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A procedure is described that enables researchers to estimate nonlinear and in-
teractive effects of latent variables in structural equation models. Given that the
latent variables are normally distributed, the parameters of such models can be
estimated. To do this, products of the measured variables are used as indicators
of latent product variables. Estimation must be done using a procedure that allows
nonlinear constraints on parameters. The procedure is demonstrated in three dif-
ferent examples. The first two use artificial data with known parameter values.
These parameters are successfully recovered by the procedure. The final complex
example uses national election survey data.

The use of structural models with latent or
unmeasured variables (Bentler, 1980; Maru-
yama & McGarvey, 1980) is increasing in the
social sciences. Such models are useful because
they allow us to estimate the coefficients of
linear models while controlling for the biasing
effects of measurement error. One useful but
oversimplified view of latent variable structural
models is that they involve two estimation
procedures. First, an oblique factor analysis is
performed. Second, the covariances among the
resulting factors are entered into a multiple
regression procedure. The estimation of latent
variable structural models can be viewed as a
synthesis of factor analysis and multiple
regression, with both estimation procedures
conducted simultaneously.

However, there are two features in esti-
mating the coefficients of linear models with
multiple regression that are not available in
latent variable models. With multiple regres-
sion, it is a relatively simple matter to estimate
the nonlinear and interactive effects of pre-
dictor or exogenous variables. We do this by
computing the appropriate product terms
among the exogenous variables and then en-
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tering those products as predictors in a regres-
sion equation. Thus, if X and Z are viewed as
exogenous variables that affect Y, we estimate
the nonlinear effect of X on Y with the equa-
tion:

Y=aX+bX2+W, (1)

and the interactive effects of X and Z on Y
with the equation:

Y = cX + dZ + eXZ + V. (2)

In these equations a, b, c, d, and e are regres-
sion coefficients; W and V are the usual re-
sidual terms in regression equations.

Models with interactions and nonlinear ef-
fects are quite common in psychology. Buse-
meyer and Jones (1983) have shown that there
is currently no adequate procedure available
to estimate interactive and nonlinear effects
of latent variables. They have also shown that
the reliability of product terms tends to be
less than the reliability of the component vari-
ables. Hence, a procedure to estimate nonlin-
ear and interactive effects of latent variables
would be quite useful.

The purpose of this article is to demonstrate
such a procedure. That is, we show how the
coefficients for Equations 1 and 2 can be es-
timated when X and Z, and consequently X2

and XZ, are unmeasured or latent variables.
We first explain the estimation with simple
nonlinear and interactive models, using com-
puter generated data to illustrate the tech-
niques. We then illustrate the procedure with
a more complex example using national survey
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data from the 1968 National Election Survey
conducted by the Center for Political Studies
at the University of Michigan.

Nonlinear Effects

We begin by showing how to estimate the
coefficients of Equation 1 when X is a latent
variable. The measured variables, Xt and X2,
are indicators of latent variable X. In equation
form,

Xl=X+Ul (3)

X2=fX+U2, (4)

with Ui, t/2, W, and AT all uncorrelated, W
being the residual in Equation 1. All variables
are in mean deviation form. That is, the means
of Ui, t/2, W, and X are zero.

To estimate the effects of the latent variable
X2, we need to develop indicators of it. We
can use the three possible products among the
indicators of X as indicators of X2. Thus,
X2, X2, and XiX2 are all indicators of X2.
These products can be expressed as functions
of latent variables by taking the appropriate
products of Equations 3 and 4:

X\ = X2 + 2XUl + U\, (5)

X§ = f2X2 + 2fXU2 + U2
2, (6)

XiX2 = fX2 + fXUi + XU2 + Ut U2. (7)

Equations 3 through 7 imply the loading ma-
trix contained in Table 1. This matrix contains
the loadings of the indicators on all latent vari-
ables. As can be seen, there is only one free
parameter or loading coefficient to be esti-
mated, that is, f, the loading of X2 on X. All
other nonzero loadings are either set at one
or two or are functions off. Thus, when the
nonlinear indicators (X2, X2, and XiX2) are
included, no new loading coefficients need to
be estimated.

The loadings of the nonlinear indicators are
derived by simple algebraic manipulations
performed on Equations 3 and 4 without in-
volving any additional distributional assump-
tions. The covariance matrix among the latent
variables X, X2, I/,, U2, Ui, U\, XV lt XU2,
and t/it/2, however, can be known only if we
make further distributional assumptions. That
is, different distributions of the latent variables,
X, Ut, U2, result in different covariance ma-

trices. Following Bohrnstedt and Goldberger
(1969) and Busemeyer and Jones (1983), we
assume that the latent variables X, U{ , and
t/2 are normally distributed. Under this as-
sumption, it follows that

(Till ~ 2fft/i'» OjfC/i =

<*XVl ~ ffXffU2> "U

It also follows that all covariances between the
latent variables' are zero (see Appendix). Given
the normality assumption, with the previous
assumptions that X, U\ , and U2 are all un-
correlated with zero means, then the variances
of all of the other latent variables are functions
of ffi, ffj/,, and oi2. Thus, the model with
nonlinear indicators of X2 is in principle iden-
tified, because no new parameters need to be
estimated outside of the effect on X2 on Y.

Although we have assumed that X, U\ , and
t/2 are normally distributed, latent variables
that are products of these (e.g., X2) cannot be
normally distributed (Kendall & Stuart, 1958).
A frequent assumption in estimating latent
variable models is that all variables are nor-
mally distributed. Here this assumption clearly
does not hold. Hence, we cannot use a pro-
cedure that estimates parameters by mini-
mizing a maximum likelihood loss function
that assumes multivariate normality of the la-
tent variables. For example, > the maximum
likelihood estimation procedure of LISREL
(Joreskog & Sorbom, 1981) is inappropriate.
McDonald (1978) suggests that a reasonable
alternative is a generalized least squares loss
function. Therefore, we use a generalized least
squares estimation procedure in which the
weighting matrix is the inverse of the sample
covariance matrix (Fraser, 1980).

There is one further complication in the
estimation. Nonlinear constraints must be put
on the estimated parameters. For instance,
both / and f2 must be estimated. Likewise,
variances that are products of 0*, a2^ , and

1 There is, throughout this article, the potential to con-
fuse the variance of a product variable, for example,
OXY, and the squared covariance of its components, for
example, a2

XiY. As shown, we differentiate between these
two by using a comma between the component variables
involved in covariances.
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Table 1
Loading Matrix for Nonlinear Model

Variable ul xut XU2 U,U2

*1
X2

x\
x\
X,X2

1
f
0
0
0

0
0
1

/2

/

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
2
0
f

0
0
0
2/
1

0
0
0
0
1

oi/2 must be estimated. McDonald (1978) de-
scribes a procedure for estimating latent vari-
able models that allows nonlinear constraints
to be placed on the coefficients. Fraser (1980)
has written the program (COSAN) that imple-
ments McDonald's ideas.

Example

To illustrate the estimation, we used a ran-
dom number generator to create values for
500 cases on the four latent variables, X, U\,
t/2, and W. These variables were generated so
as to be uncorrelated, multivariate normal,
with zero means and variances of 1.0, 0.15,
0.55, and 0.20, respectively, in the population.
From these four variables, we derived values
for the 500 cases for Xi, X2, X\, X\, XtX2,
and Y. In generating these values, the following
coefficients were used: a = .25, b = -.50, and
/= .60. Thus, the data were derived from the
following set of population equations:

W,

and

r — 0^ Vt£.}-/!. .

x{ =x+ u{,

= .60*+ t/2.

Our task is to show that these coefficients can
be recovered from the estimation procedure
performed on the observed sample covariance
matrix among Xi, X2,X}, X\, XtX2, and Y.
We assume that Y is perfectly measured. This
assumption does not, however, limit the gen-
erality of the procedure. As we illustrate later
in the example with real data, Y can also be
a latent variable.

The resulting sample covariance matrix
among the observed variables is presented in
Table 2.

Using COSAN, the following generalized least
squares estimates of the parameters were ob-

tained: a = 0.247 b = -0.500/= 0.624 a\ =
0.989 4, = 0.160 a2^ = 0.540 <& = 0.199.
It seems to us that the procedure recovered
the coefficients quite accurately.

Interactive Effects

Interactions among latent variables are
handled similarly to nonlinear effects. Indi-
cators of the interactions are formed, and their
loading matrix is derived by simple algebra.
The covariance matrix among the latent vari-
ables is derived under the assumption of mul-
tivariate normality.

The interactive model of Equation 2 has Y
affected by X, Z, and XZ. The latent variables
Jfand Z have two indicators each. Their equa-
tions are

Xi=X+Ui, (8)

Z, = Z+t/3 , (10)

Z2 = /zZ+t/4 . (11)
The indicators of the XZ product latent vari-
able are

XiZi =XZ + XU3 + ZUi + UiU3, (12)

*,Z2 = hXZ + XU4 + hZUi + Ui t/4, (13)

*2Z, = gXZ + gXU3 + ZU2 + U2U3, (14)

*2Z2 = ghXZ + gXU4 + hZU2 + U2U4.
(15)

Thus, there are a total of 15 latent variables:
X, Z, XZ, XU3,XU4, ZUi, ZU2, Ui,U2,U3,
t/4, t/i t/3, Ui t/4, t/2t/3, and t/2t/4. The loading
matrix for the 8 observed variables on these
15 latent variables is contained in Table 3.
This matrix appears complex; however, there
are in fact only 2 free parameters to be esti-
mated: g and h.
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Table 2
Nonlinear Example: Observed Sample Covariance Matrix (N = 500)

Variable X\ X^X^

f;
X]
x\
X\X2

Y

1.150
0.617

-0.068
0.075
0.063
0.256

0.981
-0.025

0.159
0.065
0.166

2.708
0.729
1.459

-1.017

1.717
1.142

-0.340
1.484

-0.610 0.763

Assuming once again that X, Z, U\, U2,
t/3, 1/4, and Fare all in mean deviation form,
multivariate normal, and mutually uncorre-
lated with the exception of X and Z, the di-
agonal of the covariance matrix among the
latent variables is

GXZ — +

=

=

_2 — -2
~ ffUl

_ -2-2
—

°XUt ~ <*XffU4

_2 — -2-2
~

where ax,z is the covariance of X and Z (see
Appendix). The only nonzero covariance in
the matrix is ax,z- Again, the program COSAN,
using a generalized least squares loss function,
can be used to estimate the coefficients of the
model under these nonlinear constraints.

Example

To illustrate the estimation, we once again
generated values for 500 cases on the 7 latent
variables X, Z, C/,, U2, U3, t/4, and V. All
variables were generated so that in the pop-
ulation they had means of zero and shared a
multivariate normal distribution. All pairs of
variables were uncorrelated in the population
with the exception of X and Z, which were
generated so that their correlation in the pop-
ulation was .20. The population variances for
the 7 variables were

4 = 2.15

oi, = 0.36

oli = 0.49

4= 1.60

oi4 = 0.64.

From these latent variables, we derived val-
ues for the five hundred cases for X\ , X2, Z, ,
Z2, XtZi, XiZ2, X2Zi,X2Z2, and Y. In gen-

Table 3
Loading Matrix for Interactive Model

Variable X Z XZ U2 U3 t/4 UtU3 UtU4 t/2l/3 t/2t/4 XUt

X,
X2
z.
Z2
x\z{
X\Z2
X2Zt
X2Z2

1
g
0
0
0
0
0
0

0
0
1
h
0
0
0
0

0
0
0
0
1
h
g
gh

1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1

0
0
0
0
1
0
8
0

0
0
0
0
0
1
0
g

0
0
0
0
1
h
0
0

0
0
0
0
0
0
1
h
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Table 4
Interactive Example: Observed Sample Covariance Matrix (N = 500)

Variable X2Z,

X,
X2

Zi
X\Zi
X[Z2

X2Zi
X-iZ-i
Y

2.395
1.254
0.445
0.231

-0.367
-0.301
-0.081
-0.047
,-0.368

1.542
0.202
0.116

-0.070
-0.041
-0.054
-0.045
-0.179

2.097
1.141

-0.148
-0.130

0.038
0.039
0.402

1.370
-0.133
-0.117

0.037
-0.043

0.282

5.669
2.868
2.989
1.341
2.556

3.076
1.346
1.392
1.579

3.411
1.719 1.960
1.623 0.971 2.174

erating these nine observed variables, the fol-
lowing coefficients were used: c = — .15, d =
.35, e = .70, g = ,60, and h = .70. Thus, the
data were derived from the following set of
population equations:

y = -.15X + .35Z + .1QXZ + V,

X2 = .60X+ U2,

z, = z+t/3 ,
Z2 = .70Z+ t/4.

Once again, our task is to show that these
coefficients can be recovered within the limits
of sampling error from the estimation pro-
cedure performed on the observed sample co-
variance matrix. That matrix is contained in
Table 4.

Using COSAN, we obtained the following
generalized least squares estimates of the free
parameters:

c = -0.169
g = 0.646
4- 1-883

eri, = 0.428
ffk = 0.552

d = 0.321
h = 0.685

4= 1-654
<>U2 = 0-721
a2

v = 0.265

e = 0.710

°x,z = 0.369
<ri, = 0.444

Once again, the procedure seems to have re-
covered the generating coefficients.

Complex Example

We now study an example using real data.
The reader should be forewarned that we are
using a complex example to illustrate the full
potential of the procedure. A number of re-
searchers in social psychology have recently

been interested in the extent to which voters
misperceive the positions espoused by political
candidates (e.g., Granberg & Brent, 1974;
Granberg & Seidel, 1976; Judd, Kenny, &
Krosnick, 1983; Kinder, 1978). More specif-
ically, they have examined whether voters as-
similate and contrast the positions of candi-
dates whom they either like or dislike. Assim-
ilation would be found if voters overestimate
their agreement with liked candidates. Con-
trast would be found if voters overestimate
their disagreement with disliked candidates.
Both assimilation and contrast are consistent
with balance theory.

The hypothesis of assimilation and contrast
argues that the relation between a voter's po-
sition on an issue (V) and his or her judgment
of the candidate's position (C) should be mod-
erated by the voter's liking or sentiment (S)
toward the candidate. If the candidate is dis-
liked, a negative relation between V and C is
consistent with contrast. If the candidate is
liked, a positive V-C relation is consistent with
assimilation. Hence, the voter's own position
(V) and his or her sentiment toward the can-
didate (S) should interact to affect the judg-
ment of the candidate's position (C).

Some of the early work on the assimilation-
contrast hypothesis suggested that assimilation
effects are more potent than contrast effects.
This suggestion means that the effect of the
VS interaction on C should be stronger at
higher levels of S. In other words, not only
should the VS interaction affect C, but also
the VS2 interaction should affect C.

Judd et al. (1983) argued that misspecin-
cations in the existing research were probably
responsible for the conclusion that VS2 affects
C. Some of these misspecincations, such as
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Table 5
Loading Matrix for Assimilation-Contrast Example

Variable V S2 VS VS2 U2S t/,52

v,
Y2
S
s2

v,s
V2S
yts

2

V2S
2

1
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
1

1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1

the probable presence of correlated measure-
ment errors in V and C, can be eliminated if
V and C are treated as latent variables, with
multiple indicators of each, allowing errors of
measurement in indicators of Vio covary with
errors of measurement in indicators of C.

Using the 1968 National Election Survey
conducted by the Center for Political Studies
of the University of Michigan, Judd et al.
(1983) examined the judgment of the presi-
dential candidates Hubert Humphrey and
Richard Nixon on two issues: the Vietnam
War and control of crime. Using a latent vari-
able model, Judd et al. examined the VS and
VS2 interactions by dividing up the sample
on sentiment (5") toward the candidate and
looking for both linear and nonlinear differ-
ences in the path from V to C among the
sentiment subsamples. Using this procedure,
Judd et al. found strong evidence for the VS
interaction but no support for the effect of
VS2. In other words, assimilation-contrast was
found, but no evidence was found for stronger
assimilation than contrast.

A much more efficient procedure to ex-
amine these issues is to estimate the effects of
the VS and VS2 interactions directly in the
latent variable model. In the model, there are
two indicators of V and two of C for each
candidate. V\ and C\ are voters' judgments of
self and candidate on the crime issue. V2 and
C2 are judgments on the Vietnam War issue.
They are assumed to be indicators of latent
constructs V and C. These are denned as the
underlying ideological position of the voters
and the judged ideological position of the can-
didates. Errors of measurement in V\ and V2
are allowed to affect errors in C\ and C2, re-
spectively. Sentiment (S) was measured di-

rectly on a 100-point "thermometer" scale.
(See Judd et al., 1 983, for a thorough definition
of all variables.)

The model's equations are as follows: First,
KI and V2 are indicators of V, and C\ and C2
are indicators of C:

V2 = V+U2,

C{ = C+ J/3, and

C2 = C+ C/4.

Notice that all loading coefficients here are set
at one. This constraint is necessary for the
model to be identified when there are only two
indicators each of V and C and when their
errors are allowed to correlate.2 The constraint
is also justified by earlier research that has
shown that attitudes on various political issues
have approximately equal loadings on a single
underlying construct (Judd & Milburn, 1980).
The structural equation among these latent
variables is

C = aV+ bS + cS2 + dVS

+ eVS2 + W, (16)

where a through e are parameters to be esti-
mated and W is the usual disturbance term,

2 The necessity of this constraint to achieve the model's
identification is not a result of the nonlinear estimation
that we are conducting. The constraint is necessary with
only two indicators of Kand C regardless of whether non-
linear terms are present. There is nothing in our procedures
that constrains the loadings of observed variables over and
above any constraints necessary for a model to be identified
in the absence of nonlinear effects.
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Table 6
Paths for the Assimilation-Contrast Example

Latent
endogenous

variables

C
u,
t/4

Latent exogenous variables

V

X
0
0

S

X
0
0

S2

X
0
0

vs
X
0
0

vs*
X
0
0

u\
0
X
0

1/2

0
0
X

u,s
0
JT
0

u^s
0
0
JT

l/i5J

0
*
0

t/25
2

0
0
X

assumed to be uncorrelated with all exogenous
variables.

Table 5 presents the loading matrix for the
indicators of the latent exogenous variables.
Notice that once the loading of V\ and V2 on
Fare constrained at one, all other loadings in
this matrix are also constrained. Table 6 pre-
sents the paths from the latent exogenous con-
structs to the latent endogenous constructs that
need to be estimated. All Gentries in this table
are free parameters to be estimated. The five
Xs in the first row of the table represent the
parameters a to e in Equation 16. The other
free parameters allow for correlated errors of
measurement between U\ and t/a and between
C/2 and C/4. Notice that we are allowing the
magnitude of the relation between errors to
vary both linearly and nonlinearly with S.

Table 7 presents the nonzero parameters in
the covariance matrix of the latent exogenous
constructs. These terms were generated under
the assumption that all variables are normally
distributed with means of zero. (See, Appen-
dix.) In fact, however, we know that the nor-
mality assumption is not true. Sentiment (S),
for instance, as a directly measured variable
is nonnormal. Consequently, the constraints
on the covariance matrix in Table 7 are in
error to the extent that the distributions are
not normal. Nevertheless, it is instructive to
illustrate the procedure with these data even
though we know its assumptions are violated.

The observed variables S, V\, V2, C\, and
C2 are all in mean deviation form. The product
indicators are not. In addition, sentiment
scores are divided by 10 so that the latent
variables involving S2 will have more man-
ageable variances and covariances.

Table 8 contains the covariance matrix for
the 10 observed variables for the Nixon model.

The sample size is 1,160, consisting of all re-
spondents to the 1 968 election study who pro-

,vided complete data on all relevant variables.
COSAN was used to provide generalized least

squares estimates for all parameters. The es-
timated paths from the latent exogenous vari-
ables to the latent endogenous variables are
presented in Table 9. The estimates of the free
variances and covariances of the latent vari-
ables are

= 0.894
= 2.456
= 1.363

v2
s = 4.208

lt = 2.629
av,s = 0.095
<&, = 1.619

Returning to the parameter estimates in Ta-
ble 9, it can be seen that the estimated coef-

Table 7
Variances and Covariances of Latent Variables

for Assimilation-Contrast Example _ ,

- <rlt<rs
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Table 8
Nixon Model: Observed Sample Covariance Matrix fN = 7,760,)

Variable S2 V2S v,s2

c,

s2

S2

v,s
ViS
V ^2

V V^

2.626
0.569
0.615

-0.105
-0.724

0.252
2.317
1.321
0.559

-4.015

2.207
0.211
0.721

-0.054
-0.219

0.686
2.313

-0.097
1.076

3.729
1.084
0.416

-0.629
-0.677
-1.242
21.253

7.725

3.834
0.358

-0.182
-1.242
-0.685

7.726
23.673

4.963
-7.315
-0.629
-0.183

6.135
3.284

53.924
4.071
1.507

-25.205
-6.781

21.080
7.577

-41.522
-28.884

23.545
-28.734
-49.602

381.402
181.204 460.865

ficient for the VS2 interaction is quite small.
If we graph the effect of V on C at varying
levels of S, that graph is exceedingly linear
and quite consistent with the results presented
in Judd et al.'s (1983) Figure 4.

Discussion

The purpose of this article was to suggest
a way in which nonlinear and interactive effects
of latent variables can be estimated. Estimating
these effects is made possible by using non-
linear and product indicators. The loadings of
these indicators on the latent variables are de-
rived by multiplying together structural equa-
tions. This results in no additional loadings
to be estimated. In order to derive the co-
variance matrix among the latent variables,
distributional assumptions must be made
about the latent variables.3 These assumptions
permit us to derive the variances and covari-
ances of the latent variables that are products
of other latent variables. We have assumed
that the nonproduct latent variables are nor-
mally distributed with zero expected values.
This is one of a set of possible assumptions
that we could have made in order to derive
the covariance matrix among the latent vari-
ables. In the Appendix we have shown how
this assumption permits us to know the prod-
uct variances and covariances. Although the
normality assumption may be reasonable in
some situations, in others it may be less so.
For instance, in our third example we knew
that the distribution of S was far from normal.
In such cases, other distributional assumptions
might be made to derive the product variances
and covariances. If our recommended pro-

cedure is to be useful when dealing with non-
normally distributed data, derivations for other
distributions need to be developed.

Although we have assumed that nonproduct
latent variables are normally distributed, this
assumption means that the product latent
variables are not. This fact means that in es-
timation, we should avoid minimizing a loss
function that assumes multivariate normality,
such as the maximum likelihood function in
LISREL (Joreskog & Sorbom, 1981). We have
therefore reported results based on a gener-
alized least squares loss function. It is inter-
esting to note, however, that when we estimated
the parameters using a maximum likelihood
criterion, the parameter estimates were in most
cases not appreciably different from the gen-
eralized least squares estimates that we report.
Investigations of when different loss functions
result in appreciably different parameter es-
timates are called for.

Using a generalized least squares loss func-
tion, as opposed to a maximum likelihood one,
means that the standard errors of the estimated
coefficients are unknown. Thus, at this point,
whereas our procedure can be used to estimate
nonlinear and interaction coefficients, confi-
dence intervals for the population values of
these coefficients cannot be estimated. There-
fore, we suggest that estimation of these effects
should proceed only when there is clear prior

3 It might seem that a possible distribution-free pro-
cedure would be to estimate the variances and covariances
of the latent variables rather than constraining them at
particular values specified by the distributional assump-
tions. Such an approach, however, invariably results in an
unidentified model.
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Table 9
Nixon Model: Estimated Effects of Exogenous Latent Variables on Endogenous Latent Variables

Endogenous
latent

variables

C
U3

• U<

Exogenous latent variables

V

0.180
0
0

S

-0.111
0
0

s"
-0.019

0
0

VS

0.207
0
0

VS2

0.009
0
0

f.

0
0.162

0

t/2

0
0

0.167

u,s
0

0.095
0

U2S

0
0

0.092

uts
2

0
0.011

0

U2S*

0
0

0.004

evidence for them. In the absence of known
standard errors, we recommend reporting de-
scriptive indices of a model's efficiency in re-
producing a sample covariance matrix (e.g.,
Bentler & Bonett, 1980).

Like the normality assumption, the as-
sumption that all nonproduct latent variables
have means of zero is one possible assumption
that could have been made. We could have
assumed means different from zero, but this
would have made the derivation of the latent
product variances and covariances more com-
plicated. When dealing with the observed
variables, we have rescaled them so that their
means are zero before computing the product
indicators.4 These product indicators were not,
however, rescaled to have zero means. Again,
we could have allowed nonproduct indicators
to have nonzero means, but this raises addi-
tional complications that have yet to be fully
worked out.

When faced with the need to make com-
parisons of nonlinear or interactive parameters
across populations or over time, it is not ap-
propriate to force the latent variables to have
zero and, hence, equal means. Not only is it
unlikely that the means in the different pop-
ulations would be equal, but forcing equal
means can greatly complicate the comparison
of parameter estimates.

Our hope is that the procedure we have out-
lined will be useful to researchers who wish
to estimate nonlinear and interactive effects
in the presence of measurement error. We be-
lieve, however, that our procedure is merely a
beginning in developing a general approach to
such estimation. Further work needs to be de-
voted to the question of how various distri-
butional assumptions can be used to derive
the covariance matrix among latent variables.
In addition,- work that examines the conse-
quences of violating those assumptions is also

called for. We believe our recommended pro-
cedure constitutes a partial solution to this
important problem.

4 Actually, in the first two examples we did not subtract
the sample means from the indicator variables prior to
computing the product indicators, because these variables
were constructed in such a way that their expected values
were zero.
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Appendix

We show here the various expectations of product
variables given that the component variables have
a multivariate normal distribution. All of these re-
sults are well known in the statistical literature but
are relatively unfamiliar to psychologists.

Let variables X, Y, Z, W, U, and Fhave a mul-
tivariate normal distribution with mean zero. The
covariance between two variables will be denoted
as ffXY and the variance as 4- All odd moments,
for example, E(XYZ), are zero (Kendall & Stuart,
1958). The fourth moment is

E(XYZW) = axzaYw + (Al)

(Kendall & Stuart, 1958), where E is the expectation
operator. It then follows that E[Cav(XY, Z)] =
E(XYZ) - E(XY)E(Z) = 0. Therefore, E[Cov(X2,
Z)] = 0.

The expectation of Co\(XY, ZW) equals

E(XYZW) - E(XY)E(ZW),

which given Equation Al equals aXf"zw +
+ axwffYz ~ ^xY^zw or more simply
+ axwGyz- Using this result we can show

that
E[Vnr(XY)] = 44 + 4,y,

£lVar(*2)] = 24,

E[Cov(XY, XW)} =

£[Cov(*2, ZW)} =

E[Cov(X2, XW)} =

The expectation of Cov(Ar, YZW) equals

E(XYZW) - E(X)E(YZW),

which given Equation Al equals: <SXY"ZW +
<TXZ<IYW + OXWSYZ . Using this result it follows that

E[Cov(X, XZW)] = <?xazw

E[Cov(X, Y2W)} = o*rffw

E[Cov(X, X3)] = 34-

All covariances involving five variables, for example,
Cov(XY, ZWU), equal zero.

The sixth moment is:

E(XYZWUV) = aXYE(ZWUV) + <rxzE(YWUV)

+ axwE(YZUV) + axuE(YZWV)

+ axvE(YZWU)

(Kendall & Stuart, 1958). It then can be shown that

E[Vai(XYZ)] =

and E[\sf(X2Y)} = 344 + 1244,r.
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