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1 Introduction
The Pareto distribution is a probability model for continuous variables. It looks like a “ski
slope.” The Pareto distribution is commonly used with socio-economic and other naturally
occuring quantities that are distributed in a “ski slope” manner with very long right tails.
The long right tails describe inequality, the possibility of a few extremely large outcomes.
The distribution appears to be primarily used in the business and economics fields, but also
within political science. (For example, Jones and Baumgartner’s The Politics of Attention
(2005) considers the possibility the policy changes are distributed as a Pareto distribution).
The Pareto distribution works best in situations when we want to understand the long right
tails. The discrete counterpart of the Pareto distribution is Zipf’s law, which is sometimes
refered to as the “zeta distribution.”

2 Mathematical Definition
The Pareto’s density function has 2 primary parameters, shape and location (known as scale
in some treatments).

The location parameter sets the position of the “left edge” of the probability density. The
only outcomes that can be observed are greater than the value of the location parameter. It
is required that location > 0.

The shape parameter determines the steepness of the “ski slope.”
If xi is Pareto distributed, the probability density function is:

f(xi) =

 0 ≤ location(
shape

location

)(
location

xi

)(zhape+1)
> location

(1)

It is sometimes rearranged like so:
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f(xi) =

 0 ≤ location
shape·locationshape

x
(shape+1)
i

> location (2)

In order to have finite moments, the Pareto must have a shape that is greater than 2 (see
variance below). Anything less than or equal to 2 results in a variance that is undefined.

3 Illustrations
The probability density function of the Pareto distribution changes when one puts in different
values of the parameters. Consider the following R code, which can be used to create the
illustration of a Pareto density function with location and scale equal to 1 in Figure 1.
l i b r a r y (VGAM)
xva l s <− seq (0 .1 , 1 0 , l en =1000)
p l o t ( xvals , dpareto ( xvals , l o c a t i o n =1, shape=1) , type=" l " , x lab="

p o s s i b l e va lue s o f x " , y lab=" p r obab i l i t y o f x " , main=" Pareto
Probab i l i t y Density " )

t ex t (2 , .6 , " shape=1, l o c a t i o n=1" , pos=4, c o l =1)
In order to illustrate the impact of changing the shape parameter, let’s set the location

parameter equal to 1. Examples of Pareto density function for several values of the shape
parameter (with a fixed location) are found in Figure 2. The effect of changing the shape
parameter is seen in the height of the distribution.

We can explore the effect of changing the location parameter by repeating the previous
exercise, fixing the shape at 1 and varying the location. Consider Figure 3, which results
from this code:
l e f t e d g e <− c (1 , 3 , 5 )
x1 <− seq ( l e f t e d g e [ 1 ] , 2 0 , l en =1000)
y1 <− dpareto ( x1 , l o c a t i o n = l e f t e d g e [ 1 ] , shape = 1)
x2 <− seq ( l e f t e d g e [ 2 ] , 20 , l en = 1000)
y2 <− dpareto ( x2 , l o c a t i o n = l e f t e d g e [ 2 ] , shape = 1)
x3 <− seq ( l e f t e d g e [ 3 ] , 20 , l en = 1000)
y3 <− dpareto ( x3 , l o c a t i o n = l e f t e d g e [ 3 ] , shape = 1)
p l o t ( x1 , y1 , type=" l " , x lab = " p o s s i b l e va lue s o f x " , y lab = "

p r obab i l i t y o f x " , yl im = c (0 , 1 ) )
l i n e s ( x2 , y2 , l t y = 2 , c o l =2)
l i n e s ( x3 , y3 , l t y = 3 , c o l =4)
legend ( " t op r i gh t " , c ( " l o c a t i o n=1" , " l o c a t i o n=3" , " l o c a t i o n=5" ) , l t y

=1:3 , c o l=c (1 , 2 , 4 ) )
As illustrated in Figure 3, the location represents the left boundary for the Pareto dis-

tribution. Changes in the location simply shift this boundary to the left or right (recall
that the model requires location > 0). This Figure demonstrates that the appearance of the
distribution changes when the location parameter changes, even if shape is kept fixed.
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Figure 1: Pareto Density Function
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Figure 2: Pareto Density with Various Shapes
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Figure 3: Pareto Density with Various Locations

5



4 Expected Value, Variance, and the role of the pa-
rameters

The Pareto probability distribution has these interesting properties:

E (xi) = shape·location
shape−1 1 < shape

If the shape is less than or equal to 1, the expected value of a Pareto is infinite, or
undefined.

V ar (xi) = shape·(location)2

(shape−1)2(shape−2)
2 < shape

If the shape is less than or equal to 2, the variance of a Pareto is infinite, or undefined.

Std.Dev(x) = shape · location

(shape−1)
√

shape−2 2 < shape

With a Pareto distribution, the mode is always equal to the value of the location param-
eter. The height of the density function at the mode is equal to the shape parameter divided
by the location.

maxf(xi) = shape

location

If xi has the probability density function Pareto(shape, location), then yi = 1
xi

has the
density function f (yi) = (shape · location)shapey

(shape−1)
i . This distribution is called the

power function distribution. Its moments are simply the negative moments of the Pareto
distribution.1

1http://www.xycoon.com/par_relationships1.htm
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