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The Inverse Gaussian distribution is an exponential distribution. It is one of the distri-
butions implemented in R’s Generalized Linear Model routines. To my surprise, there are
whole books dedicated to this distribution (V. Seshadri, The Inverse Gaussian Distribution:
A Case Study in Exponential Families, Oxford University Press, 1994; R. S. Chhikara and J.
L. Folks, The Inverse Gaussian Distribution: Theory, Methodology, and Applications, New
York: Dekker, 1989).

Articles on insurance problems and the stock market often claim that observations follow
an Inverse Gaussian distribution. It has one mode in the interior of the range of possible
values and it is skewed to the right, sometimes with an extremely long tail. The fact that ex-
tremely large outcomes can occur even when almost all outcomes are small is a distinguishing
characteristic.

1 Mathematical Description
There are Inverse Gaussian distributions in several R packages. Run
he l p . s e a r ch ( " i nv e r s e gauss ian " )

to see for yourself.
In VGAM, the documentation for inv.gaussianff matches the information in in the pack-

age statmod’s documentation on dinvgauss. So let’s follow that approach. The distribution
of xi is described by two characteristics, a mean µ > 0 and precision λ > 0 . The probability
density function is

p(x;µ,λ) =
√

λ

2πx3 e
−λ(x−µ)2

2µ2x , 0< x <∞

If you would like to take λ out of the square root, you can put this down as

p(x;µ,λ) = λ2
√

2πx3
e
−(
√
λ(x−µ))2

2µ2x , 0< x <∞
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The expected value is µ and the variance of this version of the inverse Gaussian distribution
is

V ar(x) = µ3

λ

The skewness and kurtosis are, respectively,

3
√
µ
λ and 15µ

λ

In all honesty, I have no intuition whatsoever about what the appearance of this prob-
ability model might be. It does not have a kernel smaller than the density itself, so we
can’t just throw away part on the grounds that it is a normalizing constant or a factor of
proportionality.

And to make matters worse, the variance depends on the mean.
Tidbit: If µ= 1 this is called the Wald distribution.

2 Illustrations
The probability density function of a Inverse Gaussian distribution with µ= 1 and λ= 2 is
shown in Figure 1. The R code which produces that figure is:

library ( statmod )
mu <- 1
lambda <- 2
xrange <- seq(from =0.0 ,to=2*mu+5/lambda ,by=0 .02)
mainlabel <- expression (paste("IG(",mu ,",",lambda ,")",

sep=""))
xprob <- dinvgauss (xrange , mu = mu , lambda = lambda)
plot(xrange , xprob , type = "l", main = mainlabel , xlab

= " possible values of x", ylab = " probability of x
")

How would one describe Figure 1?

1. Single-peaked

2. Not symmetric– tail to the right

How does this distribution change in appearance if µ and λ are changed?
Let’s do some experimentation. The following R code creates an array of figures with 4

rows and 3 columns with various values of µ and λ that is displayed in Figure 2.
par (mfrow=c (4 , 3 ) )
f o r ( i in 1 : 4 ) {

f o r ( j in 1 : 3 ) {
mu <− 3∗ i
lambda <− 20∗ j
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Figure 1: Inverse Gaussian Distribution
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xrange <− seq ( from = 0 .0 , to = 3∗mu, by = 0 .02 )
main labe l<− paste ( " IG( " ,mu, " , " , lambda , " ) " , sep = " " )
xprob <− dinvgauss ( xrange , mu = mu, lambda = lambda )
p l o t ( xrange , xprob , type = " l " , main = mainlabel , x lab =

" p o s s i b l e va lue s o f x " , y lab = " p r obab i l i t y o f x " )
}

}
I had a very hard time believing that these calculations were correct. The graph shows

almost no impact of changing parameters.
The mistake I had made was assuming that the Inverse Gamma’s tail will be cut off in

a way that makes a nice picture. It turns out that, when the λ is small, then there can
be extremely huge values observed. I found that by plotting histograms of random samples
from various parameter settings.

For example, if we draw 1000 observations from Inverse Gamma with µ= 12 and λ= 2,
look what happens in Figure 3:

Can you describe this variety in a nutshell?
Sometimes the IG has a very long tail, stretching far to the right, and it makes the

expected value a very poor description of the modal observation.
Probably the best illustration I have found for this model is presented in Figure 5.
In theWebpages for the old classic program Dataplot (http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/igpdf.htm)

I found this interesting comment. That page uses the parameter gamma in place of lambda,
otherwise the formula is the same. It says, “The inverse Gaussian distribution is symmetric
and moderate tailed for small gamma. It is highly skewed and long tailed for large gamma.
It approaches normality as gamma approaches zero.” I can’t find any evidence in favor of this
characterization in Figure 6. The opposite is more likely true, making me suspect that in the
Dataplot author’s mind, the parameter gamma (γ) might have at one time been 1/λ. This
leads me to caution studentst that if you want to be confident about one of these results, it
is not sufficient to just take the word of a randomly chosen Web site.

To see the effect of tuning λ up and down, consider figure 6. This shows pretty clearly that
if you think of λas a precision parameter and you have high precision, then the observations
are likely to be tightly clustered and symmetric about the mean. When you lose precision,
as λ gets smaller, then the strong long tail to the right emerges.

3 Why do people want to use this distribution?
We want a distribution that can “reach up high” and admit some extreme values.

It is pretty easy to estimate µ and λ by maximum likelihood.
An alternative distribution with this general shape is the three parameter Weibull dis-

tribution, which is more difficult to estimate (W.E. Bardsley, “Note on the Use of the In-
verse Gaussian Distribution for Wind Energy Applications,” Journal of Applied Meteorology,
19(9): 1126-1130).
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Figure 2: Variety of Inverse Gaussian
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Figure 3: Sample from Inverse Gaussian with µ= 12 and λ= 2
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Figure 4: Random Sample From Various Inverse Gaussians
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Figure 5: More Inverse Gaussian Distributions
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Figure 6: Shrinking lambda
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4 Would you rather have Gamma or Inverse-Gaussian?
The Gamma and the Inverse-Gaussian share the property that they are possibly skewed
to the right. If you choose the correct parameter values, you can make them practically
indistinguisable.

However, there is a VERY WEIRD scaling property here. In order for the Inverse Gaus-
sian to produce some extreme large values, it must have higher probability for large values.
How can you make sense out of this strange result in Figure
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Figure 7: Gamma or Inverse Gaussian?
xva l s <− seq (0 ,20 , l eng th . ou t =200)
gam <− dgamma( xvals , shape=2, s c a l e =1)
igaus <− dinvgauss ( xvals ,mu=2,lambda=5)
p lo t ( xvals , gam , type=" l " , l t y =1,main=" " )
l i n e s ( xvals , igaus , l t y =2)
legend (6 , .2 , c ( "gamma( sh=2, sc=1) " , " inv gauss (mu=2,lambda=5) " ) , l t y

=1:2 ,)
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Figure 8: Compare Gamma and Inverse Gaussian
par ( mfcol=c (3 , 1 ) )
f o r ( i in 1 : 3 ) {

minx <− 20 + 50 ∗ ( i−1 )
xva l s <− seq (minx , 300 , l e ng th . ou t =1000)
gam <− dgamma( xvals , shape = 2 , s c a l e = 1)
igaus <− dinvgauss ( xvals , mu = 2 , lambda = 5)
p lo t ( xvals , gam , type=" l " , l t y = 1 , main=" " )
l i n e s ( xvals , igaus , l t y = 2)
legend (150 , 0 . 7 ∗max(gam) , c ( "gamma( sh=2, sc=1) " , " inv gauss (

mu=2,lambda=5) " ) , l t y = 1 : 2 , )
}
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Figure 9: Compare Samples: Gamma and Inverse Gaussian
Min. 1 s t Qu. Median Mean 3rd Qu. Max.
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[ 1 ] 2 .067561

Min. 1 s t Qu. Median Mean 3rd Qu. Max.
0 .2959 1 .1160 1 .7240 2 .0410 2 .5270 10 .5000

[ 1 ] 1 .831236

Gamma,sh=2,sc=1

gam

F
re
q
u
en
cy

0 2 4 6 8 10 12

0
5
0

1
5
0

Inv Gaus, mu=2,lambda=4

igaus

F
re
q
u
en
cy

0 2 4 6 8 10

0
5
0

1
5
0

13



Figure 10: Compare Samples: Gamma and Inverse Gaussian
Min. 1 s t Qu. Median Mean 3rd Qu. Max.

0 .1192 1 .9150 3 .3560 4 .0570 5 .3900 22 .7900

[ 1 ] 8 .55414

Min. 1 s t Qu. Median Mean 3rd Qu. Max.
0 .648 2 .062 3 .125 3 .825 4 .802 18 .150

[ 1 ] 6 .715464
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Figure 11: Compare Samples: Gamma and Inverse Gaussian
Min. 1 s t Qu. Median Mean 3rd Qu. Max.

0 .709 6 .868 10 .600 11 .860 15 .730 42 .260

[ 1 ] 43 .43887

Min. 1 s t Qu. Median Mean 3rd Qu. Max.
2 .472 7 .040 10 .130 12 .220 15 .140 62 .900

[ 1 ] 60 .23548
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