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What is this Presentation?

Terminology review

The Idea of a CI

Proportions

Means

Etc
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What do you really need to learn?

The big idea: we make estimates, try to summarize our uncertainty
about them.

The Conf Interval idea presumes we can

imagine a sampling distribution
find a way, using only one sample, get estimate of how uncertain we
are

This can be tricky in some cases, but we try to understand the
important cases clearly (and hope we can read a manual when we
come to unusual ones)
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Recall Terminology:
Parameter: θ is a “parameter”, a “true value” that governs a “data

generating process.” It is the characteristic of the thing
from which we draw observations, which in statistics is
often called “the population”. Because that is
confusing/value laden, I avoid “population” terminology.

Parameter Estimate: θ̂ is a number that gets calculated from sample
data. Hopefully, it is

consistent (reminder from last lecture).

Sampling Distribution: the assumed probability model for θ̂. If a
particular theory about θ is correct, what would be the
PDF of θ̂?
A Sampling Distributions is characterized by an Expected
Value and Variance (as are all random variables).

Standard Error: From one sample, estimate the standard deviation of θ̂
(How much θ̂ would vary if we collected a lot of

estimates). Recall the silly notation,

√
V̂ar(θ̂), The

estimate of the uncertainty of an estimate.
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Today’s Focus: Confidence Interval

General idea: We know that estimates from samples are not exactly
equal to the “true” parameters we want to estimate

Ever watch CNN report that “41% of Americans favor XYZ,
plus-or-minus 3%”
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Sampling Dist.

Suppose you know that the Sampling Dist is like so:

θ

distribution of
θ̂

θ̂high
θ̂low

chances are that

”around” θ
θ̂ will be

This was selected from the elaborate collection of ugly distributions, a
freely available library that I can share to you any time you like :).



Descriptive 7 / 67

Confidence

Outline

1 Confidence

2 Where do CI come from?

3 Example 1: The Mean has a Symmetric CI
One Observation From a Normal
Student’s T Distribution

4 Asymmetric Sampling Distribution: Correlation Coefficient

5 Asymmetric CI: Estimates of Proportions

6 Summary
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Confidence

Define Confidence Interval

θ̂ is a estimate from a sample, a value that would fluctuate from
sample-to-sample

Confidence Interval: From one estimate θ̂, construct a range
[θ̂low , θ̂high] that we think is likely to contain the truth.

We decide “how likely” it must be that the truth is in there, then we
construct the CI. Common to use 95%.

A 95% Confidence Interval would have 2 meanings

1. Repeated Sampling: 95% of sample estimates would fall into
[θ̂low , θ̂high]
2. Degree of Belief: The probability is 0.95 that θ is in [θ̂low , θ̂high]
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Confidence

CI: The First Interpretation: Repeated Sampling
If you knew the sampling distribution, you could get a math genius
to figure out the range.

Prob(θ̂low < θ̂ < θ̂high) (1)

This pre-supposes you know the “true θ” and the PDF of θ̂. (And
that you know a math genius.)

One custom is to pick the low and high edges so that

Prob(θ̂low < θ̂ < θ̂high) = 0.95 (2)

If we repeated this experiment over and over, then the probability

that the estimate will be between θ̂low and θ̂high is 0.95.

Repeat: There is a 95% chance that a random sample estimate will
lie between the two edges.

The “p-value” in statistics is the part that is outside of that range.
Here, p = 0.05.

“p-value” sometimes referred to as α, or alpha level.
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Confidence

CI: Second Interpretation: The Degree of Belief

This is a stronger statement, one I resisted for many years:

Theorem

Construct a CI [θ̂low , θ̂high] from one sample. The probability that the
true value of θ is in that interval is 0.95.
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Confidence

Work through Verzani’s argument

Claim: Given θ̂, there is a 0.95 probability (a 95% chance) that
the “true value of θ” is between θ̂low and θ̂high.

Think of the low and high edges as plus or minus the true θ:

Prob(θ − something on the left <

θ̂ < θ + something on the right) = 0.95 (3)
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Confidence

If the Sampling Distribution is Symmetric

If the sampling distribution is symmetric, we subtract and add the
same “something” on either side.

Prob(θ − something < θ̂ < θ + something) = 0.95

Subtract θ from each term

Prob(−something < θ̂ − θ < something) = 0.95

Subtract θ̂ from each term

Prob(−θ̂ − something < −θ < −θ̂ + something) = 0.95

Multiply through by −1 and you get ....
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Confidence

The Big Conclusion:

A Confidence Interval is

Prob(θ̂ − something < θ < θ̂ + something) = 0.95 (4)

We believe “with 95% confidence” that the true value will lie
between two outside edges,

[θ̂ − something , θ̂ + something ]

.

The something is the “margin of error”
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Where do CI come from?

Outline

1 Confidence

2 Where do CI come from?

3 Example 1: The Mean has a Symmetric CI
One Observation From a Normal
Student’s T Distribution

4 Asymmetric Sampling Distribution: Correlation Coefficient

5 Asymmetric CI: Estimates of Proportions

6 Summary
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Where do CI come from?

The Challenge: Find Way To Calculate CIs

A CI requires us to know the sampling distribution of θ̂, and then we:

“grab” the middle 95%

Not all CIs are symmetric, but the easiest ones to visualize are
symmetric (estimated means, slope coefficients)

Symmetric CI: [θ̂low , θ̂high] = [̂θ − something , θ̂ + something ]

If sampling distribution of θ̂ not symmetric, problem is harder. Will
need a formula like

[θ̂ − something left, θ̂ + something right]
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Where do CI come from?

Every Estimator has its own CI formula

The challenge of the CI is that there is no universal formula

For some estimates, we have “known solutions”.

R has a function confint () for some estimators

Some estimators have no agreed-upon CI.
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Where do CI come from?

Many Symmetric CIs have a simple/similar formula

Put the estimate θ̂ in the center

Calculate something to add and subtract. Generally, it depends on

1 Standard error of the estimate
2 Sample size
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Example 1: The Mean has a Symmetric CI

Outline

1 Confidence

2 Where do CI come from?

3 Example 1: The Mean has a Symmetric CI
One Observation From a Normal
Student’s T Distribution

4 Asymmetric Sampling Distribution: Correlation Coefficient

5 Asymmetric CI: Estimates of Proportions

6 Summary
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Example 1: The Mean has a Symmetric CI

One Observation From a Normal

If We Knew the Sampling Distribution, life would be easy

Suppose µ̂ has a sampling
distribution that is Normal
with variance 1, i.e., N(µ, 1).

An observation µ̂ is an
unbiased estimator of µ.

Since σ2 = 1, our knowledge
of the Normal tells us that µ
is very likely in this region

Prob(µ ∈ [µ̂− 1.96, µ̂+ 1.96]) = 0.95
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Example 1: The Mean has a Symmetric CI

One Observation From a Normal

Suppose σ were 4

Suppose µ̂is Normal, but
with standard deviation
sd(µ̂) = σ = 4. Then
µ̂ ∼ N(0, 42).

The 0.95 CI is

[µ̂− 1.96 · 4),

µ̂+ 1.96 · 4]
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Example 1: The Mean has a Symmetric CI

One Observation From a Normal

How do we know 1.96 is the magic number?

Correct Answer We stipulated that the sampling distribution was Normal.
The probability of an outcome below −1.96 is 0.025 and
the chance of an outcome greater than 1.96 is 0.025.

Another Correct Answer In the old days, we’d look it up in a stats book
that has the table of Normal Probabilities.

Another Correct Answer Today, we ask R, using the qnorm function:

> qnorm(0.025, m = 0, sd = 1)

[1] -1.959964

The value −1.959964 ≈ −1.96 is greater than 0.025 of the possible
outcomes.
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Example 1: The Mean has a Symmetric CI

One Observation From a Normal

Some Example Values

Some easy to remember values from the Standard Normal are

Examples:
> qnorm(0.5)

[1] 0

> qnorm(0.05)

[1] -1.6448

Some values from the CDF:
F (−∞) = 0 F (−1.96) = 0.025 F (−1.65) = 0.05 F (0) = 0.5

F (1.65) = 0.95 F (1.96) = 0.975 F (∞) = 1

Conclusion: The α = 0.05 confidence interval for a estimator that is
N(µ, 1) is

(µ̂− 1.96, µ̂+ 1.96) (5)
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

The Sampling Distribution of the Mean/Std.Err.(Mean)

Previous supposed I knew σ, the “true” standard deviation of µ̂.

Now I make the problem more challenging, forcing myself to
estimate the mean, and standard error of the mean.

In the end, we NEVER create a sampling distribution for the mean
by itself.

We DO estimate the sampling distribution of the ratio of the
“estimation mean” (µ̂− µ) to its standard error.

Intuition: The CI will be symmetric, µ̂± something , using the
sampling distribution
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

Sample Mean

Collect some observations, x1, x2, x3, . . . , xN

The sample mean (call it x̄ or µ̂) is an estimate of the “expected
value”,

sample mean of x : x̄ = µ̂ =
1

N

∑
xi (6)

The mean is an “unbiased” estimator, meaning its expected value is
equal to the “true value” of the expected value

E [x̄ ] ≡ E [µ̂] = E [xi ] = µ (7)

If xi ∼ N(µ, σ2), the experts tell us that x̄ (orµ̂) is Normally
distributed Normal(µ, 1

N σ
2)

Recall the CLT as a way to generalize this finding: the sampling
distribution of the mean is Normal
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

Estimate the Parameter Sigma

The Sample Variance is the mean of squared errors

sample variance(xi ) =

∑
(xi − x̄)2

N
(8)

Now the “N-1” problem comes in. This sample variance is not an
“unbiased” estimate of σ2. I mean, sadly,

E [sample variance(xi )] 6= σ2 (9)

However, a corrected estimator

unbiased sample variance(xi ) =

∑
(xi − x̄)2

N − 1
(10)

is unbiased:

E [unbiased sample variance(xi )] = σ2 (11)
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

Standard Error of the Mean

Two lectures ago, I showed that the variance of the mean is
proportional to the true variance of xi .

Var [µ̂] same as Var [x̄ ] =
1

N
Var [xi ] =

1

N
σ2 (12)

(no matter what the distribution of xi might be).

We don’t know the “true” variance Var [xi ] = σ2, but we can take the
unbiased sample estimator and use it place of σ2.

That gives us the dreaded double hatted estimate of the estimated
mean:

V̂ar [µ̂] =
1

N
unbiased sample variance(xi ) (13)

You can “plug in” the unbiased sample variance of xi from the
previous page if you want to write out a formula!
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

The magical ratio of µ̂ to std .err .(µ̂)

Because the double hat notation is boring, we call the square root of
it the standard error.

std .err .(x̄) same as std .err .(µ̂) =

√
V̂ar [µ̂] =

√
1

N
unbiased sample variance(xi )

(14)

Recall the definition of the term “standard error.” It is an estimate of
the standard deviation of a sampling distribution.

Gosset showed that although the true σ2 is unknown, the ratio of
the estimated mean’s fluctuations about its true value to the
estimated standard deviation of the mean follows a T distribution:

µ̂− µ
̂std .dev .(µ̂)

=
µ̂− µ

std .err .(µ̂)
∼ T (ν = N − 1) (15)

This new “t variable” becomes our primary interest. Since Var [x ] is
unknowable, we have to learn to live with the estimate of it, and
that brings us down a chain to T.
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

T distribution with 10 d.f.
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

T is Similar to Standard Normal, N(0,1)

symmetric

single peaked

But, there is a difference: T depends on a degrees of freedom, N − 1

T is different for every sample size
T tends to be “more and more” Normal as the sample size grows
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

Compare 95% Ranges for Normal and T

qnorm (0 .025 , m=0, s =1)

[ 1 ] −1.959964

qt (0 .025 , d f =10)

[ 1 ] −2.228139

qnorm (0 .975 , m=0, s =1)

[ 1 ] 1 .959964

qt (0 .975 , d f =10)

[ 1 ] 2 .228139
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

T-based Confidence Interval

Using the T distribution, we can “bracket” the 0.95 probability
“middle part”.

That puts α/2 of the probability outside the 95% range on the left,
and α/2 on the right

In a T distribution with 10 degrees of freedom, the range stretches
from (µ̂-2.3, µ̂+2.3)

That’s wider than N(0, 1) would dictate, of course. The extra width
is the penalty we pay for using the estimate σ̂ .
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

Lets Step through some df values

Note that T is symmetric, so the upper and lower critical points are
generally just referred to as −t0.025,df and t0.025,df for a 95% CI with df
degrees of freedom
df=20

[ 1 ] −2.085963 2 .085963

df=50

[ 1 ] −2.008559 2 .008559

df=100

[ 1 ] −1.983972 1 .983972

df=250

[ 1 ] −1.969498 1 .969498
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

Summary: The CI for an Estimated Mean Is...

If

µ̂ is Normal, N(µ, σ2)
std.err(µ̂)= σ̂/

√
N (an estimate of the standard deviation of µ̂)

Then:

CI = [µ̂− tn,α/2std .err .(µ̂), µ̂+ tn,α/2std .err .(µ̂)] (16)

”something” in the CI of the mean is tn,α/2 × σ̂/
√
N

If your sample is over 100 or so, tn,α/2 will be very close to 2, hence
most of us think of the CI for the mean as

[µ̂− 2 std .err .(µ̂), µ̂+ 2 std .err(µ̂)] (17)
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Example 1: The Mean has a Symmetric CI

Student’s T Distribution

Symmetric Estimators are easy

So far as I know, Every estimator that has a symmetrical sampling
distribution ends up, one way or another, with a T-based CI.

Thus, we are preoccupied with finding parameter estimates and
standard errors because they lead to CIs that are manageable.

With NON-symmetric estimators, the whole exercise goes to hell.
Everything becomes less generalizable, more estimator-specific, and
generally more frustrating /.
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Asymmetric Sampling Distribution: Correlation Coefficient

Outline

1 Confidence

2 Where do CI come from?

3 Example 1: The Mean has a Symmetric CI
One Observation From a Normal
Student’s T Distribution

4 Asymmetric Sampling Distribution: Correlation Coefficient

5 Asymmetric CI: Estimates of Proportions

6 Summary
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Asymmetric Sampling Distribution: Correlation Coefficient

Correlation Coefficient

The product-moment correlation varies from -1 to 1, and 0 means
“no relationship”.

The “true” correlation for two random variables is defined as

ρ =
Cov(x , y)√
Var(x)Var(y)

=
Cov(x , y)

Std .Dev .(x)Std .Dev .(y)
(18)

=
E [(x − E [x ]) · (y − E [y ])]√

E [(x − E [x ])2]
√
E [(y − E [y ])2]

(19)

Replace those “true values” with sample estimates to calculate ρ̂.
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Asymmetric Sampling Distribution: Correlation Coefficient

How Sample Estimates are Calculated

Sample Variance: Mean Square of Deviations about the Mean
(unbiased version).

V̂ar [x ] =

∑N
i=1(xi − Ê [x ])2

N − 1
(20)

The sample covariance of x and y :

̂Cov [x , y ] =

∑N
i=1(xi − Ê [x ])(yi − Ê [y ])

N − 1
(21)
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Asymmetric Sampling Distribution: Correlation Coefficient

Covariance: What is that Again?

Intuition:

If x and y are both “large”, or both “small”, then covariance will be
positive.
If x is “large”, but y is “small” (or vice versa), then covariance will be
negative.

The sample “covariance of x with itself” is obviously the same as the
variance:

̂Cov [x , x ] = V̂ar [x ] =

∑N
i=1(xi − Ê [x ])(xi − Ê [x ])

N − 1
(22)
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Asymmetric Sampling Distribution: Correlation Coefficient

Consider a Scatterplot
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Asymmetric Sampling Distribution: Correlation Coefficient

Draw in Lines for the Means
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Asymmetric Sampling Distribution: Correlation Coefficient

Easier to See Pattern with Some Color
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Asymmetric Sampling Distribution: Correlation Coefficient

+ times + = +, but + times - equals -

Here, (xi − Ê [x ])(yi − Ê [y ]) > 0

Hm. I never noticed before, but
that’s also the “area” of the
rectangle
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Asymmetric Sampling Distribution: Correlation Coefficient

Remaining Problems

How do I know 97 is “big” or “medium” number for Covariance

“How much” will covariance fluctuate from one sample to another, if
the parameters of the data generating process remain fixed?
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Asymmetric Sampling Distribution: Correlation Coefficient

Correlation: Standardize Covariance

Divide Covariance by the Standard Deviations

̂Cov [x,y ]
̂Std.Dev .[x]· ̂Std.Dev .[y ]

(23)

=

∑
(xi−Ê [x])(yi−Ê [y ])/(N−1)(√∑

(x−Ê [x])2/(N−1)

)(√∑
(y−Ê [y ])2/(N−1)

) (24)

That produces a number that ranges from −1 to +1

Check that: Calculate the correlation of x with itself.

Karl Pearson called it a “product-moment correlation coefficient”

We often just call it “Pearson’s r”, or “r”.

Often use variable names in subscript rxy to indicate which variables
are correlated.
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Asymmetric Sampling Distribution: Correlation Coefficient

The Distribution of ρ̂ is Symmetric only if ρ is near 0

If true correlation ρ = 0, then the sampling distribution of ρ̂ is
perfectly symmetric.

However, if ρ 6= 0, the Sampling distribution is not symmetric, and
as ρ→ −1 or ρ→ +1, the Sampling distribution becomes more and
more Asymmetric
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Asymmetric Sampling Distribution: Correlation Coefficient

If ρ = 0 ,

The Sampling
Distribution of ρ̂ is
Symmetric

Apparently normal,
even with small
samples.

5000 Observed Correlations(Sample = 30, ρ = 0)
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Asymmetric Sampling Distribution: Correlation Coefficient

If ρ = .90, ρ̂ NOT Symmetric

The Sampling
Distribution of ρ̂ is
apparently NOT
symmetric or normal

Think for a minute. If
the “true rho” is .9,
then sampling
fluctuation can

bump up the
observed value
only between 0.9
and 1.0
bump down the
observed value
between -1.0 and
0.9 5000 Observed Correlations(Sample = 30, ρ = 0.9)
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Asymmetric Sampling Distribution: Correlation Coefficient

Asymmetric Confidence Interval

In previous example, the true ρ is 0.9, and the mean of the observed
ρ is close to that.

But the 95% confidence interval is clearly not symmetric.
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Asymmetric Sampling Distribution: Correlation Coefficient

Can reduce Asymmetry with Gigantic Sample

Large samples lead to
more precise estimates
of ρ.

The sampling
distribution of ρ̂ is
more symmetric when
each sample is very
large

Not so non Normal.

5000 Observed Correlations(Sample = 2000, ρ = 0.9)
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Asymmetric Sampling Distribution: Correlation Coefficient

Details, Details

AFAIK, there is no known formula for the exact sampling
distribution of ρ̂ or its CI

Formulae have been proposed to get better approximations of the CI

Fisher proposed this transformation that converts a non-Normal
distribution of ρ̂ into a more Normal distribution

Z = 0.5ln

(
1 + ρ̂

1− ρ̂

)
(25)

The CI can be created in that “transformed space”

Map back to original scale to get 95% CI.

Result is an asymmetric CI centered on the sample estimate.
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Asymmetric Sampling Distribution: Correlation Coefficient

Checkpoint: What’s the Point?

As long as you know the“sampling distribution”, you can figure out a
confidence interval.

Work is easier if the CI is symmetric around the estimate θ̂. Usually,
with means or regression estimates, the CI is something like

θ̂ plus or minus 2 · std .err .(θ̂) (26)

For Asymmetric sampling distributions, CI have to be approximated
numerically (difficult)
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Asymmetric CI: Estimates of Proportions

Outline
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3 Example 1: The Mean has a Symmetric CI
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4 Asymmetric Sampling Distribution: Correlation Coefficient

5 Asymmetric CI: Estimates of Proportions

6 Summary
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Asymmetric CI: Estimates of Proportions

Use π for True Proportion, π̂ for estimate.

We already used p for probability and for p-value.

To avoid conclusion, use π for the Binomial probability of a success

π proportion parameter
π̂ a sample estimator

The “true” probability model is Binomial(n, π)

We wish we could estimate π and create a 95% CI

π̂ − something , π̂ + something (27)

But, the sampling distribution is NOT symmetric, so doing that is
wrong, which means people who say a CI (margin or error) is
mean plus or minus something are technically wrong.
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Asymmetric CI: Estimates of Proportions

Binomial Distribution

Binomal(n, π) is number of “successes” in n“tests” with probability
of success π for each one.

The observed number of successes from B(n, π) is approximately
normal if

if n is “big enough”
and π is not too close to 0 or 1.

if π = 0.5, the number of successes y ∼ B(n, π) is approximately
Normal(n ∗ π, π(1− π)/n),

The proportion of successes, x = y/n, is approximately
Normal(π, π(1− π))

Otherwise, the Binomial is decidedly NOT normal, as we can see
from some simulations.
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Asymmetric CI: Estimates of Proportions

n=30, π = 0.05 ; 2000 samples

proportion successes observed
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Asymmetric CI: Estimates of Proportions

Simulate n=500, π = 0.05 (2000 estimated proportions)

It doesn’t help to make each sample bigger

proportion successes observed
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More Normal with moderate π

Simulate n=100, π = 0.2 (2000 samples)

proportion successes observed
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Normal(0.2,0.04^2)
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Proportions

The Normal approximation is widely used, but...

Its valid when N is more than 100 or so and π is in the “mid ranges”.

The Normal approximation lets us take this general idea:

CI = [π̂ − something low , π̂ + something high]

and replace it with

CI = [π̂ − 1.96 · std .error .(π̂), π̂ + 1.96 · std .error(π̂)]
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Show My Work: Derive the std.error(π̂)?

This is a Sidenote. Start with the Expected Value

Recall, for any random variable x ,

E [x ] =
∑

prob(x) ∗ x (28)

The chance of a 1 is π and the chance of a 0 is (1− π).

The expected value of xi is clearly π:

E [x ] = π ∗ 1 + (1− π) ∗ 0

= π (29)
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Show My Work: For the Binomial Case

The observations are 1’s and 0’s representing successes and failures:
0, 1, 0, 1, 1, 0, 1.

The estimated mean is the “successful” proportion of observed scores

π̂ =

∑
xi

N
(30)

Recall this is always true for means, the expected value of the
estimate the mean is the expected value of xi

E [π̂] = π (31)

So it makes sense that we act as though π̂ is in the center of the CI.
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Show My Work: E [π̂] = E [x ] = π

This uses the simple fact that expected value is a “linear operator”:
E [a · x1 + bx2] = aE [x1] + bE [x2]
Begin with the definition of the estimated mean:

π̂ =
x1

N
+

x2

N
+ . . .+

xN
N

(32)

E [π̂] = E
[x1

N

]
+
[x2

N

]
+ . . .+

[xN
N

]
(33)

E [π̂] = N · E [x ]

N
= E [x ] = π (34)
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Show My Work: Variance is Easy Too

Recall the variance is a probability weighted sum of squared
deviations

Var [x ] =
∑

prob(x) ∗ x (35)

For one draw,

Var [x ] = π ∗ (1− π)2 + (1− π)(0− π)2

= (1− π)(π ∗ (1− π) + π2)

= π(1− π) (36)

And if we draw N times and calculate π̂ =
∑

x/N

Var [π̂] =
Var [x ]

N
=
π(1− π)

N
(37)

Note that’s the “true variance”, AKA the “theoretical variance” of π̂.
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Asymmetric CI: Estimates of Proportions

Show My Work: Here’s where we get the standard error

The standard deviation of π̂ is the square root of the variance

std .dev .(π̂) =
√
Var [π̂] =

√
π(1− π)√

N
(38)

That is the “true standard deviation.”

As we saw in the CLT lecture, the dispersion of the estimator
“collapses” rapidly as the sample increases because it is the variance
divided by

√
N.

We don’t know π, however. So from the sample, we estimate it by x̄
(or, we could call it µ̂).

Use that estimate in place of the true π and the value is called the
standard error

std .error(π̂) =
√
π(1− π)/

√
N

.
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Citations on Calculations of CI for Proportions

These give non-symmetric CI’s
Brown, L. D. Cai, T. T. and DasGupta, A. (2001). “Interval
estimation for a binomial proportion.” Statistical Science, 16(2),
101-133.
Agresti, A. and Coull, B. A. (1998). “Approximate is better than
’exact’ for interval estimation of binomial proportions,”The
American Statistician, 52(2), 119-126.
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Summary

What To Remember

Parameter Estimate, Sampling Distribution, Confidence Interval

The appeal of the CI is that it gives a“blunt”answer to the question,
“how confident are you in that estimate”?

The symmetric Sampling Distributions usually lead back to the T
distribution, which is almost same as N(0, 1) for large sample sizes,
and a pleasant, symmetric

CI = [θ̂ − 2 · std .err .(θ̂) , , θ̂ + 2 · std .err .(θ̂)] (39)

The nonsymmetric Sampling Distributions do not have symmetric
CI’s, and the description of their CI’s is case specific and contentious.
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