Scatter Box Bar Plots

And Cross Tabulations!

Paul Johnson¹

¹University of Kansas

2020

Outline

Terminology

2 Scatterplot

Boxplot

Barplot

Outline

- Terminology
- Scatterplot
- Boxplot
- Barplot

Levels of Measurement

- Measurement Defined: Observations are associated with "letters" or "numbers" with which we remember them.
- Numeric variables
 - real numbers: continuous, (respondent's weight, in kilograms)
 - discrete valued: 0,1,2,3 (how many arms does respondent have?)
- Hopefully, proportional re-scaling $(k_1 + k_2 \times X_i)$ does not alter the meaning of measurements.
- Natural science abounds with variables that are truly numeric, such as velocity, mass, volume, thickness, etc.
- Social science has fewer "real valued" numeric variables, but we often pretend that discrete variables or ordinal scales are numeric (feeling thermometer variables, left/right ideological placements, etc).

Categorical Measurements

- Categorical variables: Observations are drawn from a discrete list of possible observations
 - Nominal. Ordering of levels is completely unimportant (e.g., candidate names)
 - Ordinal. There is substantive significance to the ordering of the levels (conservative, moderate, liberal)
- The measurement process will often keep a categorical variable in 2

<u>formats</u>		
religion	label	numeric score
	Catholic	1
	Protestant	2
	Jewish	3

- In some software (SPSS), the numeric score is the primary referent, while the label is incorporated in presentations.
- In R, the label is the primary referent, the user is discouraged from acting as though the numeric score is meaningful (except for differentiating observations).

Unordered: Category Order does not matter

Many equivalent numeric scores can be used

religion	label	numeric score	numeric score	numeric score
	Catholic	1	2	-1
	Protestant	2	1	0
	Jewish	3	3	1

- All of the above have the same information
- Any analysis which purports to gain "power" or "statistical significance" by choosing one over the other is wrong.

Ordinal

 A truly ordinal variable has the same meaning as long as the numbers representing it retain the order.

Party Ideology	Х	Y	Z
Democrat	1	-10,000	399
Republican	2	0	653
Libertarian	3	1	1,000,000

- X, Y, Z are equivalent numeric scores.
- Reminder: if conclusions differ from analysis of X, Y, or Z, the procedure is probably wrong.

Factor = R Term For Categorical Variable

- In R, categorical variables are called factors (see functions factor(), ordered(), levels())
- Data values as levels, terms like "male", "female"
- Most R statistical procedures try to automatically handle the "behind the scenes" conversion into numeric variables.
- Examples, $sex_i \in \{Male, Female\}$. When R analyzes that variable, many procedures will report a result for a numeric variable that R constructs automatically, sexFemale. (see next slide)

How to make a Categorical variable into Numeric Variables

- A "dummy variable" is usually coded 0 or 1, to mean that a quality is present (or not).
- A variable "sex" may be Male or Female, but we often focus on a 0,1 numeric representation, $sexFemale_i \in \{0,1\}$ (remembering 0 is for Male and 1 is for Female).
- $sexFemale_i$ often called an "indicator variable," or "binary variable", or "dichotomous variable", or "dummy variable".
- Note the variable sex_i can beget 2 indicators, $sexMale_i = \{0,1\}$ or $sexFemale_i \in \{0,1\}$.

Foreshadow multi-Category treatment

 A multi-category variable like religion may be used to create several separate indicators

religion	numeric score	Cath	Prot	Jewish
Catholic	1	1	0	0
Protestant	2	0	1	0
Jewish	3	0	0	1

• Expect the "too many dummy variables" problem in regression.

Summarizing "categorical" variables ("factors") is an art form.

- Only the "mode" appears to be universally accepted as one indicator of central tendency.
- No universally accepted index of "diversity"
- A table of frequencies (either raw counts or proportions) may be best.
- rockchalk::summarize() tries to handle that.

Outline

- Terminology
- Scatterplot
- Boxplot
- 4 Barplot

Scatterplot 2 Numeric Variables

- Each observation is one "point"
- x and y appear to positively related
- they "go together", but not perfectly

Perhaps you want to number the points

I used row numbers for the points

Line graph: Connect the dots

Another Scatterplot: No relationship

Another Scatterplot: Negative relationship

2 Variables from GSS

R plot tools

- R's plot() function is a rather interesting case: it doesn't actually draw plots, it re-organizes the input and sends it to other plot functions (for scatterplots, barplots, and so forth)
- Numeric variable plots are created by the function plot.default(), which we could use directly instead if we wanted to.
- plot functions share a common syntax, we specify (optionally) xlim, ylim, col, type, and so forth.
- Once plot is created, add details with "points", "text", "lines", "polygon", "legend" and so forth.

Color Coded Men and Women

Can Add Predictive Lines

Discrete Variable Problem: Piled Up Observations

Jitter Observations

The jitter function adds random noise to scores, so they don't overlap anymore

2020

Is Jittering Good? Or Dubious!

- If variables are truly numeric (discrete), jittering may help.
- But if variables are categorical, it may be deceptive.
- Giving numbers 1, 2, 3 to gun ownership does not mean the numbers are meaningful!
 - 1 : Yes
 - 2 : No
 - 3 : Refused to Answer
- Better to use methods intended for truly categorical outcomes
- Nevertheless, common "solution" is to add numerical random noise to 0. 1 in order to make a better looking scatterplot

Paul Johnson (KU) 24 / 60

Scatterplot Matrix

- Some programs offer a quick way to see a lot of scatterplots in a single picture.
- Usually doesn't help me too much.

S.M. for 6 variables

Outline

- Terminology
- Scatterplot
- Boxplot
- Barplot

Boxplot: Like a Histogram Turned on its Side

- A boxplot is
- with weird shaped bars and funny markings.
- Dark line at Median
- Box has 25% of cases above and below
- "Whiskers" default to reach out 1.5*interquartile range
- Dots represent extreme cases.

This variable is symmetric, with mean near median of 50.

Boxplot: For a Nonsymmetric Variable

Boxplot: View Several Subsets

- A histogram can display only one group of respondents
- If you get used to boxplots, you gain the benefit that more groups can be fit into a single display.

Histograms for Number of Sexual Partners(GSS 2006)

Use a Box Plot Instead

My Most Informative Box Plot

Frequencies (Counts)

 A Frequency Count is a simple table that lists the number of observations within each category

Hair Color Among POLS110 Students				
Brown	Black	Blond	Red	Unknown
155	67	48	10	63

• The MODE is the most frequently occurring value. (Here, Brown)

Cross-Tabulation Table

A Cross-Tabulation shows cross-classified counts.

Hair Color Among POLS110 Students					
	Brown	Black	Blond	Red	Unknown
From Kansas	98	40	18	5	10
Not	57	27	30	5	53
	155	67	48	10	63

- This simple descriptive table does not necessarily have a dependent or independent variable.
- There have been many efforts to summarize the observed relationship numerically (Google for correlation coefficients like phi, Gamma or Kendall's tau)

The Iron Laws of Crosstabs

For analytical purposes, Gerry Lowenberg taught me to always follow 3 rules. You should too.

- IV on top, DV on left
- Convert to percentages (or proportions) on the columns
- Compare the across, find if columns are distributed differently

The FX	Column	Percentages
Network is	Respondent	Sex
	male	female
really horrible	25%	80%
OK	50%	18%
really great	25%	2%
N	343	288

The 1980 American presidential election (ANES)

	Party Identification		
	Republican	Independent	Democrat
Percentages voting for			
Reagan	86%	55	26
Carter	9	30	67
Anderson	4	12	6
N	544	355	721

Example: Patriotism and Voting

American National Election Study of 1988.

How does seeing the American Flag make you feel? *

	Extremely good	Very good	Somewhat good	Not very good
Percentages voting for	,			J
Bush	60.7%	50%	30%	8%
Dukakis	39.3%	50%	70%	92%
N	403	666	299	28

^{*}Excludes voters who did not select either Bush or Dukakis

There Are Standards for Tables

- There is a literature on the correct format for tables in publications
- See Simon Fear, "Publication quality tables in LATEX" (in the LATEX booktabs package)
- Advice: Avoid vertical lines

Example: GSS 2006 Gun Data

Table: Opinions on Gun Registration Laws

	Does Respondent Own a Gun?		
Stance on Gun Registration	Yes	No	Refused To Say
Favor	71%	85	57
Oppose	29	15	43
Number of Cases	600	1128	23

Reminder how I did that. Using gss data "dat" (from above)

```
library(memisc)
guntab <- with(dat, genTable(percent(gunlaw) ~
    owngun))
toLatex(guntab)</pre>
```


Making tables in R. PITA

• The rockchalk function "pctable" was introduced to help with this problem!

```
library(rockchalk) p1 <- pctable(gunlaw \sim owngun, data=dat)
```

```
Count (column %)
owngun
gunlaw YES NO REFUSED Sum
FAVOR 464(70.7%) 1085(84.9%) 17(63%) 1566
OPPOSE 192(29.3%) 193(15.1%) 10(37%) 395
Sum 656 1278 27 1961
```

• Convert that into something that gracefully goes into a table.

```
p1sum <- summary(p1)
```

xtable works! example output:

5

Making tables in R. PITA ...

```
library(xtable)
p1xt <- xtable(p1sum)
outfn <- file.path(tdir, "pctable1.tex")
print(p1xt, type="latex", file = outfn)</pre>
```

	YES	NO	REFUSED	Sum
FAVOR	464(70.7%)	1085(84.9%)	17(63%)	1566
OPPOSE	192(29.3%)	193(15.1%)	10(37%)	395
Sum	656	1278	27	1961

Can also write as CSV

```
outfn2 <- file.path(tdir, "pctable1.csv")
write.csv(p1xt, file=outfn2, row.names=FALSE)</pre>
```


If you want to manufacture your own percentage tables

table(rowvar, colvar) gives the raw counts, completely unbeautified

```
load("../../DataSets/GSS/gss-subset2.Rda")
with(dat, table(gunlaw, owngun) )
```

```
owngun
gunlaw YES NO REFUSED
FAVOR 464 1085 17
OPPOSE 192 193 10
```


Paul Johnson (KU) SBB 2020 43/60

Get column percentages

 prop.table(table(rowvar, colvar), margin=2) converts the table into column percentages. Proportions are reported in numbers with 6 decimal digits, so I convert them to percentages and round to 1 digit (my taste, not a hard rule)

```
t1 <- with(dat, table(gunlaw, owngun,
    exclude=NULL) )
t1.prop <- 100 * prop.table(t1, margin=2)
t1.prop <- round(t1.prop, 1)
t1.prop</pre>
```

```
owngun
gunlaw YES NO REFUSED <NA>
FAVOR 69.9 83.0 56.7 0.1
OPPOSE 28.9 14.8 33.3 0.0
<NA> 1.2 2.2 10.0 99.9
```

Oops. we need column totals, so go get them

Paul Johnson (KU) SBB 2020 44/60

Add Column totals

```
t1.marg <- margin.table(t1, margin=2)
t1.result <- rbind(t1.prop, t1.marg)
t1.result</pre>
```

```
YES NO REFUSED <NA>
FAVOR 69.9 83.0 56.7 0.1
OPPOSE 28.9 14.8 33.3 0.0
<NA> 1.2 2.2 10.0 99.9
t1.marg 664.0 1307.0 30.0 2509.0
```

After all of this, the table still is not great. Hence, I use rockchalk::pctable

Paul Johnson (KU) SBB 2020 45/60

Other packages

- gmodels: the original CrossTable function
- memisc: My favorite for making tables (can make LATEX)
- "vcd" & "vcdExtra" (VCD="visualize categorical data"
- "descr"

Paul Johnson (KU) SBB 2020 46/60

example with gmodels::CrossTable

```
library (gmodels)
with(dat, CrossTable(gunlaw, owngun))
```

```
Cell Contents
 Chi-square contribution
          N / Row Total
          N / Col Total
        N / Table Total
Total Observations in Table: 1961
             owngun
     gunlaw
                  YES |
                         NO
                                 REFUSED
                                            Row Total
     FAVOR
                 464
                         1085
                                      17
                                                1566
                6.841 | 4.067 | 0.965
                0.296 | 0.693 | 0.011 |
                                            0.799
                0.707 | 0.849 |
                                     0.630
                0.237 I
                           0.553 I
                                     0.009
```


Paul Johnson (KU) SRR 2020

example with gmodels::CrossTable ...

OPPOSE	192	193	10	395
	27.121	16.123	3.826	
	0.486	0.489	0.025	0.201
	0.293	0.151	0.370	
	0.098	0.098	0.005	
Column Total	656	1278	27	1961
	0.335	0.652	0.014	

KU

Paul Johnson (KU) SBB 2020 48/60

descr CrossTable similar

```
library(descr);
descrCT <- with(dat , descr::CrossTable(gunlaw,</pre>
   owngun))
descrCT
```

```
Cell Contents
    Chi-square contribution
           N / Row Total
5
           N / Col Total
          N / Table Total
          owngun
          YES NO REFUSED
  gunlaw
                                Total
  FAVOR 464 1085 17
                              1566
         6.841 4.067 0.965
           0.296 0.693 0.011
                                0.799
           0.707 0.849 0.630
           0.237
                 0.553
                         0.009
```


Paul Johnson (KU) SRR 49 / 60

descr CrossTable similar ...

```
OPPOSE
          192
                 193
                        10
                                395
        27.121
             16.123 3.826
        0.486 0.489 0.025
                              0.201
        0.293 0.151 0.370
        0.098 0.098
                       0.005
Total
         656
              1278
                        27
                               1961
               0.652 0.014
        0.335
```


Paul Johnson (KU) SBB 2020 50/60

Outline

- Terminology
- Scatterplot
- Boxplot
- Barplot

Barplot

- Barplot: Make a graphic presentation of a cross tabulation table
- Use
 - Any discrete variable that can classify respondents
 - Any summary score (mean, proportion, count) calculated from the subgroups of respondents
- The width of the bar has no "substantive" meaning
- ullet Unlike a histogram, where the width imes height represents the area

Table Demonstrating the Gender Gap in 2004

	Respondent Gender		
Presidential Choice	Male	Female	
Kerry	45%	52	
Bush	53	47	
Nader	2	1	
Didn't Vote*	1	1	
Number of Cases	1137	1487	

^{*} Respondent voted, but did not cast vote in Presidential contest

Barplot Representing Gender Gap in 2004

Respondent Gender

Barplot: Voter Participation Dynamics

Barplot: Partisanship in 2004

To Find Out More

- Check Rcourse for lectures plot-1, plot-2, and plot-3
- In http://pj.freefaculty.org/R/WorkingExamples, see plot-barplot*.R examples. They have very detailed step-by-step instructions.

NB: Many Other Types of Plots

- "spinogram" is a barplot that scales the widths of the bars according to the numbers of observations
- dot plot replaces the "big boxy bars" with smaller dots to mark the tops of the bars.
- pie charts are awful, every reasonable person would agree they should never be used for anything. (my definition of reasonable is based on your answer: "do you hate pie charts?").

Session

sessionInfo()

```
R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.1 LTS
Matrix products: default
BLAS: /usr/lib/x86 64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
 [1] LC_CTYPE=en_US.UTF-8
                               LC_NUMERIC=C
 [3] LC TIME=en US.UTF-8
                               LC COLLATE = en US.UTF-8
 [5] LC_MONETARY=en_US.UTF-8
                               LC_MESSAGES=en_US.UTF-8
 [7] LC_PAPER=en_US.UTF-8
                               LC NAME=C
 [9] LC ADDRESS=C
                               LC TELEPHONE = C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats
             graphics grDevices utils datasets methods
[7] base
other attached packages:
[1] memisc 0.99.25.6 MASS 7.3-51.6
                                         lattice 0.20-41
```


Session ...

```
[4] descr_1.1.4
                        gmodels_2.18.1
                                            xtable_1.8-4
[7] rockchalk_1.8.144
                        stationery_0.98.30
loaded via a namespace
                        (and not attached):
 [1] zip 2.0.4
                        Rcpp 1.0.4.6
                                           cellranger_1.1.0
 [4] pillar_1.4.6
                        compiler_4.0.2
                                           nloptr_1.2.2.2
 [7] plyr_1.8.6
                        forcats 0.5.0
                                           base64enc_0.1-3
[10] tools 4.0.2
                        boot 1.3-25
                                           digest_0.6.25
[13] lme4_1.1-23
                        statmod_1.4.34
                                           tibble_3.0.3
[16] lifecycle_0.2.0
                        jsonlite_1.7.0
                                           evaluate 0.14
[19] nlme_3.1-147
                        pkgconfig_2.0.3
                                           rlang_0.4.7
[22] openxlsx_4.1.5
                        Matrix_1.2-18
                                           curl_4.3
[25] haven 2.3.1
                        xfun 0.15
                                           rio 0.5.16
[28] repr_1.1.0
                        knitr_1.29
                                           hms_0.5.3
[31] vctrs_0.3.2
                        gtools_3.8.2
                                           grid_4.0.2
[34] data.table 1.13.0
                        readxl 1.3.1
                                           foreign_0.8-79
[37] rmarkdown_2.3
                        gdata_2.18.0
                                           carData_3.0-4
[40] minga_1.2.4
                        magrittr_1.5
                                           car 3.0-9
[43] ellipsis_0.3.1
                        htmltools_0.5.0
                                           splines_4.0.2
[46] kutils_1.70
                        abind_1.4-5
                                           stringi_1.4.6
[49]
     cravon 1.3.4
```

