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Bayes Rule

Recall we want the posterior distribution, the probabilty that a
particular hypothesis “hyp” is correct, in light of the “data”.

Bayes Rule : p(hyp|data) =
p(data|hyp)p(hyp)

p(data)
(1)

And we often throw away the denominator because it is a “constant”
in this context

Bayes Rule : p(hyp|data) = p(data|hyp)p(hyp) (2)

Use θ for the hypthesized parameter values

p(θ|data) = p(data|θ)p(θ) (3)

Recall “data” is a collection of observations in a sample

data = (data1, data2, data3 . . . , dataN) (4)
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Likelihood × prior

p(data|θ) is a likelihood function.

Assuming “independence”,

p(data|θ) = ΠN
i=1p(datai |θ) (5)

So Bayes theorem means we need

p(θ|data) =
(
ΠN

i=1p(datai |θ)
)
× prior(θ) (6)

Descriptive K.U.



The Problem MCMC

What does p(θ|data) Look Like?

That’s the million dollar question. What outcomes are most likely?
How “widely spread” is it.

In Jim Albert’s book, one approximate approach is the Laplace
approximation. This finds the“mode”of the posterior, approximately.

Before high speed (parallel) computing, that was about as good as
we can do (and it is still a useful “pedagogical” approach).
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Remember“acceptance sampling”

In my lecture on “drawing random samples”, it was shown that one
can draw random cases from a distribution by choosing values from
a candidate distribution and then accepting “the right proportion” of
them.

If θ is a one dimensional thing–a single parameter–then we could
sample from p(θ|data) by ordinary acceptance sampling.

As long as the proposal distribution covers the whole range of θ’s
possible values, this is a manageable project.
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If θ is Complicated...

Suppose the parameter vector is larger

θ = (θ1, θ2, . . . , θm) (7)

Problem: find a “good” multidimensional proposal distribution

Draw a reasonably large sample (and do so reasonably quickly,
within our lifetimes)
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Metropolis Algorithm

Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N.
Rosenbluth, Augusta H. Teller, and Edward Teller. 1953. “Equation
of State Calculations by Fast Computing Machines.” The Journal of
Chemical Physics 21(6): 1087.

Collect a sequence of values θ = {θ1, θ2, . . . , θT} that will
approximate p(θ|data)

In order to make sure that we “explore” the space, use a Markov
Chain to draw new suggested points.

Recall Markov Chain: “one step dependence”

θt = some function (θt−1, any other info avail . at t − 1) (8)

The power of general theorems on Markov Chains comes into play,
so that the Metropolis algorithm does not have to prove everything
completely from scratch.
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Implementation

Metropolis, et al, proposed to begin at some arbitrary point θ0 .
Calculate p(θ0|data).

Then draw a new point for consideration at random by perturbation

θ∗ = θ0 + noise (9)

Then calculate p(θ∗|data).

If p(θ∗|data) > p(θ0|data), that means hypothesis θ∗ is “more likely”
to be correct. So we accept θ∗ into our collection of points. Call
that θ1.
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Mountain Climbing is Overrated

If we only accept points such that p(θ∗|data) > p(θt−1|data), then
we are “hill climbing”.

Suppose we are lucky, and there is just one “global maximum” (no
local maxima), then this algorithm will find the “most likely value” of
θ and it will stay there forever.

That’s not enough because

It does not “explore” the full extent of possible values of θ
We would like to say “95% of the outcomes from p(θ|data) are
between points A and B, and this does not allow such statements.
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Go Sideways, or Down (sometimes)

Metropolis et al proposed to accept some values of θ∗ for which

p(θ∗|data) < p(θt−1|data) (10)

The chance of accepting a “lower” step was

rm =
p(θ∗|data)

p(θt−1|data)
(11)

So if θ∗ is “almost as likely” as θt−1, then θ∗ is very likely to get
added as θt .

Even if θ∗ is far less likely than θt−1, it has a chance of getting
selected.

Thus, there is at least “a chance” that even very unlikely spots will
be visited.
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Tweaks
Fiddle around with the procedure for drawing suggested points:
Proposal density.

Random Walk (depends on θt−1)
Independent draws (does not depend on θt−1)

Fiddle around with the criterion for deciding whether to accept
points into the chain.

Hastings’s proposal (1970) (In Jackman’s notation)

r =
p(θ∗|data)

p(θt−1|data)
· Jt(θ

∗, θt−1)

Jt(θt−1, θ∗)
(12)

W. K. Hastings (1970) Monte Carlo Sampling Methods Using
Markov Chains and Their Applications, Biometrika, 57(1): 97-109
Jt is the jumping distribution
Hastings (p. 100) notes this is same as Metropolis if Jt is reversible,

Jt(θ
∗, θt−1) = Jt(θ

t−1, θ∗) (13)

Use of right Jt may improve “mixing” (exploration of parameter
space) without raising the number of wasted (rejected) proposals.
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Example Usage of MH

Count model from MCMCpack in Jackman
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Practical Problems of MH

Slow: creating draws in m dimensional space

Slow: rejection rate high

Autocorrelation: Must aggressively “thin” (throw away observations)
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Gibbs Sampling

Recall that
Pr(x , y , z) = Pr(x |y , z) · Pr(y , z) (14)

and
Pr(y , z) = Pr(y |z) · P(z) (15)

So the 3-tuple’s (x , y , z) distribution can be thought of as a series of
conditional distributions.

Descriptive K.U.



The Problem MCMC

Gibbs Sampling

The posterior distribution

p(θ|data) ∝ p(data|θ)p(θ) (16)

Draw each parameter conditionally on all the others

draw θ1 from g1(θ1|θ−1, data)

draw θ2 from g2(θ2|θ−2, data)

. . . (17)

draw θm from gm(θm|θ−m, data)
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Gibbs Sampling

The distribution of θ from those draws eventually converges to
p(θ|data)

At the start, g(θ) does not resemble p(θ|data), so it is necessary to
throw away a chunk of observations. (“burn in” iterations)
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When This is Done

We have a sample from the multivariate density (θ1, θ2, θ3 . . . , θm)

That’s m“columns” of estimates, each of which is an “exact
sampling distribution”.

How is that different from Maximum Likelihood (?)

Can treat each column as a “marginal posterior density”, (Jackman,
p 220).

King’s Clarify software uses these columns to calculate predicted
values
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Why Doesn’t a Metropolis Algorithm Require a Burn In
Period?

MH can use every sample drawn

Gibbs sampling cannot. Why the difference

MH accepts suggestions in proportion to the desired probability
(acceptance sampling)

Gibbs accepts all draws, without checking that any particular one
matches the desired distribution

The premise is that Gibbs will be more efficient because it is so
much simpler to work with one parameter at a time, even though
some must be discarded.
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An Ordinary Regression Model
Garbage Can Regression
Estimate S.E.

(Intercept) -29.565* (8.66)
V045117L -10.788 (7.931)
V045117SL 2.375 (7.933)
V045117M 5.612 (7.819)
V045117SC 10.141 (8.257)
V045117C 17.499* (8.341)
V045117EC 26.398* (9.783)
V043116WD 24.605* (4.032)
V043116ID 22.365* (3.765)
V043116I 40.605* (5.165)
V043116IR 65.212* (4.59)
V043116WR 67.239* (4.515)
V043116SR 82.348* (4.722)
V043210No 7.911* (2.615)
V043210Med 6.781 (5.84)
V0432133. Worse -25.083* (3.278)
V0432135. The same -7.382* (3.317)
V045145X2. Very good -7.623* (2.528)
V045145X3. Somewhat good -14.505* (3.387)
V045145X4. Not very good -14.672* (6.141)
V045145X7. Don’t feel anything VOL -26.238* (8.668)
V041109AF 0.284 (2.19)
N 803
RMSE 29.95
R2 0.712
AIC 7762.133

* p ≤ 0.05
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The Problem MCMC

Treat some predictors as Numeric

Garbage Can Regression
Estimate S.E.

(Intercept) -87.134* (6.888)
Ideology 7.47* (1.063)
Party ID 15.003* (0.692)
AntiGay 8.892* (2.294)
Economy -0.94 (1.714)
Flag Love -7.447* (1.301)
V041109AF -0.504 (2.266)
N 803
RMSE 31.831
R2 0.669
AIC 7845.258

* p ≤ 0.05
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MCMCpack has regression

Inteface:

MCMCregress ( formula , data = NULL , b u r n i n = 1000 ,
mcmc = 10000 , t h i n = 1 , v e r b o s e = 0 ,
s e e d = NA, b e t a . s t a r t = NA, b0 = 0 , B0
= 0 , c0 = 0 .001 , d0 = 0 .001 ,
m a r g i n a l . l i k e l i h o o d = c ( ”none ” , ”L a p l a c e ” , ”
Chib95 ”) , . . . )
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Count Regression as a Hierarchical Bayesian Model

Suppose some “count” model follows a Poisson distribution. The i ’th
case:

f (yi |X , β) =
Xiβ

yi

yi!
exp(−Xiβ) (18)

β is a vector of parameters, Xi is a row of observations for the i ′th
case

Across a sample of N cases, that leads to a likelihood

f (y |X , β) = ΠN
i=1

Xiβ
yi

yi!
exp(−Xiβ) (19)
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Frailty

Throw in εi like so:

f (y |X , β) = ΠN
i=1

Xiβ
yi

yi!
exp(−Xiβ + εi ) (20)

If 0, then this is just the same old model.

However, if εi has some noise in it, then it will cause the observations
to fluctuate more.

Any probability model for which E [εi ] = 0 can be used.
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Rewrite Like This

Rearrange

f (y |X , β) = ΠN
i=1

Xiβ
yi

yi!
exp(−Xiβ)exp(εi ) (21)

Now think of the multiplicative error δi = exp(εi ) as something that
has expected value 1.

The benefit here is that the terms are multiplicatively separated

f (y |X , β) = ΠN
i=1

Xiβ
yi

yi!
exp(−Xiβ)δi (22)

If δ ∼ Gamma(α, α), Recall E [δ] = α/α=1. However, the Variance
can differ, Var [δ] = 1/α.

That gives y a Negative Binomial distribution. (same expected value
as Poisson, bigger variance.)
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Estimation

α is a “hyper parameter”

We need to estimate β and α

Because of Gibbs sampling, we can alternate between drawing values
of α and β from this posterior.
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MCMCpoisson MCMCpack

Markov Chain Monte C a r l o f o r P o i s s o n R e g r e s s i o n
D e s c r i p t i o n :

Th i s f u n c t i o n g e n e r a t e s a sample from the
p o s t e r i o r d i s t r i b u t i o n o f a P o i s s o n
r e g r e s s i o n model u s i n g a random walk
M e t r o p o l i s a l g o r i t h m . The u s e r
s u p p l i e s data and p r i o r s , and a sample
from t he p o s t e r i o r d i s t r i b u t i o n i s
r e t u r n e d as an mcmc o b j e c t , which can

be s u b s e q u e n t l y a n a l y z e d w i t h f u n c t i o n s
p r o v i d e d i n t he coda p a c k a g e .

Usage :
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MCMCpoisson MCMCpack

MCMCpoisson ( formula , data = NULL , b u r n i n = 1000 ,
mcmc = 10000 , t h i n = 1 , tune = 1 .1 ,
v e r b o s e = 0 , s e e d = NA, b e t a . s t a r t = NA,

b0 = 0 , B0 = 0 , m a r g i n a l . l i k e l i h o o d = c
( ”none ” , ”L a p l a c e ”) , . . . )

Priors: Prior on β is MVN(b0,B
−1
0 ) (B0 is the prior’s “precision”, the

reciprocal of variance).
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Phony Example I

l i b r a r y (MCMCpack)
count s ← c (18 , 17 , 15 , 20 , 10 , 20 , 25 , 13 , 12)
outcome ← g l (3 , 1 , 9)
t r ea tment ← g l (3 , 3)
p o s t e r i o r ← MCMCpoisson ( count s ∼ outcome + t rea tment )

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
The Me t r o po l i s a ccep tance r a t e f o r beta was 0 .27318
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

summary ( p o s t e r i o r )

I t e r a t i o n s = 1001:11000
Th inn ing i n t e r v a l = 1
Number o f c h a i n s = 1
Sample s i z e pe r cha i n = 10000

1 . Emp i r i c a l mean and s t anda rd d e v i a t i o n f o r each v a r i a b l e ,
p l u s s t anda rd e r r o r o f the mean :

Mean SD Naive SE Time−ser i es SE
( I n t e r c e p t ) 3 .025836 0 .1770 0 .001770 0 .008396
outcome2 −0.450066 0 .1965 0 .001965 0 .008228
outcome3 −0.284293 0 .1913 0 .001913 0 .008052
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Phony Example II

t r ea tment2 0 .001680 0 .2008 0 .002008 0 .007786
t r ea tment3 −0.006043 0 .2021 0 .002021 0 .008560

2 . Quan t i l e s f o r each v a r i a b l e :

2 . 5% 25% 50% 75% 97 . 5%
( I n t e r c e p t ) 2 .6618 2 .9059 3 .030113 3 .1535 3 .35518
outcome2 −0.8284 −0.5782 −0.456604 −0.3190 −0.05947
outcome3 −0.6764 −0.4115 −0.285502 −0.1569 0 .08712
t r ea tment2 −0.3878 −0.1381 −0.000305 0 .1427 0 .39398
t r ea tment3 −0.3999 −0.1459 −0.003043 0 .1302 0 .38832

p l o t ( p o s t e r i o r )
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Default Plot
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