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1 Introduction

This is my best effort to succinctly explain the theory behind the ordinal logistic regression
model (with apologies to the probit model).

The main takeaway point is supposed to be this:
The same data leads to different estimates from different programs. That happens be-

cause the ordinal model can be written down in several different ways. None of them are
wrong, but they are different, and as a result the user must be cautious.

Estimates obtained from four different programs are offered in Tables 2 through 4. If
we line these up side by side, we see that estimates from one of the routines for R matches
Stata (after chopping off the small differences in the decimals), while SAS appears to pro-
vide the “wrong sign” for the first row and the second procedure for R seems to provide
the “wrong signs” for the second and third rows.

R: polr R: lrm SAS Stata

b̂1 -0.28 -0.28 0.28 -0.28

ζ̂1 -4.24 4.24 -4.24 -4.24

ζ̂2 -2.32 2.32 -2.32 -2.32

None of these are actually wrong, they are all correct given the model they specified. This
the point at which the student may be tempted to give up. Please don’t. I’ve worked very
hard to clear this up in the following sections.

2 Extending the Logit Model to deal with Ordinal

Dependent Variables

The easiest way to understand regression with ordinal dependent variables is to extend the
“cumulative probability interpretation” of the two category model.

In the two category model, yi is 1 with probability

F(b0 +b1Xi) =
∫ b0+b1Xi

−∞

f (ei)dei (1)
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Figure 1: Dichotomous Outcome Variable

fi(ei)

ei

Pr(yi = 1) = Pr(ei ≤ b0 +b1Xi)

Pr(ei > b0 +b1Xi)

b0 +b1Xi

Pr(yi = 0) =

And, of course, the probability that yi is 0 will be 1− F(b0 + b1Xi). The formula F is
a “cumulative distribution function” (CDF), it represents the probability that a random
variable ei will be as small or smaller than b0 + b1Xi. The function f is a “probability den-
sity function” (PDF), which represents the probability that ei is equal to some particu-
lar value. This is illustrated in Figure 1. The “probability density function” f is defined
from left to right and the possible outcomes are divided into two sets by the line drawn at
ei = b0+b1Xi. The area under the curve on the left side is the probability of getting a “yes”
(or 1). The area on the right is the chance of a “no” (0).

Suppose yi can have 3 values, 0, 1, and 2. (Keep in mind that this model can be written
down in several ways. We tackle my favorite first, and then consider the others.) Leave the
predictive part of the model (b0 + b1Xi) the same, but we now introduce two new positive
constants (Π0 and Π1) that divide the space. Considering Figure 2, it should be easy to
see why some people call these new parameters “thresholds”.

To summarize the effect of these new thresholds, we write down 1 equation for each pos-
sible outcome. My tendency is to write the thresholds as positive values like so:

yi =


2 i f b0 +b1Xi− ei ≥Π1
1 i f Π0 ≤ b0 +b1Xi− ei < Π1
0 i f b0 +b1Xi− ei < Π0

(2)

Note we don’t really need 3 equations. If we have two, say Pr(yi = 0) and Pr(yi = 1),
then the chance of ending up in the other category is 1−Pr(yi = 0)−Pr(yi = 1).

In order to translate this into a model involving the cumulative probability distribution,
re-arrange so that the random variable ei is by itself.
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Figure 2: Ordinal Logit
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ei
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yi =


2 i f ei ≤ b0 +b1Xi−Π1
1 i f b0 +b1Xi−Π1 < ei ≤ b0 +b1Xi−Π0
0 i f b0 +b1Xi−Π0 < ei

(3)

As in the dichotomous case, the probabilities of the various outcomes are calculated by
use of cumulative probability. Rearrange 2 to convert these into probabilities of the indi-
vidual outcomes.

Pr(yi = 2) = Pr(ei ≤ b0 +b1Xi−Π1) = F(b0 +b1Xi−Π1)
Pr(yi = 1) = Pr(b0 +b1Xi−Π1 ≤ ei < b0 +b1Xi−Π0)

= 1−F(b0 +b1Xi−Π0)−F(b0 +b1Xi−Π1)
Pr(yi = 0) = Pr(b0 +b1Xi−Π0 < ei) = 1−F(b0 +b1Xi−Π0)

(4)

Note that any one category can be thought of as a “residual” category after the others
have been assigned their shares. The middle category, yi = 1, is left over if we “chop off”
the outcomes on the left (yi = 2) and the right (yi = 0). We are left with the chance of
ending up in the middle. In that sense, the probability of landing in the middle is equal
to 1.0 minus the chance of a very small amount of random noise (ei ≤ b0 + b1Xi−Π1) and
minus the chance of having a very large random noise (b0 + b1Xi−Π0 < ei). Similarly, the
chances of being in the top category equal 1 minus the chance of ending up in the lower
categories.

Any probability distribution can be used for the random error ei, the two most common
being Logistic and Normal. If the Normal is chosen, it is customary to call this a “probit”
model and the symbol for the cumulative distribution is usually Φ().
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Figure 3: Ordinal Model with More Categories
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What if your dependent variable have more categories? Add more thresholds! See the
example in Figure 3.

3 Cumulative Probability Interpretation

3.1 The probability that yi is greater than or equal to j.

In the previous section, I discussed the probability that yi = j.
Another way to think of the same the model is to consider the probability that the ob-

served outcome is in category j or in some “higher” category. That is, consider “cumulative
probability,” Pr(yi ≥ j).

The cumulative model is used mainly because it effectively convers the multicategory
outcome model into a sequence of 2 category comparisons. The probability model is some-
what easier to write down because we can use the familiar “logit” function.

Recall that, in the two category case, the logistic model is easily re-arranged so that the
probability model

Pr(yi = 1|Xi) =
1

1+ e−(b0+b1Xi)
(5)

becomes

ln
[

Pr(yi = 1|Xi)

1−Pr(yi = 1|Xi)

]
= b0 +b1Xi (6)
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That is to say, the “log of the odds ratio” is a linear function of the unknown coefficients
and the observed variables. Because the right hand side “looks like an ordinary regression
equation,” many people are more comfortable interpreting input variables as causing the
change in the log of the odds ratio.

Suppose instead we re-write down the probability that yi is greater than or equal to
1? (Pay no attention to the fact that yi can only be 0 or 1 for a moment.) Then the di-
chotomous equation would be the same, except that we now use “greater than or equal to”
rather than “equal to”:

ln
[

Pr(yi ≥ 1|Xi)

1−Pr(yi ≥ 1|Xi)

]
= b0 +b1Xi. (7)

For a three category model, it is obvious that the probability that yi is 0 or greater is
1.0. The chance that yi is greater than or equal to 1, or 2, is

Pr(yi ≥ 1) = Pr(ei ≤ b0 +b1Xi−Π0) = F(b0 +b1Xi−Π0)
Pr(yi ≥ 2) = Pr(ei ≤ b0 +b1Xi−Π1) = F(b0 +b1Xi−Π1)

(8)

That should provide the intuition that we can add more categories and then use a se-
quence equations to represent a sequence of “steps,” or ordered comparisons. Is yi greater
than or equal to 1? Is yi greater than or equal to 2?

If there are three outcome categories, we can write down two equations, one for the
probability that yi is greater than or equal to 1, and an second for the probability that it
is greater than or equal to 2.

ln
[

Pr(yi ≥ 1)
1−Pr(yi ≥ 1)

]
= b0 +b1Xi−Π0 (9)

ln
[

Pr(yi ≥ 2)
1−Pr(yi ≥ 2)

]
= b0 +b1Xi−Π1 (10)

More succinctly, for k categories, we would write

f or j ∈ {1, . . . ,k}, ln
[

Pr(yi ≥ j)
1−Pr(yi ≥ j)

]
= b0 +b1Xi−Π( j−1) (11)

By making the outcome of interest into a two category comparison–”bigger than j” or
“not bigger than j”, there is a sense in which we have changed this into a series of two-
category logistic regressions.

Of course, this is all consistent with the idea that the chances of observing an outcome
of j or higher is

Pr(yi ≥ j) =
1

1+ e−(b0+b1Xi−Π( j−1))
(12)

3.2 Cumulative Probability Implies Parallel Lines.

The basic ordinal logit model is often called the “parallel lines” model. Equations 9 and 10
are parallel lines–they have the same slope. Hence, a figure displaying lines for the log of
the odds ratio would have parallel lines.

This makes the parallel lines assumption painfully obvious. The log odds that the out-
come is in a particular category, or higher, depend on characteristics that are considered
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fixed (from the individual respondent’s point of view) like b0, b1 and Π j. To explain the
differences among respondents, our attention should focus on Xi, which is proportional to
the log odds ratio.

Another way to think of this is to compare the relative positions of the “dividing” lines
in Figure 2. The position of the dividing lines between categories depends only on the dif-
ferences in Π j. The “linear predictor”, ηi = b0 +b1Xi, is the same in all dividers. The slope
of b1 summarizes the effect of Xi in the model. The equations that refer to the probability
that a respondent will fall into a lower or higher category are parallel lines. A change in
the predictor Xi has a proportional impact on ηi, which is then transformed into a state-
ment about probability.

It is not actually necessary to assume that the slope b1 is a constant when moving up
the scale. There are implementations of the “non parallel lines” model. There will be k−
1 separate slope coefficients. The parameters proliferate as more predictors are added in
the model. Estimating the extra parameters required by a non-parallel lines model makes
this a messy numerical problem, one for which there will be no stable maximum likelihood
estimates.

Most practitioners start with the parallel assumption, they may test it, and pursue the
alternative only when they are persuaded it is truly necessary. If the lines are truly not
parallel, then at some point one has to start to question the idea that the dependent vari-
able is an ordinal indicator, because nonparallel lines do cross in a way that may change
the ordering of the outcomes.

4 Sources of Confusion and Mis-Communication

There are many sources of possible confusion in this setup. I know of at least two disser-
tation chapters that came out completely wrong because of a mismatch between the soft-
ware’s design and the author’s understanding.

Here are the most frequent sources of confusion.

1. In my Figure 2, the ordinal outcomes “step down” from left to right. Some models
will code coefficients so that outcomes increase from left to right. That has the effect
of reversing the sign of parameter estimates for b1.

2. Some authors think of the combined effect of b0 +b1Xi± ei as the random variable of
interest, so the dividing points for that model will include just the Π j and we think
of the error adjusted linear predictor value moving among categories.

3. It is not possible to estimate Π0, Π1, and b0 at the same time. One of those has to
be “fixed” at 0 in order to allow the others to be estimated. It does not matter which
one is fixed, the others will adjust. Some programs fix the separation threshold be-
tween the lowest value and the second lowest value at 0 and then provide estimates
of b0 and the other Π’s. Some programs set the constant b0 at 0 and then estimate
all of the threshold parameters.
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4. It may be that Π0 or Π1 are thought of as additional “constants” and their signs
might be positive or negative. Where I have started with a positive threshold pa-
rameter Π j like so:

b0 +b1Xi + ei ≤Π j (13)

some people prefer to think of Π j as an adjustment in the intercept.

ei ≤ b0 +b1Xi−Π j = (b0−Π j)+b1Xi, (14)

one could as well reverse the scale of the thresholds

ei ≤ b0 +b1Xi +Π j (15)

Recognizing the fact that we cannot estimate both b0 and Π0, some models will sim-
ply combine those two values from the beginning. That is, treat η1 = b0−Π0 as a
combined “constant” ζ1 which usually appears either as a constant in the predictive
part of the model (and there is not separate “threshold” or separator estimated):

ζ1 +b1Xi ≤ ei (16)

or as a new threshold in a model in which there is no “intercept” term in the predic-
tive part.

b1Xi + ei < ζ1 (17)

5 RTFM: Read the Fine Manual

As I warned in a previous section, the ordinal logistic regression model can be written
down in many ways. This is sometimes a blessing, sometimes a curse. It certainly forces
us to think harder on the question of what we are estimating.

Over the years, I’ve had the same conversation with many different students. Here is a
dramatic re-interpretation.

Student: Here’s an ordinal logit model output. What do these theta parame-
ters mean?

Professor: How should I know? Why did you choose to estimate them?

Student: I didn’t choose them. They just “came out.”

Professor: Go read the manual for that program you chose.

Student: I didn’t choose this program. I just Googled “ordinal logit” and some
guy in Australia said I should do this.

Professor: Better read the manual that goes along with that software.

Student: But this other guy in Brazil says the thetas are probability numbers.
What does that mean?

Professor: Hm. Lets get the manual for this software you are using and find
out what they are estimating. I’ll read it to you.

Student: Thanks, that’s what I had been hoping for.
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Table 1: Economic Expectations and Political Ideology: A Crosstabulation

> with(nes2002, prop.table(table(economy,conservatism), margin = 2))

conservatism

economy 1 2 3 4 5 6

better 0.00000000 0.03867403 0.05185185 0.01775148 0.05376344 0.08280255

same 0.17391304 0.08839779 0.11851852 0.23076923 0.23655914 0.26114650

worse 0.82608696 0.87292818 0.82962963 0.75147929 0.70967742 0.65605096

conservatism

economy 7

better 0.09375000

same 0.28125000

worse 0.62500000

Conservatism . We hear a l o t o f t a l k these days about l i b e r a l s and c o n s e r v a t i v e s . When i t comes to p o l i t i c s , do you us ua l l y th ink o f y o u r s e l f as EXTREMELY LIBERAL, LIBERAL, SLIGHTLY LIBERAL, MODERATE OR MIDDLE OF THE ROAD, SLIGHTLY CONSERVATIVE, CONSERVATIVE, EXTREMELY CONSERVATIVE, or haven ' t you thought much about t h i s ?

Economy . Now th ink ing about the economy in the country as a whole ,
would you say that over the past year the nation ' s economy has
gotten BETTER, STAYED ABOUT THE SAME, or gotten WORSE?

In order for the reader to appreciate the fact that my drama is based on “true life” experi-
ence, I offer four sets of estimates from commonly used statistical procedures in Tables 2
(polr), 5 (lrm),3 (SAS), and 4 (Stata).

All of these estimates are based on the same data from the National Election Study of
2002. These models explore the effect of the respondent’s political ideology on the respon-
dent’s opinion about the economy. I did not invest much thought in this choice of vari-
ables; there is no deep theory here. The model asserts that people who are conservative
may have a different economic evaluations than people who are liberal. Since the president
was a Republican at the time, my guess was that people who liked the conservative presi-
dent were more likely to say the economy has gotten better. Political ideology is measured
by the usual self-placement along a scale from “extremely liberal” to “extremely conserva-
tive”, while the outcome variable as the respondents declare whether they think that the
nation’s economy has been “better”, the same, or “worse” during the last year. A crosstab-
ulation of the respondents is presented in “column proportion form” in Table 1.

6 polr

The R package that is distributed in support of Venables and Ripley’s Modern Applied
Statistics is called MASS. In that package, there is a routine called “polr” which stands
for “proportional odds logistic regression.” It can be used to fit ordinal logistic regression
models. The threshold parameter Π j in my treatment is called zeta, ζ j, in their manual.

The polr documentation says they are thinking of the range of observed outcomes as a
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Table 2: Output from MASS polr

> library (MASS)

> polr1 <- polr(economy~conservatism, data=nes2002, Hess=T)

> summary(polr1)

Call:

polr(formula = economy ~ conservatism, data = nes2002, Hess = T)

Coefficients:

Value Std. Error t value

conservatism -0.2803 0.04502 -6.227

Intercepts:

Value Std. Error t value

better|same -4.2441 0.2531 -16.7656

same|worse -2.3215 0.2203 -10.5359

Residual Deviance: 1690.266

AIC: 1696.266

(270 observations deleted due to missingness)
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result of dividing the real numbers like so: (−∞,ζ1,ζ2, ...,ζK,+∞). So the lowest categori-
cal outcome is observed when the latent variable lies between −∞ and ζ1. The next value
is observed when it is between ζ1 and ζ2, and so forth. What is the latent variable? The
polr help page also provides the formula:

logit P(yi ≤ k|Xi) = ζk−Xib (18)

In this context, Xib is the linear predictor, which is often called ηi. For example, ηi= b1X1i+
b2X2i (if there are 2 input variables). Note that there is no intercept coefficient b0 in this
formulation, it has been fixed at 0. That means we can estimate k−1 threshold-separating-
parameters for a k category model.

A drawing of that particular parameterization is presented in Figure 4. The observed
outcome categories are numbered 1,2, . . . ,K, and the k’th threshold separates the chance
that yi ≤ k from the chance that the outcome is greater than k. The model is designed so
that the threshold separators ζk grow larger as k increases, so they have to be placed from
left to right in the figure. Compared to my notation, this one has threshold parameters
and with reversed signs.

The authors want to investigate the chances that an outcome is in a designated category
k or lower. That means the probability model must be

Pr(yi ≤ k|Xi) = Pr(ei < ζk−Xib) (19)

The chance that the outcome will be k or smaller is equal to the chance that a random
noise ei is smaller than ζk−Xib. That, of course, is the same as the chance that the linear
predictor Xib plus the random noise ei remains below a threshold:

Prob(yi ≤ k|Xi) = Prob(Xib+ ei < ζk) (20)

Figure 4: A polr Polychotomy

ζ1−ηi ζ2−ηi ζ3−ηi

yi = 2 yi = 3yi = 1 yi = 4
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Figure 5: polr probabilities when Xib = 0

y=2
y=1 y=4

y=3

ζ2−0 ζ3−0ζ1−0

The polr model, Venables and Ripley use a minus sign in equation 18. By writing 18
with a negative sign, it allows for the re-arranged model to have an intuitive interpreta-
tion. Simply put, if the linear predictor “gets bigger,” then chance of a higher outcome is
increased.

To illustrate that change, let’s compare two cases.

1. Imagine ηi = Xib = 0

If Xb were 0, what will be the probability distribution of outcomes? Then the proba-
bilities would be represented in Figure 5

2. Imaine ηi = Xib = 2.2

What if Xb is a positive number, say 2.2. Then the dividers in the distribution change
in the way shown in Figure 6

The probability of a low outcome is reduced, while the probability of the biggest out-
come is increased.
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Figure 6: Shift in Probabilities

y=1

ζ1−2.2 ζ2−2.2 ζ3−2.2

y=2 y=3 y=4

SAS’s Proc Logistic went in the opposite direction. The default coding went in the other
direction, so that when there was a large, statistically significant coefficient, it indicated
that the chance of a higher outcome was growing smaller.

7 SAS Backwards Logistic

In SAS PROC LOGISTIC, the parameter estimate for the slopes of input variables are of
the opposite sign. Observe in Table 3, the parameter estimate is 0.2805.

Why does the SAS estimate come out with the opposite value? It is as simple as this.
Where the polr model was estimating this expression,

logit P(yi ≤ k|Xi) = ζk−Xib (21)

SAS is estimating this
logit Pr(yi ≤ k|Xi) = ζk +Xib (22)

The sign on the coefficient b is reversed, so the estimates are reversed. The sign on the
threshold/intercept estimates is the same.

SAS is the only program that I’ve tested in which the slope estimates are reversed. The
other programs try to help users avoid the mistake that so many SAS users have made,
thinking that the effects in their data are all opposite of their expectations. Most users
like to think of the input variables as predictors that increase the chances of more highly
ranked outcomes. In a political participation study, we might say “high” represents “did
vote” while “low” represents “did not.” A positive slope coefficient should indicate that the
chance of voting is increased. If we are modeling a person’s vote for a Republican candi-
date, we usually think of “high” meaning “yes,” the respondent voted for a Republican.

This is only a matter of interpretation, however. The original SAS model was designed
to think of the low outcome as the one to be preferred, as in “lacking tumors” or “no heart
disease.”
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Table 3: SAS Logistic is Still Backwards

proc l o g i s t i c data=nes2002 ;

model economy = conservat i sm ;
run ;

Test ing Global Nul l Hypothes is : BETA=0

Test Chi−Square DF Pr > ChiSq

L ike l i hood Ratio 41 .1011 1 <.0001
Score 39.4521 1 <.0001
Wald 39.2135 1 <.0001

Ana lys i s o f Maximum Like l i hood Est imates

Standard Wald
Parameter DF Estimate Error Chi−Square Pr > ChiSq

I n t e r c e p t b e t t e r 1 −4.2458 0 .2526 282.5931 <.0001
I n t e r c e p t same 1 −2.3226 0 .2196 111.9058 <.0001
conservat i sm 1 0.2805 0 .0448 39.2135 <.0001
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In more recent versions of the SAS program, PROC LOGISTIC has been generalized to
allow users to reverse the signs by the insertion of an option called DESCENDING.

8 Stata has the Slope We Expect, but Reversed Thresh-

olds

In polr and PROC LOGISTIC, the “intercept” interpretation for the category separators
was used. We think of the separation of the categorical outcomes as being driven by the
replacement of b0 with a sequence of separating constants.

In Stata, those separator constants are given the “threshold” interpretation, and thus
their effects are reversed. See Table 4. The Stata manual explains their version of the
model (I’ve reversed the roles of i and j to be consistent with the rest of this essay). “The
probability of observing outcome j corresponds to the probability that the estimated linear
function, plus random error, is within the range of the cutpoints estimated for the out-
come:

Pr(outcomei = j) = Pr(κ j−1 < β1x1i +β2x2i + · · ·+βkxki +ui ≤ κ j) (23)

ui is assumed to be logistically distributed in ordered logit” (STATABASE REFERENCE-
MANUAL RELEASE 11, College Station, TX: Stata Press, 2009, p. 1268).

9 Goldilocks prefers lrm

I had not realized this until I was done with this exercise. The routine that provides pa-
rameter estimates of the divider coefficients and the slopes to match the theory I presented
in Section 2 is Professor Frank Harrell’s lrm estimator, which is part of a package that
supports his fine book, Regression Modeling Strategies.

The output from lrm is presented in Table 5.

10 Calculating Predicted Probabilties

Recall that, while using the MASS package, the ordinal regression model is called a “pro-
portional odds” model and the fitting function is called “polr”. We previously used this
fitting function:

polr1 <- polr(economy~conservatism, data=nes2002, Hess=T)

The function predict(polr1) returns a categorical output, the most likely outcome for
each row of the data frame. This is a large data set, I won’t print out all of the “Same”
“Worse” or “Better” outcomes, but the tables don’t hurt (much).

> newds <- polr1$model

> newds$polr1p1 <- predict(polr1)

> (t1 <- table(newds$polr1p1))
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Table 4: Stata Ordinal Logistic Regression

. o l o g i t economy conservat i sm

I t e r a t i o n 0 : l og l i k e l i h o o d = −865.68333
I t e r a t i o n 1 : l og l i k e l i h o o d = −845.38741
I t e r a t i o n 2 : l og l i k e l i h o o d = −845.13286
I t e r a t i o n 3 : l og l i k e l i h o o d = −845.13276
I t e r a t i o n 4 : l og l i k e l i h o o d = −845.13276

Ordered l o g i s t i c r e g r e s s i o n Number o f obs
= 1241

LR ch i2 (1 )
= 41 .10

Prob > ch i2
= 0.0000
Log l i k e l i h o o d = −845.13276 Pseudo R2
= 0.0237

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
economy | Coef . Std . Err . z P>|z | [95% Conf . I n t e r v a l ]

−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
conservat i sm | −.2805 .0450 −6.23 0 .000 −.3687751 −.192286
−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ cut1 | −4.2458 .2532 −4.742078 −3.749548
/ cut2 | −2.3226 .2204 −2.754558 −1.89068

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Table 5: Output Harrell’s lrm

> lrm1 <- lrm(economy~conservatism, data=nes2002)

> lrm1

Logistic Regression Model

lrm(formula = economy ~ conservatism, data = nes2002)

Frequencies of Missing Values Due to Each Variable

economy conservatism

9 266

Model Likelihood Discrimination Rank Discrim.

Ratio Test Indexes Indexes

Obs 1241 LR chi2 41.10 R2 0.043 C 0.611

better 62 d.f. 1 g 0.484 Dxy 0.222

same 258 Pr(> chi2) <0.0001 gr 1.623 gamma 0.277

worse 921 gp 0.022 tau-a 0.090

max |deriv| 4e-11 Brier 0.047

Coef S.E. Wald Z Pr(>|Z|)

y>=same 4.2458 0.2532 16.77 <0.0001

y>=worse 2.3226 0.2204 10.54 <0.0001

conservatism -0.2805 0.0450 -6.23 <0.0001
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better same worse

0 0 1241

> prop.table(table(newds$polr1p1, newds$conservatism), 2)

1 2 3 4 5 6 7

better 0 0 0 0 0 0 0

same 0 0 0 0 0 0 0

worse 1 1 1 1 1 1 1

As you can see, this model is a bit disappointing. This is not an uncommon problem. It
predicts that every single respondent will say “worse”. In the data, the counts of “worse”,”same”,
and “better” are 921, 258, and 62. The proportion of people predicted to say “worse” is 1.0
in every column.

The cross tabulation of the observed and predicted outcomes is often used to create a
“box score” of the model’s predictions. This one predicts 921/1241 correctly, and 320/1240
incorrectly. The model predicts 74.2% correctly, but it is really quite a shallow victory.
You could have predicted just as well without doing the regression at all. That’s why “per-
cent correctly predicted” is not a powerful indicator of a model’s quality.

> table(newds$polr1p1, newds$economy)

better same worse

better 0 0 0

same 0 0 0

worse 62 258 921

Adding the option type=”p” indicates that we want the probabilities for the 3 categories
to be returned in columns. Lets just inspect the first 5 rows of the new data set.

> newds$polr1p2 <- predict(polr1, type="p")

> colnames(newds)

[1] "economy" "conservatism" "polr1p1" "polr1p2"

> newds[1:5, ]

economy conservatism polr1p1 polr1p2.better polr1p2.same polr1p2.worse

1 worse 3 worse 0.03219850 0.15314825 0.81465325

3 worse 4 worse 0.04217733 0.18926111 0.76856156

4 better 4 worse 0.04217733 0.18926111 0.76856156

5 worse 6 worse 0.07161613 0.27373170 0.65465216

6 worse 7 worse 0.09264175 0.31850556 0.58885269

I attempt to generate a bit of diversity in the predictions by throwing in more variables.
Including additional variables, political party indicator variables( “repub” and “democ”),
the “Bush Thermometer” scale and education (V023131) coded as a categorical predictor.
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> library (MASS)

> polr2 <- polr(economy~conservatism+repub+democ+V023010 + as.factor(V023131), data=nes2002, Hess=T)

> summary(polr2)

Call:

polr(formula = economy ~ conservatism + repub + democ + V023010 +

as.factor(V023131), data = nes2002, Hess = T)

Coefficients:

Value Std. Error t value

conservatism -0.04104 0.056812 -0.7224

repub -0.17918 0.170964 -1.0481

democ 0.13717 0.194994 0.7035

V023010 -0.02636 0.003897 -6.7632

as.factor(V023131)2 0.89319 0.611484 1.4607

as.factor(V023131)3 1.17844 0.512134 2.3010

as.factor(V023131)4 1.48905 0.517943 2.8749

as.factor(V023131)5 1.32987 0.535315 2.4843

as.factor(V023131)6 1.54543 0.514715 3.0025

as.factor(V023131)7 1.40286 0.530757 2.6431

Intercepts:

Value Std. Error t value

better|same -3.7982 0.5999 -6.3310

same|worse -1.7984 0.5906 -3.0448

Residual Deviance: 1576.397

AIC: 1600.397

(290 observations deleted due to missingness)

I have only meager success in diversifying my predictions.

> newds <- polr2$model

> newds$polr2p1 <- predict(polr2)

> (t2 <- table(newds$polr2p1))

better same worse

0 10 1211

> table(newds$polr2p1, newds$economy)

better same worse

better 0 0 0

same 4 4 2

worse 57 249 905

18



> newds$polr2p2 <- predict(polr2, type="p")

> newds[1:5, ]

economy conservatism repub democ V023010 as.factor(V023131) polr2p1

1 worse 3 0 1 50 3 worse

3 worse 4 0 0 10 4 worse

4 better 4 1 0 80 6 worse

5 worse 6 1 0 80 7 worse

6 worse 7 0 0 85 4 worse

polr2p2.better polr2p2.same polr2p2.worse

1 0.024774651 0.133234085 0.841991264

3 0.007694808 0.046484361 0.945820832

4 0.052561900 0.238126746 0.709311353

5 0.064942099 0.274140731 0.660917170

6 0.059543015 0.259116568 0.681340416

> library (MASS)

> nes2002$income <- factor(nes2002$V023149, levels=c("1","2","3","4","5","6","7"))

> nes2002$income <- as.numeric(levels(nes2002$income))[nes2002$income]

> nes2002$income[nes2002$income == 4] <- 3

> nes2002$income[nes2002$income == 5] <- 4

> nes2002$income[nes2002$income == 6] <- 5

> nes2002$income[nes2002$income == 7] <- 6

> table(nes2002$income)

1 2 3 4 5 6

136 319 240 205 232 297

> race.black <- ifelse(nes2002$V023150 %in% c("1"),1,0)

> race.hispanic <- ifelse(nes2002$V023150 %in% c("4"),1,0)

> race.white <- ifelse(nes2002$V023150 %in% c("5"),1,0)

> table(race.black)

race.black

0 1

1374 137

> table(race.white)

race.white

0 1

329 1182

> polr3 <- polr(economy~conservatism+repub+democ+V023010 + as.factor(V023131) + race.black + race.white + race.hispanic + income , data=nes2002, Hess=T)

> summary(polr3)
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Call:

polr(formula = economy ~ conservatism + repub + democ + V023010 +

as.factor(V023131) + race.black + race.white + race.hispanic +

income, data = nes2002, Hess = T)

Coefficients:

Value Std. Error t value

conservatism -0.03563 0.058472 -0.60931

repub -0.24465 0.176288 -1.38778

democ 0.14637 0.202285 0.72360

V023010 -0.02621 0.004008 -6.53932

as.factor(V023131)2 0.73324 0.635919 1.15304

as.factor(V023131)3 0.89468 0.536265 1.66836

as.factor(V023131)4 1.18983 0.546028 2.17906

as.factor(V023131)5 1.08112 0.563720 1.91783

as.factor(V023131)6 1.16471 0.549783 2.11849

as.factor(V023131)7 1.03914 0.575012 1.80716

race.black 0.11498 0.387085 0.29704

race.white 0.37222 0.255449 1.45710

race.hispanic 0.03499 0.410892 0.08515

income 0.08941 0.048295 1.85129

Intercepts:

Value Std. Error t value

better|same -3.3941 0.6547 -5.1841

same|worse -1.4246 0.6468 -2.2025

Residual Deviance: 1501.347

AIC: 1533.347

(354 observations deleted due to missingness)

>

> newds <- polr3$model

> newds$polr3p1 <- predict(polr3)

> (t3 <- table(newds$polr3p1))

better same worse

0 10 1147

> table(newds$polr3p1, newds$economy)

better same worse

better 0 0 0

same 4 4 2

worse 56 235 856
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> newds$polr3p2 <- predict(polr3, type="p")

> newds[1:5, ]

economy conservatism repub democ V023010 as.factor(V023131) race.black

1 worse 3 0 1 50 3 0

3 worse 4 0 0 10 4 0

4 better 4 1 0 80 6 1

5 worse 6 1 0 80 7 0

6 worse 7 0 0 85 4 0

race.white race.hispanic income polr3p1 polr3p2.better polr3p2.same

1 0 0 5 worse 0.03033168 0.15279250

3 0 1 1 worse 0.01333862 0.07498924

4 0 0 5 worse 0.06680661 0.27227899

5 1 0 6 worse 0.05805119 0.24830991

6 1 0 4 worse 0.05538501 0.24048773

polr3p2.worse

1 0.81687582

3 0.91167214

4 0.66091441

5 0.69363890

6 0.70412726

Well, supposing I did have to make something of this particular model, what is the next
step? One option is to calculate the probability of a particular outcome for various com-
binations of the input variables. This can lead to a nice table. Lets look at the crosstab-
ulation of income (on the 7 point scale) and conservatism (also on a 7 point scale). The
distribution of respondents is:

> (t6 <- with(nes2002, table(conservatism, income )))

income

conservatism 1 2 3 4 5 6

1 2 6 4 4 3 2

2 19 39 27 26 30 34

3 7 23 19 21 30 30

4 26 83 60 40 50 68

5 3 21 31 30 31 63

6 23 62 50 40 50 64

7 5 10 9 13 11 12

> prop.table(t6, 2)

income

conservatism 1 2 3 4 5

1 0.023529412 0.024590164 0.020000000 0.022988506 0.014634146

2 0.223529412 0.159836066 0.135000000 0.149425287 0.146341463
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3 0.082352941 0.094262295 0.095000000 0.120689655 0.146341463

4 0.305882353 0.340163934 0.300000000 0.229885057 0.243902439

5 0.035294118 0.086065574 0.155000000 0.172413793 0.151219512

6 0.270588235 0.254098361 0.250000000 0.229885057 0.243902439

7 0.058823529 0.040983607 0.045000000 0.074712644 0.053658537

income

conservatism 6

1 0.007326007

2 0.124542125

3 0.109890110

4 0.249084249

5 0.230769231

6 0.234432234

7 0.043956044
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