
Central Limit Theorem
The Deepest Thought Ever Thunk

Paul E. Johnson1,2

1Department of Political Science
University of Kansas

2Center for Research Methods and Data Analysis
University of Kansas

September 14, 2020

CLT I University of Kansas



Outline

CLT I University of Kansas



We think of one survey, one estimate

Nature has a “data generating mechanism:”

Nature’s probability density function is never fully revealed to us, we
only get samples.

Samples flucturate: no two samples are the same.

From that one sample, we try to want to answer a LOT of
questions.

we calculate an estimate: a single number that represents
something.
We estimate a distribution’s Expected Value, Variance, or other
parameters
Develop a model of the PDF of the estimator. Almost NEVER are
we interested in estimating Natures PDF that generates the data.
Almost Always, we want to know the PDF of the estimator.
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Normal Distribution PDF depends on µ and σ2

x ~ Normal(µ = 10.03,σ = 12.58)
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−14.62

Prob(x ≤ −14.62)
= F(−14.62)

= 0.025
−14.62 = µ − 1.96σ

34.68

= 1 − F(34.68)
= 0.025

34.68 = µ + 1.96σ

Single Peaked

Symmetric

E [x ] = µ

Var [x ] = σ2

SD[x ] = σ
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µ and σ2 are Parameters

Every distribution can have its “own letters” for parameters

For generality, refer to them as θ

I say: The estimates from sample data have hats:

µ̂ σ̂2

Some people prefer notation like: x̄ and s2.
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The Theoretical PDF Is This:
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Draw one Normal Sample from N(5.353, 4.552)

Observations from one sample
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But the Observed Sample (Kernel) Density Differs
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Histogram with PDF and KDE Superimposed

Observations from one sample
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Draw another

Observations from one sample
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Draw another

Observations from one sample

D
en

si
ty

−10 0 10 20

0.
00

0.
04

0.
08

0.
12

Mean = 4.81
StdDev = 4.36

CLT I University of Kansas



Important Term: Sampling Distribution

Definition: Sampling Distribution is the PDF of an estimator. like x̄

The “true” sampling distribution is a theoretical “thing” (process?).
Like the data generating process, it is never observed.

Math can give us some “exact” characterizations about sampling
distributions

We can simulate repeated-sampling to visualize sampling
distributions.
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Visualize a Sampling Distribution Via Simulation

Suppose you could repeatedly draw samples

Calculate an estimate from each sample

Perhaps µ̂ ≡ x̄ (the mean) for each sample
More generally, any θ̂
Create a histogram of those observed estimates
We want to know

Are the estimates close to the “true” value?
Are the estimates symmetrically distributed?
Are there any abstract patters worth finding in these distributions of
estimates?
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General Claims about the Sampling Distribution of x̄

This is true for the Normal distribution, AND ALL OTHER
DISTRIBUTIONS we will work with!

If the expected value is of x is µ, the expected value of the mean of
a sample is also µ.

If E [x ] = µ, thenE [x̄ ] = µ

If the variance of x is σ2, the Variance of the sampling distribution
of the mean is 1

NVar [x ]

IfVar [x ] = σ2, thenVar [x̄ ] =
Var [x ]

N

Which implies SD[x̄ ] = SD[x]√
(N)
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In Other Words...

The distribution of x̄

Is Centered on the same spot as xi

But x̄ is clustered much more “tightly’ than the distribution of xi
itself.

That’s impossibly easy to see

Algebraically.

By simulation.

I’ve moved the algebraic proof to the end of these notes, but have just
one comment about it on the next 2 slides.
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Spotlight on one Tricky Bit: One Observation xi Has
Expected Value and Variance!

Think of a “variable” as one single observation from a distribution

xi (1)

In past, we discussed x = x1, x2, . . . , xN as a collection of
observations. Easy to think of the “mean” or “variance” of sample
and expected value E [x ] and variance Var [x ]

We said x is normally distributed, thinking of x as a variety of
outcomes. In your mind, a “histogram” with PDF curve.

We can’t calculate a sample mean from a single observation, but
that one observation still has an “expected value” because its drawn
from a data generating process.
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Spotlight on one Tricky Bit: One Observation xi Has
Expected Value and Variance!

Now think of x1, x2 and so forth as separate variates from the same
distribution.

Appeal to Intuition. Each individual draw has the same expected
value. So E [x ] = E [x1] = E [x2] = . . .E [xN ]

Similarly, each draw has same variance.

It should be obvious how we derive the claim that the expected
value of an average is the expected value.

E [x̄ ] = E [
x1 + x2 + . . .+ xN

N
]
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And the Variance of the Estimated Mean is Manageable as
well

Again, we are supposing we know Var(x) = σ2
x .

If we calculate the average of a sample,

x̄ =
x1 + x2 + . . .+ xN

N

Apply the variance operator to both sides

Var(x̄) = Var(
x1 + x2 + . . .+ xN

N
)

its pretty easy to get the result we want.
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The Variance of a Sampling Distribution is REALLY
Important I

We don’t care about means, in particular. We care about all kinds of
parameter estimates, θ̂

We want to have precise estimates

The route to a small variance of the estimate is especially clear in
the case of the estimated mean:

Var(x̄) =
1

N
Var(x).

But not all estimators have such a clear, simple formula that makes
it easy to see how to reduce the estimator’s variance

For just a few kinds of parameter estimates, we can actually know
Var(θ̂)
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The Variance of a Sampling Distribution is REALLY
Important II

Most often, we have to estimate Var(θ̂). I’m entertained by the two
hat notation:

V̂ar(θ̂)

an estimate of our uncertainty about of an estimate.

In Regression analysis, we won’t write V̂ar(θ̂) very often. We instead
talk about its square root, which by custom is called

s.e.( ˆtheta) : thestandard error of θ̂

i.e., standard error is an estimate of the standard deviation of a
sampling distribution
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The Distribution of the Mean is “Spike-ish”

Please observe the illustration of the effect of sample size on the variance
of x̄ .
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Distribution of x ∼ Normal(0, 32)
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Distribution of Mean, Sample=100 (Normal(0, 32/100))
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Distribution of Mean, Sample=2000 (Normal(0, 32/2000))
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Terms

Asymptotic: related to very large (tending to infinite) sample sizes

Consistency: an estimator (formula’s result) ’tends to’ the correct
value as sample size tends to infinity
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Law of Large Numbers

As the Sample Size Increases, x̄ tends to the Expected Value (The True
Mean)
This is the “law of large numbers”.
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The Basic Idea of the CLT

For ANY DISTRIBUTION (not just the normal) of x , the
distribution of x̄ approaches a normal distribution as the size of the
sample upon which x̄ is calculated tends to infinity.

This one is difficult to prove algebraically, but it is quite easy to
demonstrate with simulation
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The CLT with 0,1 data

Draw 50 observations where the probability of success on each one is
0.30.

30 Observations from a Binomial

x is either 0 or 1

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Mean= 0.34

CLT I University of Kansas



Draw Another Sample

x is either 0 or 1
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Draw Another Sample

x is either 0 or 1
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Draw Another Sample

x is either 0 or 1
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What about those means?

Do that over and over again.

what do you guess the distribution of the means would look like?

I’ll make a guess. It will be tightly clustered around “0.30” and it will
be normally distributed
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Lots of means from 0,1 data

100 samples, each including 50 random draws

Histogram of means

estimates of proportion of success
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Lots of means from 0,1 data

1000 samples, each including 2000 random draws

Histogram of means

estimates of proportion of success
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Take the Poisson Distribution for another example
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Poisson(3), SampleSize=10

Poisson Sample N=10

x

D
en

si
ty

2 4 6 8 10

0.
00

0.
10

0.
20

0.
30

CLT I University of Kansas



Poisson(3), SampleSize=100

Poisson Sample N=100
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Poisson(3), SampleSize=2000

Poisson Sample N=2000
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Poisson(3), SampleSize=10000

Poisson Sample N=10000
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Means of 1000 Poisson Samples, Sample Size 10.

Means with N=10
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Means from 1000 Poissons, Sample Size=100

Means with N=100
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Means from 1000 Poisson samples, Sample Size=2000

Means with N=2000
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Means from 1000 Poisson samples, Sample Size=10000

Means with N=10000
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Same thing, bigger picture (N=10000)

Means with N=10000
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Consider the Uniform Distribution
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Means from 1000 Uniform samples, Sample Size=30

Means with N=30
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Means from 1000 Uniform samples, Sample Size=500

Means with N=500

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

CLT I University of Kansas



Means from 1000 Uniform samples, Sample Size=2000

Means with N=2000
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OK, Challenge Me With Your Beta(0.9,0.9)
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Means from 1000 Beta Samples, Sample Size=2000
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My Mantra

From whatever distribution you pick, the Central Limit Theorem (CLT)
says the “Sampling Distribution of the Mean is Normal”.
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The CLT generalizes to any sum of random variables

We are not interested primarily in the distribution of the mean

But we have many other estimators that are weighted sums of
random variables.

Example: the estimated slope of a regression line
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What is the Benefit of the CLT?

Consider an estimator θ̂ that follows the CLT.

Suppose the E [θ̂] = 0.

Why? We usually think of θ̂ as fluctuations around an estimator
around the true value. θ̂ is ”unbiased”.

IF (IF IF) we knew the standard deviation of the sampling
distribution, then this would be a “standardized Normal variable”

θ̂

true std .dev .(θ̂)
(2)

I mean, it would be N(0, 1), a VERY manageable quantity.
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T Distribution Fix: If we don’t know the true standard

deviation of θ̂

Divide this (which is N(0, 1))

θ̂

true std .dev(θ̂)
(3)

By this

̂std .dev(θ̂)

true std .dev .(θ̂)
(4)

Gosset proved that the ratio follows a distribution that we now call
T. T depends on the number of cases used to calculate the estimate,
a number we call degrees of freedom.
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Division cancels the unknown true std .dev .(θ̂)

θ̂
true std.dev(θ̂)

̂std.dev(θ̂)

true std.dev .(θ̂)

(5)

After division, it is
θ̂

̂std .dev(θ̂)
(6)

We give a special name to the estimated standard deviation of the
sampling distribution. It is called standard error.
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θ̂/std .err .(θ̂) is Everpresent in Stats

the T distribution is almost like the Normal(0,1).

If the degrees of freedom is large (more than 1000), T and N(0,1)
are virtually identical.

Thus, the range θ̂± 1.96 ∗ std .err .( ˆtheta) contains about 95% of the
distribution

By implication, outcomes outside that 95% region are deemed
“unusual” (2.5% of cases at either tail of distribution)

If degrees of freedom is smaller, we just replace 1.96 with a slightly
larger magic number (see “T table”).
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For Other Estimators, Much Detailed Research is Required

We (applied social scientists) usually don’t have training or interest
in developing new math for sampling distributions.

We do have some simulation tools to approximate unknown
sampling distributions

Simulation based ideas

Bootstrap: draw many samples from the data sample, re-calculate
the estimate for each. The resulting distribution may approximate
the sampling distribution.
Markov Chain Monte Carlo (MCMC): a computer simulation model
developed during WWII as a way to explore complex probability
models. Described in my review essay.
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The Algebraic Argument for E [x̄ ] = E [x ]

The average (estimate of mean) of a sample x1, x2, x3, . . . , xN is:

x̄ =
1

N

N∑
i

xi (7)

If we have data on the frequency of each possible score xj , calculate
proportions

Prop.(xj) =
Frequency(x = xj)

N
(8)

Mean(xi ) = x̄ =
m∑
j=1

Prop(xj)xj (9)

where Prop(xj) is the proportion of observations that have value xj .
(sums across possible values of xj , rather than summing across all
individuals observed).
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The Expected Value of x, E [x ]

EV sometimes thought of as the “population mean” or “true mean”

Recall, population=the random process that generates xi .

Consider a discrete distribution f . Note x̄ and E [x ]

f is a “probability mass function”

Expected Value[x ] = E [x ] =
∑

f (xj)xj (10)

Same as sample mean formula, except replace the “observed
proportion” (Prop(xj)) with the “theoretical probability” f (xj).

Similar for a continuous distribution with pdf f (x)

E [x ] =

∫ +∞

−∞
f (x) x dx . (11)

CLT I University of Kansas



Proof of claim that Expected Value of x̄ equals Expected
Value of x

Calculate the expected value of x̄

x̄ = x1+x2+x3+...+xN
N

E [x̄ ] = E
[
x1+x2+x3+...+xN

N

]
= 1

N {E [x1] + E [x2] + E [x3] + . . .+ E [xN ]}
= 1

N {N · E [x ]}
= E [x ]

Conclusion: The expected value of the mean is the same as the expected
value of one draw from a given distribution.
Implication: x̄ is an unbiased estimator of E [x ]
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Recall the Variance of A Sum

The variance of a sum of two variables x1 and x2 can be found:

Var [x1 + x2] = Var [x1] + Var [x2] + 2Cov [x1, x2] (12)

And

Var [ax1 + bx2] = a2Var [x1] + b2Var [x2] + 2abCov [x1, x2] (13)

Here a and b are constants.
We want a simple result, so we often assume the Cov [x1, x2] = 0 on the
grounds that the observations are “statistically independent.”
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Calculate the Variance of the Mean

What is the variance of the mean itself?

Var [x̄ ] = Var [
1

N
x1 +

1

N
x2 + . . .+

1

N
xN ] (14)

Invoking the “statistical independence” principle to eliminate the
Covariance terms, we apply the “Variance of a sum” rule

Var(
1

N
x1 +

1

N
x2 + . . .+

1

N
xN) = (15)

1

N2
Var(x1) +

1

N2
Var(x2) + . . .+

1

N2
Var(xN) (16)
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If all the observations were drawn from the same random process–the
same population–then they all have the same variance, which is just
Var(xi ). So the previous instantly reduces to this:

Var(x̄) =
1

N2

NVar(xi )

1
(17)

=
1

N
Var(xi ) (18)
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