(x) in as an input
variable in a regression model:

mymod4 <+ lm(y ~ res(x, 4))

newx < seq(0, 10, length.out = 100)

predict4d <+ predict (mymodl, newdata = data.frame(x = newx))
plot (x, y, main = ”"Using lm(y~rcs(x,4))”, type = "n”)
points(x, y, pch = 16)

lines (newx, predict4)

18

Using Im(y~rcs(x,4))

The summary information on the fitted model, well, only its Mother could love it:

Call:
Im(formula = y ~ res(x, 4))

Residuals:
Min 1Q Median 3Q Max
—7.3274 —2.9913 0.7751 2.3304 5.2871

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 5.6662 1.1462 4.944 3.25e—06 **x
res(x, 4)x —2.0683 0.5735 —=3.607 0.000494 xxx
res(x, 4)x' 6.4465 2.3709 2.719 0.007772 #+
res(x, 4)x'' —11.1982 4.6379 —2.415 0.017651 =

Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' '1

Residual standard error: 2.949 on 96 degrees of freedom
Multiple R%?: 0.1474, Adjusted R?: 0.1208
F—statistic: 5.533 on 3 and 96 DF, p-—value: 0.001513

What if you make the number of knots much higher, say 10?7

19

10 Knots! Using Im(y~rcs(x,10))

And if you thought the other output was ugly, dig this:

summary (mymod4)

Call:

Im(formula = y ~ recs(x, 10))

Residuals:
Min

Coefficients :

(Intercept)

res(x, 10)x

res(x, 10)x!

res(x, 10)x'!
res(x, 10)x'"!
res(x, 10)x'"!
res(x, 10)x'!
res(x, 10)x'!
res(x, 10)x'!
res(x, 10)x"!

Signif. codes:

1Q Median 3Q Max
—1.85094 —0.52619

!
L

L

0

!

0.07638 0.53238 1.94431

Estimate Std. Error t value
—0.6753 0.4438 —1.522
4.9678 0.5578 8.905
—105.6228 19.3026 —5.472
257.8897 115.8651 2.226
—176.5435 212.2693 —0.832
135.7993 158.3145 0.858
—150.0714 62.0285 —2.419
108.2622 69.4949 1.558
—430.5118 138.3122 —3.113
452.4003 118.7002 3.811

%% " 0.001 'xx'" 0.01 'x' 0.05

20

r(>[t])
.131605
A42e—14
.97e—07
.028527
407782
.393292
017558
.122780
.002486
.000253

O O OO OO O WwWoto g

.1 0.1

* %k sk
Xk %k ok

* %
k% %

!

1

Residual standard error: 0.7889 on 90 degrees of freedom
Multiple R?: 0.9428, Adjusted R?: 0.9371
F—statistic: 164.8 on 9 and 90 DF, p-—value: < 2.2e¢e—16

rm(mymod4, predict4, newx)

Choosing the number of knots

The conventional wisdom, following studies by Stone, is that the positioning of the knots is
not very influential. If the knots section off the data into evenly sized groups, then the fit
is “pretty good.” But the number of knots is important. The conventional wisdom also says
that the number of knots should usually be between 4 and 7, and my testing confirms that
adding more than 7 knots usually does not affect the predictions very much.

There is a danger of “over-fitting,” of creating a too-complicated model that would not
fit against a sample from the same data-generating process. So one would like to get rid of
as many knots as possible while preserving the fit of the predictions.

The Cross Validation (CV) and Generalized Cross Validation (GCV) are frequently dis-
cussed criteria. As far as I understand it, these were developed for the “smoothing splines”
models (see below; Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline func-
tions. Numer. Math., 31: 377-403) but they are applicable to any of these fitting procedures.
As indicated in the MARS example, the gcv is calculated with each fitted model.

The AIC from fitted models can also be used to decide if the number of splines.

Cross Validation

CV stands for Cross Validation. It is a “leave-one-out” analysis of the fit. Remove the i'th
observation and re-calculate the predictive curve. Figure out what the prediction is for the
input values of that i'th observation. Call that leave-one-out prediction ;. Cycle through
all of the observations and average the squared errors. The Cross Validation estimate of

prediction error is
OV = 3y~ i)
- N P yl y’L
The calculation of CV may be very time-consuming. The model must be re-estimated N
times.

Generalized Cross Validation

Think of translating the CV into a generalized linear model framework.
In the R package called “mgev”, one finds a set of methods that will fit models (spline
models) to optimize the GCV. In the mgev documentation, the GCV statistic is defined as
nD
(n —df)?
where deviance is an indicator of the badness of fit (recall the GLM?), n is the sample
size and df is the effective degrees of freedom. The effective degrees of freedom reflects the

GCV =

21

number of degrees of freedom that are used to estimate the model-something like the number
of cutpoints or the amount of curvature allowed in the spline.
An alternative criterion in “mgcv” is the Unbiased Risk Estimator

D 2.
UBRE = = + sdf

n

where s is the “scale parameter” of the generalized linear model (variance of error term in
Normal/linear model).

I used the “gam” function in mgev to experiment with the impact of changing the number
of knots in a cubic spline model. The following code illustrates the fitting of one gam model
for which the £ (knot) parameter is set to 4, and it then fits models for £ = 3,4,...,10
and chooses the best one by finding the lowest GCV. The mgcv procedure is supposed to
automate this choice for us, but for me it just churns up CPU time and never responds. I'm
bookmarked that one.

library (mgev)
gam(y ~ s(x, k =4, bs = "cr”))

Family: gaussian
Link function: identity

Formula:
y ~ s(x, k=4, bs = "cr”)

Estimated degrees of freedom:
2.6388 total = 3.638848

GCV score: 9.177401

mygams < list ()
for (i in 3:10) {

mygams [[1 — 2]] <« gam(y ~ s(x, k=1, bs = "cr”))
}

gevresults « vector ()
for (i in 1:7) {

gcevresults [1] <« mygams[[i]]$gcv.ubre
}

gcvresults

[1] 9.1828206 9.1774012 0.9316883 0.7044464 0.7664113 0.7247366 0
.7093403

bestone <« mygams[[which.min(gcvresults)|]
summary (bestone)

22

Family: gaussian
Link function: identity

Formula:
y ~s(x, k=1, bs = "cr”)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 1.22900 0.08138 15.1 <2e—16 %

!

Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.'" 0.1 ' '1
Approximate significance of smooth terms:

edf Ref.df F p—value
s(x) 4.988 5 276.6 <2e—16 xxx

!

Signif. codes: 0 'xxx' 0.001 'sxx' 0.01 'x' 0.05 '.'" 0.1 ' '1

R—sq.(adj) = 0.933 Deviance explained = 93.6%
GCV score = 0.70445 Scale est. = 0.66226 n = 100

plot (bestone)
points(x, y, pch = 16, cex = 0.5)

s(x,4.99)

~. -7

0 2 4 6 8 10

23

Smoother Matrix and effective degrees of freedom

Recall GC'V', where the effective degrees of freedom is used. In the locfit documentation, it
is claimed that))
n i1 (yi — 9i)

GOV =)

S represents the smoother matrix, which is the nonparametric equivalent of the “hat matrix”
in OLS regression. The symbol “tr(S)” stands for the trace of S, which is the sum of the
diagonal elements.

First, what is a “Smoother Matrix”?

Recall the “OLS hat matrix” is the matrix H against which you multiply y to convert
observations into predictions (§ = Hy). The Smoother matrix is performing exactly that
same role,

§ =295y
Imagine an extreme case in which the Smoother Matrix is diagonal,

100000
010000
g_ (001000
000100
000010
(00000 1]

That would be an “interpolation” that gives back each point’s actual value as a prediction.
It is using N (sum of diagonal) degrees of freedom. On the other hand, if the smoother matrix
has small values along the diagonal, then the observations are “gaining strength from each
other” and the estimates of each one are not completely separate. Not as much separate
information is being used to make each prediction.

The effective degrees of freedom is given by the trace of the Smoother matrix (df =
trace(S)).

The CV value can be calculated using the Smoother matrix, where S;; is the it diagonal

element. N)
1 Yi — Ui
CV = NZ [1—51-1

i=1

This does not require the fitting of N separate leave-one-out models, but I'm not sure it
helps that much because calculating the Smoother matrix itself might be expensive. Hutchi-
son and de Hoog (1985) found an algorithm to calculate the diagonal elements of S efficiently.

The GCV as a generalization of CV is seen most readily in light of this latter definition
of CV. replace the computationally difficult values S;; with the average S;; value, which is
trace(S) Inserting that into the CV formula gives all N terms a comon denominator, and this

N
it can be re-written 1 9
(1— M)

N

CV =

24

The use of the trace of S as an estimate of the degrees of freedom has motivation in the
OLS model. In the OLS model, the hat matrix is H;;, and it is known that trace(Hy) = p,
the number of fitted parameter estimates. I have a separate handout that describes the hat
matrix in depth. It is called “Regression Diagnostics.” Thus, one might refer to the unbiased
estimated variance of the error term in OLS as

52— Sy — 0:)° _ S (yi — 9i)°
N-—p N —trace(H)

Extension to multi-dimensional predictors

As the “fields” package (and web documentation) illustrates so well, several predictor vari-
ables can be used. The leading method is called “thin plate splines.”

7 Local Smoothing Regressions: Lowess (Loess)

Spline approaches try to think of a segmented a relationship in a way that is “wholistic.” It
fits the relationship of the “whole line” at once while tailoring some pieces for different parts.

Take a radically different approach by simply calculating a predicted value, one for each
x;. Base the prediction only on observations that are “close to” each particular point. The
original proposal was called “lowess” and a revised approach was called (loess).

Consider a particular point, 2’ (pronounced “x prime”). What is close to x;? That’s
where the bandwidth, h, comes into play. Observations that are further than A units away
don’t matter at all, while the ones inside that bandwith have more weight when they are
closer to 2. In the locfit package, as in other loess implementations I’'m aware of, the default
weight placed on each neighboring observation depends on lei=at]

— [P iR <1
0 otherwise

W (x;) = Weight on (z;) = (1

What does that look like, I wonder to myself. Lucky there’s R to show it:

x3 <+ seq(0, 10, length = 200)

xprime < 4

bandwidth <+ 3.1

weight < (1 — (abs((x3 — xprime)/bandwidth))”"3)"3

weight <« ifelse (abs(xprime — x3) > bandwidth, 0, weight)

plot (x3, weight, type = 71”7, main = ”"Default loess weighting for
x=4, bandwidth=3.1")

25

Default loess weighting for x=4, bandwidth=3.1

1.0

0.8

weight
0.6
|

0.4

0.2

X3

Any kind of formula can be used to calculate predicted values. We might, for simplicity,
just use a linear model, g; = bg + blxz, or a quadratic model, §; = bg + blacz + bgsc In
“ordinary least squares,” there are no weights:

=1

But the weighted local regression uses the W (z;) to de-emphasize the far-away values.

In the MASS package’s loess method, and in locfit as well, the bandwidth is not described
as a constant, but rather it is an interval wide enough to include a given fraction of the
observations in the data. So, instead of thinking of h as a width that is the same for any
given point, it may either grow wider or narrower depending on the clustering of observations.

This code will use locfit to calculate the predictions, and it uses the default plot method
that is provided with locfit:

library (locfit)
fitl < locfit(y ~ Ip(x, nn = 0.5))
plot (fitl , main = ”"Local fitting in locfit package”, ylim = c(—6,

6))
points(x, y, pch = 16)
gev (fitl)

26

lik infl vari gcv
—33.5388536 6.9679449 6.3546839 0.7750201

Local fitting in locfit package
© - e

-2

-4

-6

The smooth looking line here is really an optical illusion. The loess approach does not
calculate predicted values on intervals. Rather, it calculates predictions for each of the points,
and then the graphing tool connects those predicted points and makes them look smooth. I
couldn’t figure how to reveal that with locfit, but I could get it with MASS package.

The following code uses the MASS package’s loess method. Note this is done with a more
obvious sequence of calculating the predictions and then plotting them with the default plot
method.

library (MASS)

fit2 < loess(y ~ x, span = 0.5)

testx < x[order(x)]

pred3 <« predict(fit2 , data.frame(x = testx))

plot (x, y, pch = 16, main = "loess output from MASS”, ylim = c¢(—6
, 6))

lines (testx , pred3)

27

loess output from MASS

© - S

b 7

plot(x, y, type = "n”, main = ”loess output from MASS without
deceptive line”, ylim = c¢(—6, 6))

points(x, y, pch = 16)

points (x, fit2$fitted , pch = 3)

loess output from MASS without deceptive line

< - -éﬂh—:'. " .
i Fn

i S ?E% ¢ B

> O—i__ + .« +- %
.| o Iy ~+
' - i 4
¥ - %’ff# *
QI:’_I [[[[[

0 2 4 6 8 10
X

28

Extension to several input variables

The loess model, the second-generation one, included the ability to add more predictor
variables. The transition from one to several variables is very simple in theory.

Measuring distance. We still weight neighboring points by distance. The only difference
is that distance now is more difficult to measure. Recall from the pythagorean theorem
(a* + b* = ¢?) that the distance between two points z; = (x11,712) and 9 = (721, T92) is

\/(xn — T91)? + (221 — Ten)?. That is a Euclidean method of measuring that works for any
number of dimensions, so if there are, say 4 variables being considered, then the distance
between case 1, 1 = (x11, 12, T13, T14) and xo = (Ta1, Ta2, Ta3, T24) 18

\/(!En — T91)? + (Ta1 — ¥22)? + (¥31 — T32)* + (241 — Ta2)?

. Refer to that measurement (“norm”) as ||z; — x2||. Using that distance measurement, then
one simply calculates the weight by replacing (x; — 2’) with ||z; — x2||.

Recall that loess calculations are always done with a specific reference point 2’ for which
we need to make a calculation. Suppose the values observed for that specific case are 2’ =
(x], x4, x%, x)). Calculating a predicted value for x;is, with quadratic model, calculated

gz’ = 60 + Bl(xil — l’/l) + 82<Iz'2 — l’/2> -+ 63(1’1'1 — .7)/1)2

+[A74(CL’Z'2 — $/2)2 + 85(371'1 — l'/l)(ng — l’/2)

8 Smoothing Splines: marriage of Splines and Loess

Loess estimates an equation for every point. Splines seem not to, but rather project their
curves across segments of x;. Smoothing Splines is doing both.

Your goal is still to choose a “best” prediction for each point, a set of “best estimates” for
each observation, §; = f(z;). In the Smoothing Spline approach, we build a natural spline
model in which every unique point in x; is a knot, then we adjust our predictive model to
minimize the penalized residual error plus a penalty for “curvy” predictions. Note, since we
use natural splines, it is very meaningful to talk about the first and second derivatives at a
given point. Here is the objective function

mazx

SS(FN) =3 (i — f@)) + A [(" (@) 2da

i=1 Tmin

The first term is a penalty for a bad fit.

The second term is a “roughness penalty” that you pay for having a model with lots of
bumps and bends. (Recall, if f” is 0, then the relationship is linear).

The smoothing parameter is A. The second derivative is used because f(x;) is cubic.

The smoothing spline approach is often justified with mention of a theorem, which states
that: The unique minimizer of SS is a natural cubic spline with knots at the unique values
of x;.

29

How much smoothing?

Recall that, in the restricted cubic spline model, we wondered how many knots to select?

Here we allow ourselves N knots, but then we penalize curvature.

If you set A = oo, you are applying a harsh penalty to curvature, and the result will be
that the best model is one in which f” = 0 everywhere. In other words, an Ordinary Least
Squares straight line is the best.

If you set A = 0, then you are allowing f” to be huge, in which case the result will be a
“connect the dots” interpolation (assuming there’s just one observation at each ;).

Try out the “smooth.spline” function from the MASS bundle’s “modreg” library. The
default has all.knots=T, but I wrote it in just so I remember

library (MASS)

ssl <+ smooth.spline(x, y, all.knots = T)
print (ssl)

Call:
smooth.spline(x = x, y =y, all.knots =T)

Smoothing Parameter spar= 0.918557 lambda= 0.0001279235 (14
iterations)

Equivalent Degrees of Freedom (Df): 11.33271

Penalized Criterion: 53.2251

GCV: 27.89309

2 7

plot (x, y, type = "n”, main = ”"Comparing smooth.spline results”)
lines (ss1%x, ssl8y, Ity = 1)

ss2 <+ smooth.spline(x, y, all.knots = F, nknots = 4)

print (ss2)

Call:
smooth.spline(x = x, y =y, all.knots = F, nknots = 4)

Smoothing Parameter spar= —0.1997111 lambda= 1.169087e—05 (15
iterations)

Equivalent Degrees of Freedom (Df): 5.981517

Penalized Criterion: 158.3074

GCV: 23.05232

lines (ss2%x, ss28y, Ity = 4)
legend (0.7, —3, c(”all.knots=T", "knots=4"), lty = c(1, 4))
points(x, y, pch = 16, cex = 0.5)

30

Comparing smooth.spline results

Y - — aII.knotSz'}I'_
----- - lknm‘q:A

0 2 4 6 8 10

9 AVAS

So far, we have thought of ways to bend the regression line through the data distribution. We
have not given ourselves the luxury of transforming the variables. We have seen examples in
the past in which logging variables might eliminate clumpiness or make observations appear
more normal. However, the process of transforming variables in regression can be quite a
bit more elaborate. Consider the article by Tibshirani (Rob Tibshirani (1987), “Estimating
optimal transformations for regression”. Journal of the American Statistical Association 83,
394.) He outlines a transformation process that makes the scatterplot suitable for a linear
regression with homogeneous variance.

The acepack was first brought to my attention by Harrell’s Regression Modeling Strate-
gies, which mentions the fact that ordinal predictor variables may be transformed in this
way so that their impact can be estimated by a single slope coefficient.

Consider the application of his model to the sine wave that we have used a running
example. The transformed x and y are quite pleasantly linear and the linear model fits very
nicely.

library (acepack)
avasfit < avas(x, y)

[1] 100 1

plot (avasfit$tx, avasfit$ty, main = "AVAS procedure from Acepack”
, xlab = "transformed wvalues of x”7, ylab = "transformed values

31

Of y”’

type — 77n77)
points (avasfit$tx, avasfit$ty, cex = 0.5)
abline (Im(avasfit$ty ~ avasfit$tx))

AVAS procedure from Acepack

transformed values of y
0

I I I I I I
-1.5 -1.0 -0.5 0.0 0.5 1.0

transformed values of x

What do we have to do to x and y in order to achieve such a beautiful finding?

par(mfcol = ¢(2, 1))

plot (avasfit$x, avasfit$tx, ylab = "transformed x”, xlab
original x”)
plot (avasfit$y, avasfit$ty, ylab = "transformed y”, xlab

original y”)

32

X
8 O DO OOCDQ)%
£ o] ® %%‘b °o
i 1.¢ % & o,
2] O - D o
% H 1 % m 0 ocpdﬁp %
g 9 I I P I I I
0 2 4 6 8 10
original x
>
o
£ e
— N o@)@ mooo
= © o ®0 ® @00 ®
q(T) — @00 o o® ®
R I I I I I I
-4 -2 0 2 4 6

original y

Would you rather bend the line, or bend the data, or both? To tell you the truth, I can’t
quite decide myself. The avas procedure can be applied to many independent variables,
and the user can require the program to leave some untransformed or subject some only to
monotonic transformations.

I have not seen any research on applying these ideas to logistic regression or other fre-
quently used tools. On the other hand, there has been very eager research on the application
of splines and loess in the generalized linear model, as evidenced in packages like gam or
mgev.

But if I had to bet $100 on a fit of a linear model, I'd be really tempted to take Tibshirani’s
suggestion.

33

