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1 Let’s get some math out of the way
All duration–or “hazard”–models are based on the idea that, as time passes, the object under
study can undergo an “event”. The event might be death, quitting, getting fired, etc. At a given
time, the probability of an event is defined as f (t).

1.1 Event probability
If the probability of an event is constant, then the model would look like this:

That is a “probability density function,” it gives probability over an interval from 0 to end.
The “cumulative distribution function”, more commonly called just the distribution func-

tion, F(t), tells the probability that an observation will have an event time “T” less than a
given critical number “t:

t

cumulative
probability

of 
exit 

(death,quit,etc)
1

0

end

Constant Probability Model

F(end)= 1

F(t) = Prob(T < t)

1



1.2 Survival function
The probability that an individual observation will not have an event by time “t” is thus 1−
F(t). That quantity is sometimes called the “stayer” function, or the “survival” function, and
because both of those words start with “s”, it is typically referred to as S(t).

S(t) = Prob(T > t) = 1−F(t) (1)

Note that by definition,
∂S(t)

∂ t
=−∂F(t)

∂ t
=− f (t) (2)

And, because dln( f )/dx = 1
f (x)

d f
dx , it is also the case that

∂ lnS(t)
∂ t

=
1

S(t)
∂S(t)

∂ t
(3)

and if you connect the dots between these, you see

∂ lnS(t)
∂ t

=− f (t)
S(t)

(4)

The change in the survivor function is the negative of the hazard function, which is defined
next.

1.3 Hazard function
Now, suppose I told you that an individual had survived until time m1 (m is for milestone).
Take a look at the next picture and tell me what you can infer from it:

t

cumulative
probability

of 
exit 

(death,quit,etc)
1

0

end

F(end)= 1

m1

F(m1)

S(m1)

If I told you somebody lived until m1, then you could make a more accurate statement
about their probability of exit at m1 than you could before I told you that. If I did not give
you that information, you could only say their probability of exit is f (m1). But now, you know
more! You know the probability they will exit at that time has to use S(m1) as a denominator,
since that is the total amount of “risk” left after reaching time m1.

Given a unit lasts until t, then, the probability that unit will “exit” at that time is

h(t) =
f (t)
S(t)

(5)
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Harrell uses λ (t) instead of h(t) in his notation. Hazard is sometimes given exciting names,
like the instantaneous event or instantaneous failure rate.

In light of equation 4, it is also true that:

h(t) =−∂ lnS(t)
∂ t

(6)

I tend to think of this as a pure probability exercise. The total probability of an exit at or
after t is S(t) and the unconditional chance of exiting at t is f (t), so the conditional chance of
exiting is h(t).

If you want a formal proof of equation (5), consult Harrell, p. 395. Hazard is the probabil-
ity of an “event” that occurs at time T will happen in a really small unit of time between t and
t +∆t, divided by the probability that the event happens after t:

h(t) =
lim∆t→0

Prob(t<T<t+∆t)
∆t

Prob(t < T )
(7)

Harrel p. 395 shows all the steps.
It is really just a lightly veiled application of Bayes’s theorem, come to think of it.
Anyway, the function h(t) is the so-called hazard function, or hazard rate. It has an in-

terpretation that goes like “given a unit survives until t, what is the probability that it will die
exactly at t.”

Before you go further, stop and note the importance of this:

f (t) = h(t)S(t) (8)

1.4 Its intertwined! Hazard function, cumulative hazard, survivor func-
tion...

The cumulative hazard function, often denoted as Λ(t), is the “accumulated risk” up to time t.
Cumulative risk never decreases: it is always either steady or increasing in t.

Λ(t) =
∫ t

0
h(u)du (9)

Note, given equation 6, that is:

Λ(t) =
∫ t

0
−∂ lnS(u)

∂u
du (10)

Λ(t) =−lnS(t) (11)

S(t) = exp(−Λ(t)) (12)

The survival curve is thus tightly tied to the accumulated hazard rate.

3



2 No Covariates. Why bother?

2.1 Constant hazard=exponential survival function
I don’t know why anybody would want this, but suppose the hazard rate were a constant:

h(t) = λ

That is, no matter how far along one survives, the chance of exiting is fixed. If you think
backward from there, then you can use your math skills to assert that

f (t) = λexp(−λ t) (13)

and

S(t) = exp(−λ t) (14)

and
Λ(t) = λ t (15)

and
S(t) = exp(−Λ(t)) (16)

Maybe you don’t know enough calculus to believe it, but you could learn it some day and
see this is right.

In other words, if the hazard is a constant, then the Survivor function is an exponential
function.

2.2 Weibull hazard
Suppose you wanted to tell a story in which the hazard rate changes over time. Here would be
a good starting point:

h(t) = λαtα−1 (17)

You can see the time-dependence of the hazard depends on α , right?
If α is bigger than 1, then the hazard rate gets bigger, there is “positive duration depen-

dence.”
If α is smaller than 1, then the exponent is negative, and the hazard gets smaller, and there

is “negative duration dependence”.
Because α determines the “shape” it is often called a shape parameter.
The coefficient λ is the “scale” parameter. Not that adjusting λ changes the hazard up and

down.
Please note that the exponential model is a “special case” of the Weibull. If in the Weibull

we found α = 1, then this would degenerate to an exponential model.
If you get on your math hat, you can figure out the f and F and S which imply the previ-

ous hazard rate. My notes have
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S(t) = exp(−λ tα) (18)

and I know from browsing the internet that

f (t) = αλ (tλ )α−1exp(−(tλ )α) (19)

And it is as obvious and plain as the nose on your face that

F(t) = 1− exp
(
−(tλ )α

)
(20)

Sometimes I see people who use different letters for these, and sometimes they write 1
λ
=

β and then they replace the λ in 19:

f (t) =
α

β

(
t
β

)α−1

exp
(
−
(

t
β

)α)
(21)

Watch out if you go digging around for Weibull formulae, because it appears to me that it is
against the law for any two authors to us the same letters and symbols.

2.3 Gamma hazard.
Condgon (p. 427) mentions the possibility that the hazard rate might be given by a model that
depends on a Gamma variate. Suppose a Gamma distribution G(γ,λ ) with the density

f (t) =
λ

Γ(γ)
(λ t)γ−1 exp(−λ t) (22)

The coefficients γ and λ are the shape and scale parameters, respectively.
Recall that the gamma function is just some number you can look up in a book or com-

puter.
The cumulative distribution that goes along with this is somewhat magical as far as I can

see. Writing down the formula for F(t) requires the “incomplete gamma function” Γx(γ) and as
far as I can see, for our purposes, it is just more distraction.

Notice, if γ = 1 then this is the same as the exponential distribution.
The gamma model has a hazard function that is monotonic in t. It appears to me after con-

siderable searching that there is no general closed form for the hazard function for all values
of the parameters. Nevertheless, supposing λ = 1:

h(t) =
tγ−1e−t

Γ(γ)−Γx(γ)
(23)

We know, in general, that if γ ∈ (0,1) then hazard decreases monotonically, while if γ > 1
then the hazard increases from 0 to λ as time goes from 0 to ∞.

2.4 Nonparametric survival curves: K-M curves
I’ll write something here someday.
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3 Proportional Hazards: finally some input variables
Donald Cox made the proportional hazards model famous. He pioneered many areas in mod-
ern statistics. The “Cox Proportional Hazards” model is a specific strategy for estimating re-
gression coefficients.

Caution: Not all proportional hazards models are CPH models.

3.1 General Proportional Hazard
The proportional hazards model assumes that the “time dependent” hazard is multiplied by the
part that depends on the input variables:

h(t) = λ (t|Xi) = λ0(t) · f (Xi,b)

The hazard is a function of time which reflects a “baseline hazard” λ0(t) multiplied against a
function of the input variables.

Please note the significance.

Hazard separates into two parts, an individual dependent part and a part that de-
pends only on time.

I like this notation λ (t|X) as a way of remembering that hazard is separate from the function
λ0(t). It is very common, but not absolutely necessary, to assume

f (x,b) = exp(Xb)

So the general definition of a proportional hazards model is

h(t) = λ0(t) · exp(Xb) (24)

Fiddle that around in various ways:

h(t) = elnλ0(t)+Xb

So you can think of the hazard rate as being the exponentiated sum of the logged time-
related element and the input variables. In other words, if you did have the hazard value as
an observed quantity, and you wanted to use it in a regression model, you would need logged
time as an input.

To refer to a case i, we might write

hi(t) = λ0(t) · exp(Xib) (25)

Note the premise here is that all cases at time t share a certain amount of hazard, λ0(t) and the
there is case-specific customization with exp(Xib).
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4 The Cox Proportional Hazards model: nonParametric ap-
proach.

There is a division of opinion on this. Box-Steffensmeier and Jones cite authorities who dis-
courage the use of the CPH model, whereas Harrell seems to be more enthusiastic. Take your
pick, apply your diagnostics.

Some people call this a nonparametric approach because we don’t end up estimating the
baseline hazard at all. In fact, we don’t even end up using the precise times to event data. We
only use the ranking of the event times. But I prefer to say it is semi parametric, because we
do estimate the b’s.

4.1 About conditional probability
Suppose the following events might happen: {A,B,C,D,E,F}. Suppose these are independent
events, and the probability of each one is given by P(A), P(B), ..., P(F), and, of course, these
sum up to 1.0.

Suppose you are told that either A, B, or C happened. What is the probability that the
thing which happened was A?

P(A|Aor BorC) =
P(A)

P(A)+P(B)+P(C)
(26)

4.2 Cox’s model depends on ordering and conditional probability
Cox’s argument was that we should not worry about the function λ0(t). Its not our main focus.
We want regression coefficients!

So, how can we make λ0(t) disappear? The event time for a case i is Ti and the risk Set
at time t is the set of observations ( j ∈ risk Set) such that the event did not occur, meaning
Tj > t. Let’s figure out the probability that observation 1 will be the first one to have an event.
Observe (following the logic in 26):

h1(t)
∑i∈risk Set hi(t)

=
λ0(t) · exp(X1b)

∑i∈risk Set λ0(t) · exp(Xib)
=

exp(X1b)
∑t<Ti exp(Xib)

(27)

Whew! λ0(t) disappeared! What we are left with is the probability that case 1 will be first.
Now find a way to justify that: If only one case can fail at time t (a big assumption that

haunts CPR applications), then the one which fails will be case 1 is given by the hazard expe-
rienced by case 1 divided by the hazard experienced by all of the cases.

Note this is somewhat similar to the probability that y = 1 in a logistic regression model,
but it is not exactly the same thing. Its not remotely similar, really, because the numerator con-
cerns case i and the denominator concerns cases other than i which have longer survival times.

So we take a data set and sort the observations in order of event time, so T1 < T2 < T3... <
TN and then we figure the conditional probability that each case which does fail will be the
one that actually does, as given for case 1 in expression 27.

Each observation in the dataset has a conditional calculation which indicates the proba-
bility that it will be next. It will be “next” in the sense that we know which others “already
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happened” and we know which others did not happen yet. Now, we know from ordered data
where all of the events fall into line, so you can see where this is heading. The model is pre-
dicting the ordering of events across the sample.

It’s not maximum likelihood because we aren’t maximizing the full probability of observ-
ing each observation. Instead, we are looking at the probability that the observed order will be
replicated by each case considered one at a time.

This approach is called “partial likelihood”. Cox showed that maximizing partial likelihood
is going to give parameter estimates similar to full maximum likelihood, but partial likelihood
is easier to calculate and makes some impossible problems “do-able.”

Cox Proportional Hazards (CPH) models are sometimes written with the stipulation that all
event times are observed. None of the observations can be censored:

partialL(b) =
N

∏
i=1

exp(Xib)
∑t<Tj exp(X jb)

(28)

ln partialL(b) =
N

∑
i=1

{
ln [exp(Xib)]− ln

[
∑

t<Tj

exp(X jb)

]}
(29)

=
N

∑
i=1

{
Xib− ln

[
∑

t<Tj

exp(X jb)

]}
(30)

Note the following:

1. There’s no constant in a CPH model. If there is a constant in the variable matrix Xi,
then the division described in 39 will result in its elimination from the model (division
of exp(bo)/exp(b0)) makes the constant disappear.

2. We CAN deal with ties. As Harrell explains, the “one failure at a time” restriction that
justifies this approach has been a source of trouble, but workarounds have been pro-
posed. Breslow’s method seems to be the most widely used, but it is perhaps not so ac-
curate (see Harrell, p. 467).

3. Stratified CPH models are possible. If you think the assumption that underlies 39 is too
strong, perhaps the problem is that your data includes “separate strata” of observations.
If you have 2 collections of observations, and you think they have different baseline haz-
ards, you can specify a model in which the 2 collections have the same b coefficients but
the baseline hazards are treated separately.

4. Diagnostics exist. There are ways to find out if the hazards are not truly proportional.
That means the “input variables” in exp(Xib) include some component that depends on t,
such as exp(Xib+ log(t))or so forth. If this is the case, then the “explanatory part” of the
model is no longer truly proportional to the time-based part.

5 Parametric Hazards models
The term “hazard model” became synonymous with the Cox proportional hazards model, but is
is not always necessarily so. The alternative approach is a maximum likelihood approach that
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1. requires us to specify a formula for λ0(t)

2. allows us to incorporate “censored” observations in our analysis.

The likelihood of observing a particular exit at time t is given by the hazard rate for that value
of t times the Survivorfunction. If we observe all cases to completion, then the likelihood is
simply found by multiplying the hazard values.

Maximize the log likelihood:

lnL =
N

∑
i=1

ln( f (ti)) (31)

The probability that an event will be observed at time t is the hazard rate at time t multi-
plied by the surivival rate for t: h(t) ·S(t) = λ0(t) · exp(Xβ ) ·S(t). If the event times are not all
observed when the study comes to an end, then we have “censored” data. If we have, say, an
observation that has not exited, that means it is still a survivor, and the exit time is unknown.
If the study ends at tend, the probability of such an observation is S(tend). To put the two possi-
bilities into one expression, introduce the dummy variable δi which has the value 0 if an obser-
vation is “censored” and 1 if it is an observed failure.

likelihood o f case i : h(ti)δiS(ti) (32)

If the case is censored, then the h() part gets thrown away because it is raised to the power
of 0, and then only the S() part is taken into account.

6 Time-Varying Covariates
Wading through the literature, it seems to me there is not a complete consensus on the incor-
poration of time-varying covariates. Here is my best understanding of the situation.

6.1 Extend the CPH model
Recall the CPH partial likelihood is:

partialL(b) =
N

∏
i=1

exp(Xib)
∑t<Tj exp(X jb)

(33)

What if the variable X jis not fixed in time, but varies.

partialL(b) =
N

∏
i=1

exp(Xitb)
∑t<Tj exp(X jtb)

(34)

The numerator is easy to calculate. Instead of a “constant” Xi, we just put in the observed
value of Xit at time t. This assumes that the hazard depends only on the current setting of the
variable X , not past values.

The denominator is superficially more complicated, but really it is just as simple. The haz-
ard depends only on the value of X at the current time, so customize each denominator.
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6.2 Parametric Survival: Petersen’s approach
Trond Peterson. 1986. Fitting Parametric Survival Models with Time-Dependent Covariates.
Applied Statistics. 35(3): 281-288

Begin with all the apparatus of the parametric survival model.
Suppose you take a full (as opposed to partial) likelihood approach. Then each term in the

likelihood has to be the probability of having an event at time ti. But we don’t have a way to
calculate the Survivor function that takes into account the fact that the input is varying in time.
Peterson considers 2 kinds of covariates:

Xit varies in time in discrete “jumps”
Zit varies in time continuously
First, just “assume” hazard depends on time-varying variables

h(t) = λ (t|Xit ,Zi(t)) = lim∆t→0
P[t ≤ T < t +∆t|T ≥ t,Xit ,Zi(t)]

∆t
(35)

Since Xit is observed to change at certain intervals, it means we can “break up” time so
that Xit is constant within the intervals. Divide time into sections marked of by

t0 = 0 t0 < t1 < t2... < tk (36)

Create a sequence of hazard functions for case i at t1, t2,..., tk. These are separate functions
which apply in the intervals:

λi1 = λ1(t|Xi1),λi2 = λ2(t|Xi2)...,λik = λk(t|Xitk) (37)

On each little time slice, we can figure the hazard rate. So, if there were no continuous vari-
ables like Zi(t) involved, we could think of the Survivor function as the probability of surviv-
ing a string of hazards.

S(tk|Xit) = exp[−
∫ t1

0
λ1(s|Xi0)ds]× exp[−

∫ t2

t1
λ2(s|Xit2)ds]...× exp[−

∫ tk

tk−1

λk(s|Xitk)] (38)

The elements in the likelihood function are exactly like the usual parametric hazard model,
with the noncensored cases contributing observed event times contributing the probability of
an event at the observed time times the Survival function. The probability of event “at the ob-
served time” is given by one of the λi j above, and the Survival curve

P(t = ti) = λiti ·S(ti|Xit)

And a censored case contributes the S(tend point) value.
Peterson shows how, if you have continuously varying inputs like Zi(s), then the survivor

function 38 is easily written to take those variables into account. Each term is just

λ (s|Xit ,Zi(s))
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6.3 Counting Process Model
The counting process model is the most general, and most recent, development. I believe that
it can eventually replace all of the thing we think of as survival/duration analysis. However,
the conceptualization is not quite so easy to understand as proportional hazard.

Counting Process models allow multiple events per unit and they more-or-less automati-
cally incorporate time-varying covariates.

It is difficult to explain this without throwing a lot of notation around. The Appendix 2 in
Hosmer & Lemeshow explains some details and refers us to other readings. Personally, I think
volume 2 of the S-Plus statistical manual is a good place to start.

Revise the risk set

Let’s attack the problem by starting with a generalization of the risk set as used in the CPH
model. Recall the risk set was stated as the observations for which the survival time exceeded
the current time, t < Ti. We can generalize that to allow for the possibility that subjects go in
and out of the risk set by defining an indicator variable Yit , which is coded 1 if i is in the risk
set at time t, 0 otherwise. If you adopt that idea, the CPH model can be stated:

partialL(b) =
N

∏
i=1

exp(Xib)
∑Yit · exp(X jb)

(39)

If the dependent phenomenon is something that can happen over and over again, then one
might have a column of observations Yit that switches back and forth.

Reconceptualize censored events

It is implicit in the previous that we are treating the censored observations–the ones for which
the observation period ends before the event is observed–just like observations for which we
do have event observations later in the data. Censored cases are no longer thought of as in-
complete data (S-plus II, p. 358).

Reconceptualize event

The “counting process” idea begins with the premise that we want to understand the accumu-
lated number of events that a case i experiences up to time t. That is called Nit .

If you have a project in which the cases “die”, then Nitcan only take on the values 0 and
1. But you can imagine a model of heart attacks in which there are repeats that don’t kill the
patient.

The S-plus manual (p. 358) says you should think of an individual has having a set of ob-
servations, one for each “interval” on which data is gathered. Each interval observed for a case
contributes one row, and in that row we have this information:

si j “start” time for the interval of risk represented by this row

ti j “stop” time for the interval of risk represented by this row
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δi j “event” indicator variable, 1 if event occurred for observation of case i in time j

xi j covariates that apply in the interval represented by the row

ki j the stratum (cluster) that includes this observation

CPH is easy

Re-organize the data so that there is one row for each unique combination of input values.
Make sure each line has a “start” and “stop” time variable.

The Survival object in R is created with a command like
mySurv <−Surv(start = s,stop = t,event = δ )
and that is used on the left hand side of a regression model,
coxph(mySurv∼ x+ y,data = dat,method = ”breslow”,robust = T )

7 Frailty (heterogeneity)
Remember when we worked on “count” models with heterogeneity, and we put in a rather
simple error term to account for “overdispersion” of observed data?

If you don’t remember, I’ll wait until you look it up.
Hmm.
Hmm.
Now suppose the duration model is based on the Weibull distribution:

h(ti) = αtα−1
i exp(Xb+θi)

The beauty of the exponential functional form is that sums inside the brackets are easily
brought out of the brackets, as in:

h(ti) = αtα−1
i exp(Xb)exp(θi)

And if we want to make θi appear “all by itself” as a multiplier, we just use the sleight
of hand of redefining the original θ = ln(δ ) and so this hazard rate is just the original one
multiplied by the random variable δ .

So we want to insert a variable δ that has an expected value of 1, which means it “doesn’t
matter” on average, but some cases are higher and some are lower. One way to achieve that is
to use a Gamma distribution for δ because Gamma(1,1) has a mean of 1 and a variance of 1.

8 It ain’t necessarily so....

8.1 Nonproportional hazards are possible
Not all hazard models incorporate input variables with hazards in a proportional way. Congdon
(p. 427) refers to the logistic hazard model:

h(t) =
1

σ [ et−Xb

1+et−Xb ]
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8.2 Nonmonotonic hazards are possible.
The log-logistic model has

h(t) = α(
t
θ
)α−1/

[
θ + tα

θ
1−α
]
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