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These notes were put together while I was studying the Generalized Linear
Model (GLM) and building up to study Mixed models and GEE.

1 Review

Please review the earlier handout on maximum likelihood analysis of the OLS
model.

Note that minimizing the sum of squares (as in OLS) involves minimizing a
sum:

min
N

∑
i=1

(yi − ŷi)
2, where ŷi = f (b̂,X)

Maximizing a log likelihood for a normally distributed dependent variable
ends up being the exact same goal.

max − ∑(yi − ŷi)
2, where ŷi = f (b̂,X)

Maximizing the log likelihood leads to the same estimates of the slope param-
eters as does minimizing the sum of squares. In other words, we are still in the

same business of formulating a predictive model f (b̂,X) and finding out how well
it fits.

Now, suppose the dependent variable is not normal. Perhaps the observed yi is
dichotomous, or a count, or it is truncated or skewed. In those cases, it is harder to
stretch the math to make an OLS fit seem sensible, but it is often plain to see that
maximizing the likelihood is a not-unreasonable approach. You can stipulate any
distribution you like for yi as a function of the data and parameters.

Sometimes we will find that ML solutions are impractical, so we have to use
other estimation principles, such as “method of moments” or “Bayesian MCMC.”
Nevertheless, the ML approach is still preferred when it is practical.

1



2 Some new terms! Some old terms!

My goal here is to put light on some of the terms and results that GLMpractitioners
commonly refer to, but seldom explain in depth.

Before I worked with psychologists, I though it was frustrating to go between
audieneces of economists, statisticians, and political scientists. In some ways, the
babel in my head has grown worse as I work with a new group, but it has also
started to clear up some points of confusion.

I see now that the underlying mathematical model is generally the same as one
travels among audiences, but the names used for the elements are different. The
terms and interpretations of the technical fundamentals will differ.

The economists are not so emphatic about the terminology Generalized Lin-
ear Model as are statisticians. This caused me a great deal of confusion, because
one simply cannot do regression work in R without a solid understanding of the
GLM terminology. Consider William Greene’s Econometric Analysis, 5ed. There
is no chapter on the GLM. Nevertheless, Greene’s nearly encyclopedic coverage
of the mathematical underpinnings is unparalleled, and if one is trying to find a
proof of the supposedly “elementary” or “fundamental” truths of statistics, it may
be the best place to look. As I go between Greene’s discussion of maximum like-
lihood and the discussions of statisticians and social scientists, I am often pressed
to translate the claims they make into the vocabularies of the other fields. In the
following, I name some of these terms and try to justify them.

2.1 Likelihood and log Likelihood functions

The sample is y = (y1, y2, ..., yN). Each yi is drawn from some distribution. The
probability each observation is given by a probability model that you provide. Lets
suppose that the parameters of the distribution are θ = (θ1, θ2) and the probability
is given by a formula f (yi |θ).

The Likelihood of observing the sample of size N is

L(θ) =
N

∏
i=1

f (yi |θ) (1)

Apply the log to convert the big product (∏) to a sum (∑)

lnL(θ) =
N

∑
i=1

ln( f (yi |θ)) (2)
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Dramatic Foreshadowing:

Recall that if f (yi) = exp(yi), then ln( f (yi)) = yi. So if youworkwith distributions
that are “exponential” in nature, then you get a RADICAL simplification in the
formulae after applying the natural log. To take a look at most of the distributions
that you use very often and check to see how much simpler they get after you log
f . Remember that ln(ab) = b · ln(a).

2.2 The Score

The vector of first partial derivatives of the log likelihood is called the score func-
tion, sometimes Fischer’s score function, in honor of a famous statistician who
pioneered maximum likelihood. People often refer to the score function as U(θ).
Don’t forget it is really a vector, with one term for each parameter being estimated:

U(θ) =

[
∂lnL
∂θ1

∂lnL
∂θ2

]

Recalling that lnL is a sum of N terms, and that the derivative is a linear operator,
then it is true that

∂lnL

∂θ1
=

∂ f (y1|θ)
∂θ1

+
∂ f (y2|θ)

∂θ1
+ ...+

∂ f (yN |θ)
∂θ1

(3)

So you could think of the score function as the sum of scores of individual obser-
vations. You might call the score for an individual observation ui(θ), or some other
letter if the u bothers you.

2.3 First Order Conditions

In maximimum likelihood analysis, we maximize log Likelihood by choosing the
best combination of (θ1, θ2). Take partial derivatives with respect to θ1and θ2 and
set them equal to 0.

∂lnL

∂θ1
= 0 (4)

∂lnL

∂θ2
= 0

These are the first order conditions for a maximum point. There are 2 equations
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with 2 unknowns. Statisticians use the term “maximum likelihood score equa-
tions” to refer to the system in 4. Green simply calls them the “likelihood equa-
tions.” If one sets the score function equal to 0, as in a matrix equation, one has

U(θ) =
∂lnL

∂θ
=

[
∂lnL
∂θ1

∂lnL
∂θ2

]
=

[
0
0

]
(5)

2.4 The solution of the score equations is the MLE.

When the score function is set equal to 0, one has the maximum likelihood score
equations.

Assuming

1. the probability model is “regular,” in the sense that it is mathematically con-
tinuous and differentiable and has finite expected values (Greene, p. 474).

2. the point θ̂ = (θ̂1, θ̂2) can be found at which both equations are equal to 0,
and

3. at that point, lnL(θ̂) is a maximum point (rather than a minimum or saddle
point)

then θ̂ is a maximum likelihood estimate.

2.5 Second Order Conditions: The Hessian

The Hessian matrix is the matrix of second derivatives. Take each element ofU(θ)
as represented in 5. Differentiate each element by each of the parameters, you
arrive at a partial derivatives. It turns into a 2x2 matrix:

H(θ) =
∂2lnL

∂θ∂θ′
=




∂2lnL
∂θ21

∂2lnL
∂θ1∂θ2

∂2lnL
∂θ1∂θ2

∂2lnL
∂θ22


 (6)

Of course, if you had 10 parameters, you would have a 10x10 matrix.
The Hessian is also thought of as ∂U/∂θ′ .
The Hessian provides the second order conditions that indicate whether the

point at which the partial derivatives are equal to 0 is a maximum. If we have

found a maximum point, then we know for sure that ∂2lnL
∂θ1∂θ1

and ∂2lnL
∂θ2∂θ2

must be neg-

ative. There is also a condition that restricts the values of the other terms to be
within a certain range.

(make a sketch)
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2.6 Root Finding: The Score and the Hessian work together

It is easy to sit and say that you will find a value of θ̂ that maximizes the likelihood.
It is sometimes very difficult to actually make the calculations. For some mod-

els, you can actually solve algebraically to get θ̂ in a clear, algebraic formula. Many
times that cannot be done.

Review my handout on “approximations”. We need to find the “roots” of the

score equations, the values at whichU( ˆθ) = 0. Applying Newton’s method to find
the value θ̂ for which U(θ̂) = 0, one applies an algorithmic process

θ̂new = θ̂old − H(θ̂old)
−1 ·U(θ̂old)

Do that over and over again, until there is only minimal change in the value of
the score. It becomes close to 0, but because of rounding errors, it is never exactly
0.

The various approaches to maximization are variations on that theme.
Alternative methods of doing these calculations are usually just slightly differ-

ent. The method of Fisher Scoring replaces the Hessian matrix with the expected
value of the second derivative matrix.

3 Estimate the Variance of θ̂.

Here’s the “big idea.” Consider the score equation, 5. Suppose that the MLE is
found and, furthermore, suppose that the score function is very sharply peaked
at the solution point. In that case, one is highly confident with the choice of a
particular estimate; at the top of a sharp mountain, it is clear where the maximum
is to be found. The estimate is precise. If that is the case, the diagonal elements of
H(θ) will be negative numbers that are large in magnitude. The fit of the model is
changing dramatically as one moves away from the solution.

Suppose, on the other hand, the score is a nearly flat mound. One is not very
confident of the estimate of θ because the neighboring values of θare nearly as
good. In that case, the diagonal will have negative numbers of small magnitude.

In a later section of these notes, I present a description of two vital results in
maximum likelihood. Those results lead up to the claim that

Var(U(θ)) = −E[H] (7)

and, from there, it is only a “hop, skip and jump” to the most important claim,
which is the variance of the estimated parameter, Var[θ̂] can be consistently esti-
mated.
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3.1 The Information Matrix

The result stated in equation7 (and proven below in section 5.2) is important be-
cause it eventually leads to estimates of the variance of the ML parameter esti-
mates. Because it is so important, the name information matrix is given to −E[H].
We might as well write it out, for the fun:

In f o(θ) = −E

[
∂2lnL
∂θ1∂θ1

∂2lnL
∂θ1∂θ2

∂2lnL
∂θ2∂θ1

∂2lnL
∂θ2∂θ2

]
(8)

In many books, one finds the assertion that the Information Matrix can be esti-
mated as −H, but that is true only for some (I think a broad class) of models.

3.2 Asymptotically, Var(θ̂) = In f o(θ)−1 and θ̂ is Normal!

In words: as the sample size tends to infinity, the variance of the MLE is the in-
verse of the information matrix. This is another of the ML claims that is frequenty
asserted, seldom explained.

Greene (p. 478) gives the argument. This requires a Taylor series approximation
and an invocation of the Lindberg-Levy central limit theorem, and I have not found
a way to explain it all in a simple way. But I can give some hints.

Recall the score equation, evaluated at the MLE θ̂

U(θ̂) = 0

Suppose the true parameter value is θ0. We want to approximate the score in the
vicinity of that value (because θ̂ is consistent, then for a large sample it is “tending
to” θ0).

The first two terms of the Taylor series approximation of U(θ) are

U(θ̂) = U(θ0) +
∂U(θ̃)

∂θ
(θ̂ − θ0) = U(θ0) + H(θ̃)(θ̂ − θ0) = 0

The mean value theorem implies that there is some value θ̃ which can make the
equality hold. Rearrange:

U(θ0) = −H(θ̃)(θ̂ − θ0)

(θ̂ − θ0) =
[
−H(θ̃)

]−1
U(θ0)
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As I examined Greene, p. 478-9, it seemed to me that was the really critical part.
We’ve got the inverse of the negative Hessian matrix.

After a sequence of rearrangements, invoking the fact that MLE are consistent

(meaning θ̂ → θ0), and the Lindberg-Levy limit theorem, we arrive at the result
that the MLE is Normally distributed, thus:

θ̂ ∼ N[θ0, In f o(θ0)
−1] (9)

The estimate θ̂ converges “in distribution” to the Normal as the sample size ap-
proaches infinity, a Normal distribution with mean equal to the true parameter
vector θ0 and variance equal to the inverse of the information matrix evaluated at
θ0.

4 What’s all that good for?

4.1 Significance tests for single parameters.

Your old friend the t test might be be tempting. Suppose the null hypothesis is 0.
You might calculate:

θ̂√
Var(θ̂)

=
θ̂

Std.Error(θ̂)

and act as if it were a t statistic. Many people have done so.
That is not exactly a t variable, however, because, as you recall, a t statistic is

actually an “exact distribution” that depends on your number of cases (degrees
of freedom). This number here is something else because we don’t have an exact
estimate of the standard error, but rather an asymptotic approximation of it. At
best, it is an asymptotically valid t test.

An alternative is Wald’s test:

θ̂ 2

Var( θ)
∼ χ2

If a variable is χ2, its square root is Normal, so Wald’s test looks like your old
friend

θ̂

Std.Error(θ̂)

which looks an awful lot like a t statistic to me, but it isn’t really.
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4.2 Significance tests for groups of parameters.

Wald’s test can be stated in matrix form so that you can test several parameters at
once, as in

(θ̂ − θnull)
′V−1(θ̂ − θnull)

or, for an example with two coefficients being tested against null values of 0

[θ̂1, θ̂2]

[
Var(θ̂1) Cov(θ̂1 , θ̂2)

Cov(θ̂1 , θ̂2) Var(θ̂2)

]−1 [
θ̂1
θ̂2

]

5 StupefyingMathematical Facts That are Required if

you want to believe the previous sections

5.1 Fact: E[U(θ̂)] = 0.

5.1.1 RememberU(θ), ∂lnL
∂θ are random variables.

Since the observations on yi are random, and those values are used to calculate the
probability of a particular outcome, then the derivative is also a random variable.

5.1.2 At the MLE θ̂,E[U(θ̂)] = 0.

I have seen this claim assumed in many stats books and I always wondered why. It
turns out it is not an “obvious” thing. There’s a proof in Greene (p. 475). Actually,
Greene proves a stronger result. Greene shows that the derivative of lnL(yi |θ), the
score value for each observation, has an expected value of 0. That is, at the MLE,

E

[
∂lnL(yi |θ̂)

∂θi

]
= 0 f or all i.

And, naturally, the sum of those expected values is 0, so the expected value of the
score is as well: E[U(θ̂)] = 0.

Greene’s presentation relies only on results you could find in a first-year cal-
culus book. If you are willing to just believe the result, move on. I did for a long
time. Otherwise read Greene. Or consider this “story” about it, and then you will
understand fully if you read Greene.
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Remember that expected value means a “probability weighted sum of observa-
tions.” For a discrete variable y,

E[y] = ∑ f (yi) · yi

or, for a continuous variable,

E[y] =
∫

f (y) · y dy.

The same works for expections of functions. Supposing U(y) is a function of y:

E[U(y)] = ∑ f (yi) ·U(yi)

or

E[U(y)] =
∫

f (y) ·U(y)dy

The probability may depend on some parameter (or collection of parameters), θ,
and that is written f (yi |θ).

The definition of a probability distribution is

∫
f (yi|θ)dyi = 1 or

∫
f (yi|θ)− 1 = 0

Take the derivative with respect to θ :

∂
∫

f (yi|θ)dyi
∂θ

= 0

Next, apply Leibnitz Theorem:

∂

∂θ

∫
f (yi |θ)dyi =

∫
∂ f (yi|θ)

∂θ
dyi = 0

Leibnitz theorem, usually covered in the first year of calculus: The derivative of an
integral is the integral of the derivative (or something roughly like that, where I’m
assuming away the problem about the limits of the integral that might change as a
function of θ.)

Then comes the sneaky part, the part I would not have thought of on my own.
Greene observes:

∫
∂ f (yi |θ)

∂θ
dyi =

∫
f (yi |θ)

∂ln[ f (yi |θ)]
∂θ

dyi (10)
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How do you get from the left to the right? Recall
∂ln(y)

∂y = 1
y and by the chain rule,

∂ln[ f (y)]
∂y = 1

f (y)
∂ f (y)

∂y . Rearrange that to solve for
∂ f (y)

∂y

∂ f (y)

∂y
=

∂ln[ f (y)]

∂y
f (y) (11)

Use that little tidbit in the left hand side of 10, and you get the right hand side.
And that means the proof is finished, because the right hand side is equal to the
expected value of the partial derivative of ln[ f (yi |θ)].

5.2 Var[U(θ)] = −E[H]

This is another result that is frequently asserted and I had never bothered to find
out why until recently. This depends on the result in section 5.1.2.

The argument is described in detail in Greene (p. 475). As in the previous case,
he shows the result is true for a single observation i. Begin with the result stated
above. That is

∫
f (yi |θ)

∂ln[ f (yi |θ)]
∂θ

dyi = 0. (12)

Differentiating under the integral (Leibnitz rule),

∫
∂ f (yi|θ)

∂θ

∂ln[ f (yi |θ]
∂θ

dy+
∫

f (yi|θ)
∂2ln([ f (y|θ)]

∂θ∂θ′
dy = 0

which one can easily see is:

−
∫

f (yi|θ)
[

∂2ln([ f (y|θ)]
∂θ∂θ′

]
dy =

∫
∂ f (yi |θ)

∂θ

∂ln[ f (yi |θ]
∂θ

dy (13)

The left hand side is −E[H], so we are almost finished.
Concentrate on the right hand side. Then take a look back at the linchpin “secret

trick” in 11. If you use that same trick:

∫
∂ f (yi|θ)

∂θ

∂ln[ f (yi |θ]
∂θ

dy =
∫

f (yi|θ)
∂ln[ f (yi |θ]

∂θ

∂ln[ f (yi |θ]
∂θ

dy
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=
∫

f (yi |θ)
(

∂ln[ f (yi |θ]
∂θ

)2

dy (14)

Claim: The last term is Var[U(θ].
How do I know that? Recall the definition of the variance:

Var[U(θ] =
∫

f (yi|θ)(U(θ) − E[U(θ)]2)dy

As shown in the previous section, E[U(θ)] = 0. So:

Var[U(θ] =
∫

f (yi |θ)U(θ)2dy

which (remembering the definition of U(θ)) is just

Var[U(θ)] =
∫

f (yi|θ)
(

∂ln[ f (yi |θ]
∂θ

)2

dy

6 Maximum Likelihood and the Normal distribution

6.1 Definition

Recall the Normal Distribution:

prob(yi |µ, σ2) =
1√
2πσ2

e
− 1

2σ2
(yi−µi)

2

That can be rearranged as

prob(yi |µ, σ2) = exp

[
−1

2
ln(2π)− 1

2
ln(σ2)− 1

2σ2
(yi − µ)2

]
(15)

It is pitifully easy to find the log likelihood! Because:

ln [exp [anything]] = anything

6.2 The best estimate of the parameter µ is the sample mean!

Because of result 15, it is horribly easy to get maximum likelihood estimates. That’s
so because the sum the log likelihoods is so simple.

The log likelihood of the entire sample is the sum of the log likelihoods, and
look how simple that is:
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lnL(µ, σ2) =
N

∑
i=1

[
−1

2
ln(2π)− 1

2
ln(σ2)− 1

2σ2
(yi − µ)2

]
(16)

= −1

2

N

∑
i=1

ln(2π)− 1

2

N

∑
i=1

ln(σ2)− 1

2σ2

N

∑
i=1

(yi − µ)2

= −1

2
· N · ln(2π)− 1

2
· N · ln(σ2)− 1

σ2

N

∑
i=1

(yi − µ)2

= −N

2
· ln(2π)− N

2
· ln(σ2)− 1

2σ2

N

∑
i=1

(yi − µ)2

You want to maximize that by adjusting the values of µ and σ2. Ignore the first
part (that does not at all depend on either µ nor σ2). Throw away the 1

2 in the front
of each term, because removing that does not change the location of the maximum.
So the log likelihood is proportional to a much simpler thing (the symbol ∝ means
“is proportional to”):

lnL(µ, σ2) ∝ −N · ln(σ2)− 1

σ2

N

∑
i=1

(yi − µ)2

The variance σ2 is a “nuisance parameter.” In fact, if you look at this, you realize
that, NO MATTER WHAT value you put in for σ2, the optimal value of µ is not
affected. The best estimate is the value of µ̂ that maximizes this:

−
N

∑
i=1

(yi − µ̂)2

Which is -1 times the sum of squared deviations about µ̂. The best estimate, µ̂, is
found by solving the first order condition

∂lnL

∂µ̂
= −2

N

∑
i=1

(yi − µ̂) = 0

and
N

∑
i=1

yi − N · µ̂ = 0
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µ̂ =
∑

N
i=1 yi
N

Result: The maximum likelihood estimate of the parameter µ is the mean of the
observations.

6.3 Regression with a Normal Variable

Suppose yi ∼ N(µi , σ
2) . If Xi is a the i’th row of a data set, suppose further that,

µi = Xiβ

Then one can think of yi as if it followed the N(Xiβ, σ
2) distribution. That

means we need to estimate β, rather than µ. Compare against equation 15

prob(yi |β, σ2) = exp

[
−1

2
ln(2π)− 1

2
ln(σ2)− 1

2σ2
(yi − Xiβ)

2

]
(17)

lnL(βµ, σ2) =
N

∑
i=1

[
−1

2
ln(2π) − 1

2
ln(σ2)− 1

2σ2
(yi − Xiβ)

2

]
(18)

which implies

lnL(β, σ2) = −N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2

N

∑
i=1

(yi − Xiβ)
2

and if you prefer, you can replace ∑(yi − Xiβ)
2 with vectors (y− Xβ)′(y− Xβ):

lnL(β, σ2) = −N

2
ln(2π) − N

2
ln(σ2)− 1

2σ2
(y− Xβ)′(y− Xβ) (19)

The score function is the vector of derivatives

U(β) =




∂lnL
∂β1
∂lnL
∂β2
...

∂lnL
∂βp




Why doesn’t the score function include σ2? Just convenience, I believe. I think
it could be included, but it is not because estimation (in practice) proceeds in two
steps. We calculate β̂ first, then an estimate of σ2 can be calculated.

The first order condition is
U(β) = 0
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6.4 MLE Equals OLS

Give a casual glance at the objective function in 19 and you can tell that the first
two terms don’t matter because they don’t depend on β. As a result, maximizing
19 is the same as maximizing

− 1

2σ2
(y− Xβ)′(y− Xβ)

Which is the same as minimizing

(y− Xβ)′(y− Xβ)

which is just the sum of squared residuals. So MLE is mathematically identical to
OLS.

6.5 Solving the system

The Normally distributed variable is one for which we have an explicit solution.
There is no need for approximation approaches described earlier.

In Myers, Montgomery, and Vining, p. 32, they show the steps to solve that, al-
though I find had some trouble retracing one step (perhaps there is a typographical
error). So maybe it is worthwhile to write it down. This looks like one equation,
but really it is a matrix equation with the number of rows equal to p. The solution
is the “right” value of β̂:

lnL(β, σ) = −N

2
ln(2π) − N

2
ln(σ2)− 1

2σ2
(y′y− β′X′y− y′Xβ + β′X′Xβ)

Since y′Xβ is a scalar (a 1x1 matrix), it is equal to its transpose, y′Xβ = y′Xβ, so
this reduces to: :

lnL(β, σ) = −N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2
(y′y− 2β′X′y+ β′X′Xβ)

The first order condition is

U(β̂) =
∂lnL

∂β
= − 1

2σ2

∂

∂β
(−2β̂′X′y+ β̂′X′Xβ̂) = 0

(−2X′y+ 2X′Xβ̂) = 0
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2X′Xβ̂ = 2X′y

X′Xβ̂ = X′y

If the inverse of (X′X) exists, the solution is:

β̂ = (X′X)−1X′y

And the MLE for σ2 is found by differentiating 19 with respect to σ2.

∂lnL

∂σ2
= − N

2σ̂2
− 1

2σ̂4
(y− Xβ̂′)(y− Xβ) = 0
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