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1 General objective

1.1 Understand the relationship.
Suppose you think that, for all observations, i=1,...,N, there is a relationship

E(yi) = f (xi)

In words, “the expected value of y depends on x.” In the “usual OLS” case, the function f is
linear, and we write this:

E(yi) = b0 +b1xi

We never get to observe the expected value directly, we always just observe “realizations”
from the random process, so the more usual thing is

yi = b0 +b1xi + ei

We directly observe xi and yi, but not the b’s or ei.

1.2 The importance of the residual.
The error term, ei, is never known, but rather, once we have a set of estimates of the b′s, we
can calculate a predicted value, ŷi, and the difference between the observed value and the pre-
dicted value, known as a residual can be calculated. That residual value is sometimes called
êi.

1.2.1 What’s OLS:

The Ordinary Least Squares approach is just one way to try to estimate the parameters. It does
so by minimizing the sum of the ê2

i , arriving at b̂0and b̂1 that have “known properties”.
You could say OLS is maximizing

−Sumo f squares

Maximum likelihood is just maximizing a different objective function.

2 Maximum Likelihood as an Alternative

2.1 Adopt a different objective
Suppose you instead want to maximize the probability of observing this sample.
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The key words: sample & probability.
The probability of observing a sample of y’s: y1,y2,...,yN , is found by multiplying their indi-

vidual probabilities:
Probability (y1,y2,...,yN)=p(y1)∗ p(y2)∗ p(y3)∗ · · · ∗ p(yN)
If you give me enough information about your model of yi, then I can figure how likely

each observation is.

2.2 What details about yi are needed?
The “generalized linear model” was developed in the 1980s and 1990s to deal with a variety
of possible distributions for y. We aren’t going into detail about it, but it is one useful way to
introduce maximum likelihood analysis.

If you think yi is Normal with a mean that depends on some coefficients b′ = (b0,b1, ...,bm)
and variables xi = (x0i,x1i, ...,xmi), then it is pretty common to combine your b′s and x′s in
“some formula” like

g(x;b) = b0 +b1x1i + ...+bmxmi

Then you might write

yi = N(g(xi;b),σ2)

That is, the value of yi is drawn from a normal distribution, and the average of those y′is,
given xi and b, is equal to g(x;b). Because the expected value of a normal distribution is equal
to the first parameter in it, some people write:

E(yi|x) = g(x;b)

or, if there is a linear relationship:

E(yi|x) = b0 +b1x1i + ...+bmxmi

or if they use matrix algebra, they might write

E(yi|x) = xib

or
E(y|x) = Xb

where X is a matrix that collects up data for all observations and y is a column vector of all
observations.

See?
Anyway, the “generalized linear model” (GLM) is an effort to allow you to use a variety of

distributions within this framework. Off hand, I can think of examples with a Poisson distribu-
tion, Gamma distribution, Binomial distribution, negative Binomial distribution.

In POLS 707 we concentrate almost exclusively on the Normal and Binomial case, but touch
briefly on the Poisson.
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2.3 Suppose you have an “error term”.
You might be used to thinking of regressions with error terms. So suppose you have some
model with an error term, ei. Suppose you know/assume that

• ei has a given statistical distribution, such as Normal (0, σ2).

• Any other statistical distribution can be used, some are too mathematically tedious for
practical modeling. Some models with the GLM perspective are hard to think of if you
insist on having this separate error term interpretation.

• If you assume that the variable xi is “fixed”, and the coefficients b0 and b1 are fixed,
then the distribution of yi is pretty easy to see. In the formula

yi = b0 +b1xi + ei

then any variation in yi is caused solely by the error term, once we have taken the
b’s and xi into account.

It is not necessary to assume a linear relationship, though. So you could just write

yi = g(xi;b)+ ei

• The probability of observing a particular value of yi is the same as the probability of
observing the error term that “goes along” with that value of yi. Given values for b0, b1
and xi and yi, we know the residual, so it is obvious that

p(yi) = p(ei = yi−g(xi))

I suppose to keep things “tidy”, I should emphasize that f (xi) takes into account
the b’s, so some books write:

p(yi) = p(ei = yi−g(xi;b))

where the term b means “any coefficients you have in mind”.

If you tell me the error is normal, that means

p(yi) = N(yi−g(xi;b),σ2)

2.4 Maximize something
Since you give me a probability distribution for yi, either because you stipulate some distribu-
tion for y itself or for the error term, then we can get down to business. With the information
you give me, I can say how likely each yi is to be observed. If ei is Normal, then

p(y1) = p(e1) =
1

σ
√

2Π
e−e2

i /2σ2
(1)

We’ve got a potential confusion here because this formula has “Euler’s constant” e, approxi-
mately 2.7, as well as the error term, ei. So pay attention.

The reasoning proceeds as follows:
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• The probability of observing the whole sample is found by repeating the previous state-
ment for each observation, and multiplying them all together. That yields some big, ugly
formula, something like

p(y1,y2, ...,yN) = p(e1)∗ p(e2)∗ p(e3)∗ · · · ∗ p(eN)

• Since p() depends on the x’s and the b’s, then this is usually rewritten with them instead
of e’s or y’s.

The likelihood function is the thing you want to maximize. You have to rewrite this probability
value so it depends only on the parameters being estimated.

L(b,σ) = p(y|x,b,σ)

• Now, consider the linear regression problem. You want to adjust the coefficients b and
σ2 to make this model fit as closely as possible to the data. As you vary those parame-
ters, the probability of obtaining the sample goes up and down. This process eventually
maximizes the likelihood.

• The likelihood function is written by “thinking backwards”, taking the xi and yi as givens
and adjusting the parameter estimates. If you assume the linear model

yi = b0 +b1xi + ei

then the probability of observing yi is the same as the probability of observing

ei = yi−b0−b1xi

And if ei is normal, that means

p(y1) = p(e1) =
1

σ
√

2Π
e−(yi−b0−b1xi)

2/2σ2
(2)

If you did this for each observation, and multiplied them all together, you would
have the likelihood function,

L(b0,b1,σ
2;y) =

N

∏
i=1

p(ei)

If you plug in the results from equation (2) into this formula over and over, you
arrive at something I’m too lazy to type. But if you did, and then adjusted the b’s
and σ2, you would maximize the likelihood.

• Since the above formula is a big string of things multiplied together, it is often recom-
mended to take the logarithm of that formula, thus converting it into a sum:

lnL(b0,b1,σ
2;y) =

N

∑
i=1

ln p(ei)

That’s why people talk about “log likelihood” so often.
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Here’s where the calculus kicks in.
You find the slope of the log likelihood as it depends on each parameter. Then set that equal to
0.

∂ l/∂b = 0

You have one of those “condiditions” for each b or other parameter being estimated. Those
equations are called the “score equations”

3 Maximum likelihood properties

3.1 It is not always unbiased.
Sometimes MLE estimates are unbiased, but it cannot be proven that they always are unbiased.

3.2 Consistent.
MLE’s are always consistent. As the sample size grows, the expected difference between the
estimate and the true value declines.

3.3 Asymptotic normality.
As the sample size grows, the sampling distribution of an MLE tends toward a Normal distri-
bution.

One important aspect of this result is that MLE’s allow t-tests. We can calculate estimates of
the standard error of the coefficients (using means discussed in various books–look for terms
like “inverse of information matrix”).

There are other ways of testing hypotheses, such as a Wald test or a likelihood ratio test.
Details on these will be encountered in the future.

They often write complicated looking things. It we are estimating a vector of parameters θ

by an MLE θ̂ and the variance matrix of the testimates is Σθ then the estimate converges in
probability to a multivariate normal dist:

√
n(θ̂ −θ)→ N(0,Σθ )

3.4 Asymptotic efficiency.
The MLE estimator has the smallest variance (in its sampling distribution) when compared
when the sample size exceeds “some” arbitrary size. Sometimes I’ve seen them say it has
variance as low as any consistent estimators. Sometimes they say it achieves the Cramer-Rao
lower bound.
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4 Computational challenges/difficulties.
Computer algorithms to maximize the likelihood sometimes fail, may take a long long time,
and might not give confidence a maximum has been found. Sometimes they may arrive at a
“local maxima”
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