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Here’s what I hope you will learn

Definition of “variable” and notation for writing about variables

Ways to Describe Numeric Variables

Central Tendency: Mean, Median, Mode

Dispersion: Variance, Standard Deviation, etc.

Rescalings
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Numeric Variables
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Numeric Variables

Variable

Variable a collection of scores that represent observations.

Example:

height = {6.0, 5.1, 4.2, 5.8, 5.4} (1)

Subscript heighti: height1 is observation 1, height2 is observation 2, and
so forth

Clarification: Social scientists refer to this as “a sample” with 5
observations, but I notice engineers and machine learning
people refer to it as 5 samples in a collection.
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Numeric Variables

Common Notation

More abstractly

x = {x1, x2, x3,x4, . . . , xN} (2)

Or perhaps more succinctly

xi, for i ∈ {1, ..., N} (3)

1 N : capital N refers to “sample size” or “number of observations” (in
most social sciences).

2 Usually, when I talk about xi, I mean to refer to any of the individual
observations in x.

3 Set notation
1 ∈ means “element of,” as in i ∈ N or x2 ∈ X = {x1, x2, . . . , xN}.
2 ∀ abbreviation of “for all”, so “for i ∈ N” might be ∀i ∈ N .
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Numeric Variables

Numeric Variables

NUMERIC variables: accept
mathematical
transformations

The range from
{minimum,maximum} is
(subjectively) meaningful

From xi to 2× xi: there is
twice as much of it

Analysis may be altered
(improved or damaged) by
transformations
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yi is the log of xi
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log() magnifies the importance of a step
from 0.5 to 1 and shrinks the importance
of a step from 4 to 4.5.
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Numeric Variables

Terminology to Describe Variables

Central Tendency: Where, “generally” are the scores? Is there a
“meaningful” (subjective) characterization of where “most” scores are
situated

Dispersion: How “spread out” are the scores? Is it not meaningful to
talk about a “typical” observation?

Shape of Distributions: Do the observations appear to be

Unimodal (one most-likely score, others less likely)
Symmetric or Skewed

Paul Johnson (KU) CT&D 2020 8 / 73



Histograms
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Histograms

Histograms: Compare Two Variables

Lots of Low Scores

x

de
ns

ity

0 20 40 60 80 100

0.
00

0.
04

0.
08

Lots of Big Scores

x

de
ns

ity

0 20 40 60 80 100

0.
00

0.
03

0.
06

Paul Johnson (KU) CT&D 2020 10 / 73



Histograms

Histograms: Compare Two Variables

These are clumped together

x

de
ns

ity

0 20 40 60 80 100

0.
00

0.
10

0.
20

These are spread out

x

de
ns

ity

0 20 40 60 80 100

0.
00

0
0.

01
5

Paul Johnson (KU) CT&D 2020 11 / 73



Histograms

Define ”Histogram”, Please

Group observations into “bins” of similar scores

Draw bars to represent the proportion of all scores that fall into each bin

The areas of the bars should sum to 1.0

The hist function can produce the bins and counts, without drawing a
plot (see the argument plot=FALSE)
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Histograms

Histograms: Check for Data Errors

Suppose your data is
supposed to be human age

But somebody put in 999 for
“missing” data points

Age data
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Histograms

Histograms: Check for Data Errors

If you ignore (remove) the
cases that are equal to 999
(or set them to NA)

Generally, whenever you get
new data from
anybody/anywhere, a
histogram is a good “first
check” on it.
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Histograms

Various ”transformations” might be applied

I’m cautious about fiddling with data

Some transformations are not “harmless”

Goal: Be honest with self & others about changes applied to data,
including

omission of missing or extreme observations
multiplicative re-scaling
nonlinear transformations (log, Box-Cox, etc.)
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Histograms

Some Examples from the General Social Survey

/stat/DataSets/GSS/gss-subset2.Rda
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Histograms

Histogram: Spot Typos/Unusual Scores

Male Sexual Partners (nummen)

Number of Male Sexual Partners
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C.V.= 7.941
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Histograms

Histogram: Eliminate values greater than 99

Male Sexual Partners (nummen)

Number of Male Sexual Partners
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Histograms

The Size of the Bins Can Make a Difference

Narrow bars have more detail, possibly less generalizability (harder to
see patterns)

Wide bars smooth out too many bumps, hide details

Many algorithms proposed to choose bin width to automate production
of “good” histograms.
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Histograms

Histogram: Fatter Bars!

Male Sexual Partners (nummen)

Number of Male Sexual Partners
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Histograms

A Smoothing Curve: Kernel Density Estimate (KDE)

Because of the (subjective) “bin width” problem, other density
estimation methods have been developed

The kernel density estimate is a “smoothing” method that estimates the
density at each value, putting more weight on nearby observations than
far away ones.

Some propose to replace histograms with KDE
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Histograms

The Density Estimates

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

The default plot of a density object

N = 2269   Bandwidth = 0.4296

D
en

si
ty

Paul Johnson (KU) CT&D 2020 22 / 73



Histograms

Histogram with Density Super-imposed
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Histograms

Histogram: More on Customizing Histograms

My lectures in guides/Rcourse (plot-1, plot-2) have plenty of additional
detail on beautifying plots.
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Histograms

Histogram: with a ”legend”

Male Sexual Partners
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Mean

Convey Same Info Without a Graph?

What if your publisher will not allow you the space for a histogram?

Convey same information without a picture?

Need to develop terminology to describe and compare what we see.
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Mean

Mean = Average, Common index of ”central tendency”

“central tendency” is, vaguely speaking, the “middle” of a symmetric
distribution

Mean: (AKA “average”).

x̄ = SumOf All Scores

Number Of Scores
(4)

Given x, add up the scores, then divide by N .

x̄ =
∑N

i=1 xi

N
(5)

About Notation:

Some math books use “m” for estimated mean, because the true
(unknown) value is µ (Greek “mu”).
x̄ is common notation for average, but I don’t know why.
Sometiems I write µ for the true value and µ̂ for the estimate.

Sometimes I write M̂(x) for the estimate
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I manufactured a
sample of pleasantly
symmetrical random
data

The sample mean is
50.485

Appears (to me)

unimodal (one
peak)
symmetric (more
or less)

A Histogram with 30 Bins

A Beautiful Variable
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Mean

You too can manufacture Normal samples

I used R’s rnorm function to draw some example observations

set.seed (1234321)

myx <- rnorm (1000, mean=50, sd=20)

That creates 1000 observations from the Normal distribution,
N(50, 202)
We specify 2 parameters

50 is the parameter mu (µ), the ”true mean”
20 is the parameter sigma (σ), which controls the ”dispersion” of the
scores.

”Gaussian distribution” another name for the Normal.

In case you wondered, the sample standard deviation is 19.977
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Compare 2 variables

A Beautiful Variable
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Dispersion
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Dispersion

Variance

Variance: the average of squared deviations about the mean (AKA
mean squared error)

1 Calculate the difference between the i’th case and the mean:

xi − x̄ (6)

2 Square that:
(xi − x̄)2 (7)

3 Do the same for all and add them up:

N∑
i=1

(xi − x̄)2 (8)
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Dispersion

Variance ...

4 Then divide by N .

V ar(x) =
∑N

i=1(xi − x̄)2

N
(9)

In some contexts, it is preferred to divide by N − 1. That is needed to
1 create an “unbiased estimate” of the true mean squared error of a

data-generating process
2 to use the variance as a component in further calculations, such as a

T-test
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Dispersion

Standard Deviation

Standard Deviation: the square root of the variance.

Std.Dev.(x) =
√
V ar(x) =

√∑N
i=1(xi − x̄)2

N
(10)

Var and Std.Dev. serve same purpose.

Std.Dev. has an advantage: it is measured (roughly speaking) on the
same scale as the mean. (see below on “scaling”)
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Compare 2 variables

Small Variance
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Dispersion

About Notation

Call the observed variance what you want!

1 Older stats books
1 σ2 is the “true (unknown) variance
2 s2 is the estimate. “s” short for “sigma”

2 I like the hat notation, estimated variance σ̂2.

3 l also like notation with the “true” variance Var(x) while an estimate is

V̂ar(x).

You are allowed to use any symbol you prefer, as long as you are clear to
define the term when you use it.
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Dispersion

Socio Economic Status

Socio−economic Index
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Dispersion

Socio Economic Status: Only Men

Socio−economic Index
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Dispersion

Socio Economic Status: Women

Socio−economic Index
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Dispersion

Other Diversity Indicators

Inter-Quartile range: group data by ordered quarters, and then think of
the range between 25 percentile and 75 percentile as a diversity
indicator.

Many possible diversity indicators, including

gini index (often used for income inequality)
the mean of absolute valued differences

MeanAbsoluteDeviation =
∑N

i=1 |x− x̄|
N

(11)
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Symmetry & the Median
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Symmetry & the Median

Symmetry Definition

A distribution is symmetric if the chance of observing a score x̄− c is
the same as observing x̄+ c.

If a distribution is symmetric, then we have no trouble conveying the
idea of its ’location’.

The mean is in the middle!
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A Nonsymmetric Distribution

Skewed
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Another Nonsymmetric Distribution

Skewed
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Symmetry & the Median

Median: Center Case

Median: The “center observation,” the number of observations that are
larger equals the number that is smaller.

Questions:

1 When do you think the mean and median are likely to be the same?

2 Can you think of a situation in which the median may be more
meaningful than the mean?
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Add the median. Helpful?

Skewed
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Another Nonsymmetric Distribution

Skewed
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Symmetry & the Median

When To Emphasize The Mode

If lots of observations are clumped up at one point, it is worth noting!

Suppose I collected data like this:

X = {1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 50}

If almost all of the scores are“2”, we should tell the reader. Note about Level
of Measurement

Mean only useful if we have numerical data (silly to average “low”,
“medium”, “high”)

Median requires ordered data, either numerical or ordered categorical

Problem with the mean: it is distorted by a change in one value on
either side (change one 50 to 5,000,000 and note the mean changes)

Median is a more “robust” estimate (jargon: high ’breakdown point’)
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Re-Scaling
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Re-Scaling

Should the Scale Matter?

The temperature in Celsius is 10. The temperature in Farenheit is 50
(32+9/5*10).

My income in dollars is 68,000. My income in Euros is 43,000 and in
Pesos it is 1,126,123.

Sometimes, we receive data in one format, but convert to another

Simple scale conversions SHOULD NOT substantively change the
conclusions we will draw.

If simple scale conversions seem to matter, be VERY cautious.
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Re-Scaling

The Mean Scales With The Data

Take variable X = {x1, x2, . . . , xN}, and multiply each value by 10 to
create newx

newx = {10x1, 10x2, . . . , 10xN} (12)

The mean of newX is obviously 10 the mean of old x. See?

Mean(newX) = 10x1 + 10x2 + . . .+ 10xN

N
= 10

∑N
i=1 xi

N

Mean(newX) = newX = 10× x̄

Generally (meaning always), the mean of (k ×X) is equal to k times
the mean of X.
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Re-Scaling

My First Big Fact

State that as a theorem. k1 and k2 are any non-zero constants. X is
any variable. Create a new variable newX = k1 + k2X

The Mean scales proportionally. Given constants k1, k2

Mean(k1 + k2X) = k1 + k2 ×Mean(X) (13)

The point: The Mean changes in a completely predictable way when the
data is re-scaled by addition and multiplication. Just apply same same
re-scaling to the old mean.
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Re-Scaling

The Variance Doesn’t Scale Proportionally

Suppose variance of X is var(X)
Create newX by multiplying by 10, newX = 10 ·X
The variance of newX is 102V ar(X)
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Re-Scaling

General Result for Variance of Re-scaled Variables

Calculate the Variance of a re-scaled Variable, X. Given k1 , k2

V ar(k1 + k2 ·X) = k2
2 · V ar(X) (14)

Adding k1 does not change the dispersion at all, it just shifts the scores.

The variance of newX = k1 + k2X is k2
2 × V ar(x)
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Re-Scaling

Implication: Don’t re-calculate mean and variance if is
proportionally re-scaled.

Celsius temperature data, x. Suppose the mean is, 100.

Rescale that data to Fahrenheit

xFi = 32 + 9
5xi (15)

Some students want to re-run xFi through the mean function, but they
don’t need to.

The mean of xF is 32 + (9/5)Mean(x) = 32 + (9/5)100 = 212.
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Re-Scaling

But the Standard Deviation Scales Proportionally!

The variance of xF is (9/5)2 × V ar(x), which is NOT linear

However, recall standard deviation is
√
V ar(x), so the standard

deviation would be

Std.Dev.(xF ) =
√

(9/5)2 × V ar(x) = (9/5)× Std.Dev.(x) (16)

Like the mean, the standard deviation scales proportionally.

Standard Deviation of kX is k × Std.Dev.(X)

Std.Dev(k ·X) = k · Std.Dev(X) (17)
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Re-Scaling

The ratio mean/std.dev. is Also Scale Invariant

Recall Mean(k · x) = kMean(x)
And Std.Dev.(k · x) = kStd.Dev.(x)
Then the ratio of the mean to the standard deviation is not affected by k

Mean(k · x)
Std.Dev.(k · x) = k ·Mean(x)

k · Std.Dev.(x) = Mean(x)
Std.Dev.(x) (18)

And the converse is also true

k · Std.Dev(x)
k ·Mean(x) = Std.Dev(x)

Mean(x) (19)
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Re-Scaling

Coefficient of Variation is Std.Dev(x)/M(x)

Coefficient of variation, CV.

Question: is “this distribution” more “spread out” than “that one”?

This is a difficult, possibly silly question when distributions are
fundamentally different

But, if they have roughly the same “shape”, then the re-scaling might
make them comparable.
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Re-Scaling

Compare dispersion of 2 disparate variables

Mean= 202.84 SD= 33.08
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Re-Scaling

Compare 2: plot x/Mean(x)

Hist of x1/Mean(x1)
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Re-Scaling

Summarize those 2 variables

top bottom
Min. 129 .8727392 29 .6653058
1st Qu. 174 .5457051 43 .6833138
Median 213 .9866159 48 .9267030

5 Mean 202 .8352460 48 .3206232
3rd Qu. 225 .8233332 50 .6007836
Max. 246 .5122581 73 .1726698
mean 202 .8352460 48 .3206232
sd 33 .0755854 10 .3983793

10 sd.over.mean 0.1630663 0.2151955
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Special Re-Scalings
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Special Re-Scalings

Mean-center xi

Mean centered data (aka “data in deviations form”)

MeanCentered(xi) = xi −Mean(xi) (20)

Do we need abbreviation for that? xMC
i or x̃i or ?

The mean of a centered variable is always 0
The variance and standard deviation are unchanged by centering

Sometimes mean-centered data may faciliate interpretation of results.
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Special Re-Scalings

Standardized Variables

Standardized Variables.

Standardize means “divide MeanCentered(xi) by standard deviation”.

xi − x̄
σx

(21)

Since M(x)/Std.Dev(x) is scale invariant, it makes
MeanCentered(xi)/Std.Dev(x) will also be unaffected by re-scaling
of the observations.

The letter “Z” is often used to refer to standardized variables.
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Special Re-Scalings

Standardized implies Mean 0, Std.Dev 1

Mean

Mean of Z = Z̄ = M(Z) = µZ = 0

Standard deviation

Std.Dev.(Z) = SD(Z) = σZ = 1

Standardization helps with some “machine learning” procedures, may
help psychologists compare variables

Paul Johnson (KU) CT&D 2020 66 / 73



Special Re-Scalings

The log is the most commonly applied nonlinear
transformation

We often gather data that is
“clumped” on the left

Examples, income, education

x is skewed
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Special Re-Scalings

The log is the most commonly applied nonlinear
transformation

The distribution of log(x)
appears more symmetric

x is not so skewed
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Special Re-Scalings

Difficult to say for sure if logging a variable is good or bad

Some methods books will recommend logging all variables, claiming
that it almost always makes analysis “work better” in some sense.

Please just remember it is a possibilty
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R functions to remember

x is a variable

mean(x, na.rm = TRUE)

sd(x, na.rm = TRUE)

var(x, na.rm = TRUE)

median(x, na.rm = TRUE)

range(x, na.rm = TRUE)

quantile(x, na.rm = TRUE)

summary(x)

rockchalk::summarize(x)

hist(x, prob = TRUE)

xdens <- density(x)

lines(xdens)

plot(xdens)
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References
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Special Re-Scalings

Session

Output from R (R Core Team (2020))

sessionInfo ()

R version 4.0.2 (2020 -06-22)
Platform: x86_64-pc-linux-gnu (64 -bit)
Running under: Ubuntu 20.04.1 LTS

5 Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
10 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

15 [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods
[7] base

20
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Special Re-Scalings

Session ...

other attached packages:
[1] stationery_0.98.30

loaded via a namespace (and not attached):
25 [1] Rcpp_1.0.4.6 digest_0.6.25 plyr_1.8.6 xtable_1.8-4

[5] evaluate_0.14 zip_2.0.4 rlang_0.4.7 stringi_1.4.6
[9] openxlsx_4.1.5 rmarkdown_2.3 tools_4.0.2 foreign_0.8-79

[13] kutils_1.70 xfun_0.15 compiler_4.0.2 htmltools_0.5.0
[17] knitr_1.29
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