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Where do random samplings come from?

Analytical solutions for a few distributions (ones that have
invertible CDF)

Approximate computational solutions for the rest
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Where Do We Start?

Assume we have formulae for distributions from which we
want to draw samples

Assume we have a random generator that can give us random
integers on [0, MAX]

Assume that the random generator is a good one, either
MT19937 or one of L’Ecuyer’s parallel stream generators.

Of course, do whatever book keeping necessary to assure
perfect replication
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F (x) Cumulative Distribution Function (CDF) is S-Shaped

CDF: Area on left of point x

F (k) =

ˆ k

−∞
f (x)dx or F (x) =

ˆ x

−∞
f (e)de

Used e for dummy
variable of
integration.

Note CAPITAL
letter used for CDF

CDF is always “S
shaped”
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Some people may be confused about usage of x in f (x) and
F (x). Sometimes I write F (xupper ) or F (k) to clear that up
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The U[0,1] is Obtained Easily from Generator

A Uniform draw on 0, 1 is obtained:

x ∼ random integer from [0,MAX ] (1)

y =
x

MAX
(2)

From that, can get Bernoulli Heads,Tails sample. If y > 0.5,
then Heads
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Other Distributions Require More Thought

Inversion method:

Works easily if we can calculate “quantiles” (meaning the CDF
is invertible).
If CDF can be closely approximated, an approximate “look-up
table” can be created (R’s Normal)

Rejection Sampling

Find some other similar PDF that is easier to calculate
Use algorithm to test “candidates” and keep ones that fit

Composition, MCMC, and other methods are not worked out
in these notes.
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Inversion

Consider a CDF.

What does the left
hand side mean?

Fraction of cases
smaller than
that point.
Think
“backwards” to
find x that
corresponds.
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Concept behind Inversion

An “equally likely”
draw from f (x)
would have this
property:

All points on the
vertical axis
between [0,1]
are going to be
equally likely.
Right?

(Otherwise, a
randomly drawn x
wouldn’t really be
random, eh?)
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Inversion Algorithm

Inversion method

draw a random
u ∼Uniform[0, 1]
“Think
Backwards” to
get
corresponding
x = F−1(u)

Collect a lot of
those, and you’ve
got a sample from
f (x)
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Logistic: Easy Inversion

Recall the Logistic PDF, with “location” parameter µ and “scale”
parameter σ:

f (x) =
1

σ

exp(− x−µ
σ )

(1 + exp(− x−µ
σ ))2

(3)

In the usual cases we discuss, µ = 0 and σ = 1.0, so the pdf in
question is simpler.
And CDF:

F (x) =
exp( x−µσ )

1 + exp( x−µσ )
=

1

1 + e−(x−µ)/σ
. (4)
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Calculate Logistic Inverse CDF

Figure for each probability density output value y , find the x
that corresponds to it via F:

y =
1

1 + e−(x−µ)/σ

Through the simple algebra used in derivation of Logistic
Regression

ln

[
y

1 − y

]
= (x − µ)/σ

So

x∗ = µ+ σ · ln
[

y

1 − y

]
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Use That For Inversion Sampling

Draw u ∼ U[0, 1]

Calculate x∗ = µ+ σ · ln
[

u
1−u

]
And, as they say on Shampoo instructions, Repeat.
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Limitations of Inversion

Inversion is only practical when we have a formula for F−1

that is easy to calculate.

Logistic distribution, for example, has an easy formula.

Normal, and many others, DO NOT.

So we must either

Approximate F−1 in order to conduct inversion
Find some other algorithm.
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Rejection Sampling

f (x): The pdf from which we want to draw a sample

f (x): is some complicated formula, we can’t calculate its CDF
or inverse CDF. That means we have no obvious way to
sample from f (x)

But we can calculate the PDF at any given point, and that
turns out to be the magic bullet.
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General Idea behind Rejection Sampling

r(x) is different from f (x) in some understandable way.

So, draw samples from r(x)

then keep the ones you need.

How do you know when to throw away a draw from r(x)?
That’s the trick!
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Start with an Easy Case

Suppose

When x < 0, r(x) = f (x).
When x ≥ 0, r(x) = 1.1 · f (x)

For now, don’t worry if such an r(x) exists, because it
doesn’t. But it really makes the point clear.

Draw a “candidate” random number x∗ from r . Should we
keep it?



Descriptive

Illustration

If x∗ < 0, accept it
as a representation
of f (x)

When x < 0, r and
f coincide, so we
can keep all of
those draws.
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Illustration, if x∗ ≥ 0

Most of the time we want to
keep that observation, since ϕ
and r coincide most of the time.

Where r and f “overlap”, we
want to keep x∗
That happens with probability
f (x∗)/r(x∗) =
f (x∗)/(1.1 ∗ f (x∗)) = 1/1.1

So, with probability
1/1.1 = 0.9090909 . . ., we keep
x∗
Otherwise, throw it away and
draw another.
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More Realistic Case

Assume r(x) is
always bigger than
f (x) (by definition)

A draw from r(x)
might be something
like a draw from
f (x).
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Check Out The Size of That Gap!

The probability of
drawing x∗ = 1.9
can be calculated
from r(x) and f (x)

Keep x∗ with
probability
f (1.9)/r(1.9).

Amounts to
“throwing away” a
“gap sized fraction”
of candidate draws
equal to 1.9
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Realism and Rejection

This procedure
wastes
computational
effort

“Works” even if r is
not like f at all, but
is just more
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f(x) = β(1.2, 1.9)

r(x) = 1.53

If we draw a candidate x∗ = 0.2, we are likely to keep it

If we draw a candidate x∗ = 0.9, we are almost always going
to throw it away because r(0.9)/f (0.9) is very large.
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The rgamma distribution uses rejection sampling I

Rejection uses the random number stream unpredictably.

Sometimes, it takes just a few pulls on the stream to get a
gamma draw, sometimes can take a lot more.

Discussed in vignette with portableParallelSeeds
“PRNG-basics.pdf”

Look at row 2, which is the position in the random stream at
which we are positioned after a draw.

RNGkind ( ”Mersenne−Twister ”)
s e t . s e e d (12345)
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v1 <− .Random.seed [ 1 : 4 ]
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v2 <− .Random.seed [ 1 : 4 ]
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v3 <− .Random.seed [ 1 : 4 ]
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v4 <− .Random.seed [ 1 : 4 ]
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v5 <− .Random.seed [ 1 : 4 ]
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v6 <− .Random.seed [ 1 : 4 ]
cb ind ( v1 , v2 , v3 , v4 , v5 , v6 )
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The rgamma distribution uses rejection sampling II

v1 v2 v3 v4
v5 v6

[ 1 , ] 403 403 403 403
403 403

[ 2 , ] 2 4 7 9
11 16

[ 3 , ] −1346850345 −1346850345 −1346850345 −1346850345
−1346850345 −1346850345

[ 4 , ] 656028621 656028621 656028621 656028621
656028621 656028621

Repeat

i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v1 <− .Random.seed [ 1 : 4 ]
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v2 <− .Random.seed [ 1 : 4 ]
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v3 <− .Random.seed [ 1 : 4 ]
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v4 <− .Random.seed [ 1 : 4 ]
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v5 <− .Random.seed [ 1 : 4 ]
i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v6 <− .Random.seed [ 1 : 4 ]
cb ind ( v1 , v2 , v3 , v4 , v5 , v6 )
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The rgamma distribution uses rejection sampling III

v1 v2 v3 v4
v5 v6

[ 1 , ] 403 403 403 403
403 403

[ 2 , ] 19 21 24 26
28 31

[ 3 , ] −1346850345 −1346850345 −1346850345 −1346850345
−1346850345 −1346850345

[ 4 , ] 656028621 656028621 656028621 656028621
656028621 656028621

v <− v e c t o r (mode = ” i n t e g e r ” , l e n g t h = 1000)
f o r ( i i n 1 :10000) {

i n v i s i b l e ( rgamma (1 , shape = 1) ) ; v [ i ] <− .Random.seed [ 2 ]
}

vd <− d i f f ( v )
t a b l e ( vd )
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The rgamma distribution uses rejection sampling IV

vd
−622 −621 −619 −617 −615 −614 −613 −611 −609 −607 −605 −603

−601 −599 2 3 5 7 8 9
10 25 2 2 3 1 1 1 3 1 1 1

1 1 4937 3836 316 267 32 138
10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 29 30
25 111 13 54 10 46 23 28 8 24 12 19

5 12 1 7 1 5 4 1
32 33 34 35 36 38 39
2 2 1 1 3 1 1

There’s some distracting wrap around when the counter hits 624
and goes back to 1. But the point is clear enough. Often, gamma
takes 2 or 3 draws from the stream, while we see 20 or 30 draws
sometimes.


