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In the past decade new approaches for the estimation of latent nonlinear interaction and
quadratic effects in structural equation modeling have been proposed (Kelava & Brandt, 2009;
Klein & Moosbrugger, 2000; Klein & Muthén, 2007; Marsh, Wen, & Hau, 2004; Mooijaart
& Bentler, 2010; Wall & Amemiya, 2003). Most approaches have been developed for the
analysis of normally distributed latent predictor variables. In this article, we investigate the
performance of five recent approaches under the condition of nonnormally distributed data:
the extended unconstrained approach (Kelava & Brandt, 2009), LMS (Klein & Moosbrugger,
2000), QML (Klein & Muthén, 2007), the 2SMM approach (Wall & Amemiya, 2003), and the
method of moments approach by Mooijaart and Bentler (2010). Advantages and limitations of
the approaches are discussed.

Keywords: estimators, interaction, nonlinear structural equation models, nonnormality,
quadratic

Numerous theories have claimed an estimation of nonlinear
effects (e.g., Ajzen, 1987; Cronbach & Snow, 1977; Karasek,
1979; Lusch & Brown, 1996; Snyder & Tanke, 1976). Within
a latent variable framework, a structural equation that models
one interaction and two quadratic effects (omitting a subject
index) is given by

η = α + γ1ξ1 + γ2ξ2 + ω12ξ1ξ2 + ω11ξ
2
1 + ω22ξ

2
2 + ζ (1)

where η is the latent criterion, α is the latent intercept, the
γ s are the linear effect parameters, the ωs are the nonlin-
ear effect parameters for the latent predictors ξ 1 and ξ 2, and
ζ is a latent disturbance term. Figure 1 shows a structural
equation model with one latent interaction and two quadratic
effects.

The analysis of interaction models is a common proce-
dure in the social sciences (e.g., Aiken & West, 1991; Cohen,
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1988). By including interaction effects, a model can account
for differential effects occurring in hypotheses where the
relationship between two variables might depend on a third
variable; for example, where the relationship between inten-
tion and behavior might depend on the behavioral control
that can be exerted by an individual (Ajzen, 1987). Quadratic
effects model curvilinear associations between two variables
that also occur in applied research, for instance, the quadratic
relationship between arousal and performance (Yerkes &
Dodson, 1908). In recent years, it has been proposed as a
standard procedure to include quadratic effects when testing
interaction effects to avoid spurious interactions (Ganzach,
1997; Klein, Schermelleh-Engel, Moosbrugger, & Kelava,
2009; MacCallum & Mar, 1995). Following this line of rea-
soning, it is recommended to use a baseline model with linear
and quadratic effects when testing interactions, instead of
a purely linear model (Klein et al., 2009). This suggests
that estimation methods for analyzing interactions should
be designed in a way that they can estimate interaction and
quadratic effects simultaneously.

Several approaches for the analysis of nonlinear struc-
tural equation modeling (SEM) have been published within
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FIGURE 1 Nonlinear structural equation model with three latent nonlinear effects: one interaction effect and two quadratic effects. Note that the product
indicators (e.g., x1x4, x2

1 , x2
4 , etc.) are only needed for product indicator approaches to implement a measurement model for the latent product terms (ξ1ξ2, ξ2

1 ,
and ξ2

2 ).

the class of product indicator approaches (e.g., Bollen, 1995;
Jaccard & Wan, 1995; Jöreskog & Yang, 1996; Kelava &
Brandt, 2009; Little, Bovaird, & Widamam, 2006; Marsh
et al., 2004; Marsh, Wen, & Hau, 2006; Ping, 1995, 1996;
Wall & Amemiya, 2001). Within this class, products of indi-
cators have been used to implement measurement models
for latent product variables (e.g., ξ1ξ2, ξ 2

1 ). Multivariate nor-
mality for all indicators including the product indicators is
assumed if these approaches are estimated using a maxi-
mum likelihood (ML) estimator (cf. Kelava et al., 2011;
Schumacker & Marcoulides, 1998). Other approaches do not
use product indicators, but also assume normality for all
or some latent exogenous variables. For example, distribu-
tion analytic approaches (Klein & Moosbrugger, 2000; Klein
& Muthén, 2007) assume normality for both latent predic-
tors and residual variables (e.g., ξ1, ξ2, and δ1, . . .), whereas
the method of moments approach by Mooijaart and Bentler
(2010) assumes normality only for predictors (e.g., ξ1, ξ2),
and Wall and Amemiya’s (2003) 2SMM approach assumes
normality only for residual variables (e.g., δ1, . . .).

In simulation studies, in particular, the product indi-
cator approaches have been examined for normally dis-
tributed variables and, in some cases, for skewed latent
predictors regarding their estimation properties (e.g., Lee,
Song, & Poon, 2004; Marsh et al., 2004; Moulder &
Algina, 2002; Schermelleh-Engel, Klein, & Moosbrugger,
1998). Other approaches have not been examined in
close detail or only under very specific conditions of
nonnormality (Klein & Muthén, 2007; Wall & Amemiya,
2003). Thus, most simulation studies have primarily been
informative concerning the efficiency and unbiasedness
of estimates in situations when distributional assumptions
are met.

However, in the social and behavioral sciences many
data sets can include nonnormally distributed (skewed) vari-
ables (Micceri, 1989). Different estimation methods might
respond differently when nonnormally distributed variables
are analyzed. Therefore, their estimation properties need to
be examined when distributional assumptions are violated.

Until now, there have been only two important articles
(Marsh et al., 2004; Moulder & Algina, 2002) that compare
estimation methods for the analysis of latent interactions.
Both only consider models without quadratic effects in the
baseline model. Thus, we see a need for an updated compar-
ison of current approaches for both interaction and quadratic
effects when variables are nonnormally distributed. In this
article, we compare five selected contemporary approaches
that have been of interest in recent research: the extended
unconstrained approach (ExUC; Kelava & Brandt, 2009),
the latent moderated structural equations approach (LMS;
Klein & Moosbrugger, 2000), the quasi-maximum likeli-
hood approach (QML; Klein & Muthén, 2007), the two-stage
method of moments approach (2SMM; Wall & Amemiya,
2000, 2003), and the method of moments approach by
Mooijaart and Bentler (2010). This comparison includes
empirically relevant settings for normally and nonnormally
distributed predictors, and a simultaneous estimation of mul-
tiple nonlinear effects.

The article is structured as follows: In the next section, we
present different contemporary approaches for the estimation
of latent nonlinear interaction and quadratic effects in struc-
tural equation models. We report on the status quo of their
performance in the face of normally and nonnormally dis-
tributed variables, and we discuss their theoretical strengths
and weaknesses. We then report on a simulation study that
compares these approaches in empirically common settings
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with nonnormally distributed data when nonlinear models
with interaction and quadratic effects are estimated. In the
last section, we discuss the results of the simulation study,
and we give guidelines for the application of the approaches.

APPROACHES FOR THE ESTIMATION OF
LATENT NONLINEAR EFFECTS

In the past 10 years some approaches for the estimation of
latent interaction and quadratic effects have received atten-
tion (Jöreskog & Yang, 1996; Kelava & Brandt, 2009; Kelava
et al., 2011; Klein & Moosbrugger, 2000; Klein & Muthén,
2007; Little et al., 2006; Marsh et al., 2004; 2006; Mooijaart
& Bentler, 2010; Moulder & Algina, 2002; Schumacker &
Marcoulides, 1998; Wall & Amemiya, 2000, 2003, among
others). Most of them can be divided into three major
classes: (a) product indicator approaches, (b) distribution
analytic approaches, and (c) method of moments approaches.
In the following, we briefly present the main approaches of
these classes and their underlying assumptions. Then, we
summarize the results of simulation studies that have been
conducted up to the present.

Product Indicator Approaches

The largest class of approaches, the class of product indica-
tor approaches, relates to Kenny and Judd’s (1984) idea to
use product indicators to identify interaction effects. Kenny
and Judd proposed to specify a measurement model for the
latent nonlinear product variables (e.g., for ξ1ξ2). Products
of the indicators of the linear measurement model (e.g.,
x1x4; see Figure 1) are used as indicators for the nonlinear
latent product variables. Whereas Kenny and Judd (1984)
proposed to constrain the parameters for the nonlinear mea-
surement model part of the structural equation model, Marsh
et al. (2004, 2006) showed with their unconstrained approach
that some constraints can be relaxed, and thereby, estimation
properties can be improved.

With the ExUC approach, Kelava and Brandt (2009) pre-
sented an extension of the unconstrained approach to models
with quadratic and interaction effects. They showed that the
inclusion of multiple product indicators of the same indica-
tor (e.g., x2

2 and x1x2) entails residual covariances between
product indicators that have to be taken into account to avoid
spurious nonlinear effects (Kelava & Brandt, 2009; Kelava,
Moosbrugger, Dimitruk, & Schermelleh-Engel, 2008).

For the constrained approach, normality of latent (linear)
predictor variables (e.g., ξ1, ξ2) and residual variables (e.g.,
δ1, . . . , ε1, . . . , ζ ; see Figure 1) is assumed for the specifica-
tion of parameter constraints (Kenny & Judd, 1984; Wall &
Amemiya, 2001). The relaxation of constraints in the uncon-
strained approach results in more robust estimates (Marsh
et al., 2004, 2006). Still, for the unconstrained approach
and its extended version, the ExUC approach, the normality

assumption is used for assuming covariances to be zero
between the measurement model of the (linear) predictors
and the measurement model of the product terms (for a relax-
ation of this assumption and its potential drawbacks, see
Kelava & Brandt, 2009).

In addition to the normality assumption for the constraint
specification, multivariate normality is implicitly assumed
for both the (linear) indicators and the product indicators
when using the standard ML estimation algorithm. This
assumption is always violated because even if the indicators
themselves are normally distributed, their products are non-
normal in general (Aroian, 1944). As a consequence, stan-
dard errors and fit indices might be severely biased, even if
the indicators of the linear measurement model are normally
distributed (for general consequences using the ML estima-
tor for nonnormally distributed variables in linear models
see Bollen, 1989; Boomsma, 1983; West, Finch, & Curran,
1995). If linear indicators are nonnormal as well, additional
estimation bias—also for parameter estimates—might be
induced due to the fact that the constraints concerning the
covariances between the measurement models of the linear
predictors and the product terms are invalid.

Recently, more robust estimators for standard errors
(Satorra & Bentler, 1994; White, 1982; Yuan & Bentler,
2000) have become available in standard software pack-
ages, for instance, the sandwich estimator in Mplus (Muthén
& Muthén, 1998–2010) or in the R-package lavaan (R
Development Core Team, 2011). The sandwich estimator
approximates the variance of the parameter estimates using
the observed Fisher information instead of the expected
Fisher information. It is a quasi ML estimator that leads to
consistent results even if distributional assumptions are vio-
lated (White, 1982) and thus should improve standard error
estimation for nonnormally distributed data (Yuan & Bentler,
2000). It has not yet been investigated if the sandwich esti-
mator might enhance the standard error estimation for the
unconstrained or the ExUC approach.

Distribution Analytic Approaches

Within the class of distribution analytic approaches, mainly
two methods have drawn attention (cf. Kelava et al., 2011):
the LMS approach (Klein & Moosbrugger, 2000) and the
QML approach (Klein & Muthén 2007). For LMS a like-
lihood function for a nonnormal distribution is derived,
which is approximated by numerical methods, and maxi-
mized using the expectation maximization algorithm (EM;
Dempster, Laird & Rubin, 1977). QML is a quasi ML estima-
tion procedure. It approximates the multivariate nonnormal
distribution of the indicator variables by a product of a condi-
tionally normal and an unconditionally normal distribution.
Neither of the two approaches uses product indicators.

LMS and QML both assume multivariate normality for all
latent exogenous variables, that is, for the latent predictors
(e.g., ξ1, ξ2) and residual variables (e.g., δ1, . . . , ε1, . . . , ζ ).
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The advantage of QML over LMS is that QML is theo-
retically more robust than LMS with respect to nonnormal
data and that the computational burden is lower. The possi-
ble advantage of LMS over QML lies in the fact that LMS
produces true ML estimates that are theoretically more effi-
cient when the underlying assumptions are met (Kelava et al.,
2011).

Method of Moments Approaches

Within the class of method of moments based approaches,
two methods have addressed the issue of estimating non-
linear effects. The 2SMM approach by Wall and Amemiya
(2000, 2003) and the method of moments (MM) approach
by Mooijaart and Bentler (2010). Both approaches do not
use product indicators and they relax the assumption of
multivariate normality for all variables.

The 2SMM approach by Wall and Amemiya (2003) is a
two-stage procedure. In a first step, the measurement model
part is estimated using standard SEM procedures. Bartlett
factor scores and their variances are obtained. In a second
step, the factor scores and variances are used to estimate
the parameters of the structural model. The method is based
on an errors-in-variable regression that takes into account
that the factor scores obtained in the first step are estimates
and therefore have a variance that has to be modeled in
the second step. A method of moment estimator is applied
to estimate the structural model parameters. The 2SMM
approach has been specified for models including either a
single interaction or a single quadratic effect (for a gen-
eral polynomial model, see Wall & Amemiya, 2000) and
has been implemented for those models in the SAS software
(Wall & Amemiya, 2003).

The relevant distributional assumption for the second
step, the parameter estimation in the structural model, is the
normality of residual variables (e.g., δ1, . . . , ε1, . . .) which
is needed for the specification of the estimating equations.1

This assumption is also used for the derivation of the stan-
dard errors. When an ML estimator is used for the Bartlett
factor scores, multivariate normality for all indicators is
implicitly assumed in the first step. If indicators are nonnor-
mal, it can be expected that the factor scores are unbiased,
because they only depend on the parameter estimates of the
measurement model (see earlier; Bollen, 1989; Boomsma,
1983; West et al., 1995). If indicator variables are nonnor-
mal, however, the variances of the parameter estimates for
the measurement models might be underestimated, and as a
consequence, standard errors of the structural model could
be underestimated, too.

1Wall and Amemiya (2003) used a set of equations including higher
order moments. These higher order moments can either be estimated or
assumed to be zero if normality of the residuals is assumed.

Recently, Mooijaart and Bentler (2010) proposed a
moment-based approach that takes higher order moments
of the variables into account. In their approach, the
assumption of normally distributed measurement error vari-
ables is relaxed. The measurement error variables can
be nonnormally distributed. By applying an MM estima-
tor, the discrepancy of observed and model-implied higher
order moments is minimized to fit the nonlinear model.
The MM approach assumes normality of the latent predic-
tor variables (e.g., ξ1, ξ2) for the consistency of its esti-
mates. The nonnormality due to the interaction effect is
taken into account for the calculation of the higher order
moments.

The MM approach might show two potential drawbacks
regarding its estimation properties. First, the estimation of
higher order moments might be unstable in small samples.
Second, if additional nonnormality is present in the data that
is not due to nonlinear effects but to nonnormally distributed
constructs, higher order moments could contain two sources
of nonnormality and thus induce biased estimates.

Comparison of the Approaches

In the previous subsections we presented different
approaches for the estimation of nonlinear effects. Table 1
summarizes the properties of these approaches.

All approaches make distributional assumptions, but it
is not straightforward to evaluate their robustness regard-
ing parameter and standard error estimation in situations
when these assumptions are violated. Especially the esti-
mation properties for finite sample sizes have to be exam-
ined. Simulation studies have been published primarily for
models with single interaction effects (Marsh et al., 2004,
2006; Moulder & Algina, 2002), although in empirical
settings the full nonlinear model is needed to avoid spu-
rious interaction effects (Klein et al., 2009). Only sparse
results are available for models with more than one nonlin-
ear effect (Kelava et al., 2008; Kelava et al., 2011; Klein
& Muthén, 2007; Moosbrugger, Dimitruk Schermelleh-
Engel, Kelava, & Klein, 2009). Here, we briefly sum-
marize and compare the results of previous simulation
studies.

For models with a single interaction effect and normally
distributed variables, LMS and QML have been shown to
provide unbiased estimates and to be more efficient than the
product indicator approaches (Klein & Muthén 2007; Marsh
et al., 2004). For nonnormally distributed latent predictors,
the unconstrained approach has provided rather unbiased
parameter estimates, but has underestimated the standard
errors (Marsh et al., 2004). The originally found bias of the
standard error estimation for QML (with a standard error
estimation using the expected Fisher information) under the
condition of nonnormal predictors (Marsh, et al., 2004) could
be removed in a later QML version (using the observed
Fisher information for standard error estimation; Klein &
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TABLE 1
Summary of the Properties of the Five Different Approaches

Approach Distributional Assumptions
Situations in Which Assumptions Are

Violated Consequences

ExUC approach
(and unconstrained
approach)

Multivariate normally distributed
indicators and product indicators
(equivalent to multivariate normally
distributed errors and latent variables)

Never fulfilled due to product
indicators; more severely violated
if indicators are nonnormal

Slightly biased parameter estimates,
underestimated standard errors
(SE); if predictors are nonnormal,
bias of the SEs might increase

LMS Normally distributed exogenous
variables (latent predictors and
residuals)

Not violated per se; only if indicators
are nonnormal

Parameter estimates might be biased
if assumptions are violated

QML Normally distributed exogenous
variables (latent predictors and
residuals); (approximately)
conditionally normal latent criterion
(given the x variables)

Not violated per se; only if indicators
are nonnormal

Parameter estimates might be less
biased than for LMS if
assumptions are violated

2SMM approach Normally distributed residual variables Violated if residual variables are
nonnormal

Should be robust against
nonnormality of indicators,
especially if indicators have a high
reliability

MM approach Normally distributed latent predictors Violated if predictors are nonnormal Should not be robust to additional
nonlinear effects; biased estimates
if predictors are nonnormal

Note. ExUC = extended unconstrained approach; LMS = latent moterated structural equations approach; QML = quasi-maximum likelihood approach;
2SMM = two-stage method of moments; MM = method of moments approach.

Muthén 2007). Wall and Amemiya (2000, 2003) showed in
two simulation studies that the 2SMM approach is (asymp-
totically) unbiased analyzing either a single interaction or a
single quadratic effect in the presence of nonnormally dis-
tributed data. In their main article, Mooijaart and Bentler
(2010) showed that the MM approach for an interaction
model leads to results comparable to LMS under the con-
dition of normally distributed variables. There are no sys-
tematic simulation studies comparing the efficiency of the
moment-based approaches to either distribution analytic or
product indicator approaches.

For models containing interaction and quadratic effects,
it was shown that LMS and QML produced very similar
results when variables were normally distributed (Kelava
et al., 2011). A comparison of the distribution analytic
approaches with the ExUC approach could show that LMS
and QML were more efficient than the ExUC approach
under the condition of normally distributed latent predictors
(Kelava et al., 2011; Moosbrugger et al., 2009). A com-
parison of the ExUC approach, LMS, and QML under the
condition of nonnormally distributed variables has not yet
been conducted. Additionally, no simulation studies for the
moment-based approaches for models containing more than
one nonlinear effect have been conducted.

Hence, the applied researcher is confronted with several
approaches for the estimation of nonlinear SEM that are
difficult to compare regarding their potential strengths and
weaknesses. This lack of comparability is at least partly due
to the fact that some of the approaches are not feasible and

readily available, and therefore, simulation studies compar-
ing these approaches have not been conducted. With this
article, we are trying to fill this gap.

SIMULATION STUDY

In this section, we examine the properties of the approaches
already presented with a simulation study, in which the
degree of nonnormality of the latent predictors is var-
ied. We selected the MM approach by Mooijaart and
Bentler (2010) and the 2SMM approach by Wall and
Amemiya (2003) for the class of method of moments-
based approaches, LMS (Klein & Moosbrugger, 2000) and
QML (Klein & Muthén, 2007) for the class of distribu-
tion analytic approaches, and the ExUC approach (Kelava &
Brandt, 2009) for the class of product indicator approaches.
We examine the relative bias of parameter and standard error
estimates in the structural model as well as the Type I error
rates and power for population models with and without non-
linear effects. Special emphasis is placed on the inspection of
the bias of the parameters.

Design of the Simulation Study

Data were generated according to three structural models.
We restricted our simulation study to models with symmetric
effects of the predictors. The first model for data generation,
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Mlin, included no nonlinear effects and was used to examine
the Type I error rate:

η = .316ξ1 + .316ξ2 + ζ . (2)

The second model, Mint, included one interaction effect:

η = −.255 + .316ξ1 + .316ξ2 + .139ξ1ξ2 + ζ . (3)

The third model, Mfull, additionally included two quadratic
effects, such that each nonlinear effect was accounting for
approximately 2.2% of the latent criterion’s variance, which
is a realistic size of a nonlinear effect in the social sciences
(see Chaplin, 1991; 2007):

η = − .255 + .316ξ1 + .316ξ2 + .139ξ1ξ2 + .101ξ 2
1

+ .101ξ 2
2 + ζ .

(4)

In all three population models, Mlin, Mint, and Mfull, the
bivariate distribution of the latent predictors ξ 1 and ξ 2

was specified with means and variances E(ξ1) = E(ξ2) = 0,
Var(ξ1) = Var(ξ2) = 1, and Cov(ξ1, ξ2) = .375. The distur-
bance variable ζ was normally distributed with a variance
specified such that Var(η) = 1 under the condition of nor-
mally distributed predictors.

Two conditions were selected for the latent predictors’
distribution (in line with the values used by Curran, West,
& Finch, 1996): (a) normality with skewness 0 and kurto-
sis 0, and (b) nonnormality with skewness 2 and kurtosis 7.
Nonnormality of the latent predictors was induced using
the Fleishman (1978) transformation implemented in EQS
(Bentler, 1995).

For each of the predictor variables ξ1, ξ2 and for the latent
outcome variable η three indicator variables were specified.
The reliability of the indicators was set to .80. The indicators
were generated as unidimensional measures with normally
distributed residual variables. All observed deviations of the
indicator variables’ distribution from normality were due
to the nonnormal latent predictor variables and the latent
nonlinear effects.

The sample size was set to N = 400. Raw data for a total
of 500 replications were generated and analyzed for each of
the resulting conditions. A solution was considered proper
when there were no negative estimates for the variances or
standard errors. Outliers were identified by analyzing box
plots and z-scores (cf. Paxton, Curran, Bollen, Kirby, &
Chen, 2001).

For the analysis two types of models were specified: an
interaction model Aint (for the analysis of Mlin and Mint) and
a full model with interaction and quadratic effects Afull (for
the analysis of models Mlin and Mfull).

Approaches and Software Implementations

In the simulation study, we compared five contemporary
approaches for the estimation of latent nonlinear effects.
We implemented the MM approach (Mooijaart & Bentler,
2010) in MATLAB (MATLAB, 2010). The 2SMM approach
(Wall & Amemiya, 2003) and the ExUC approach2 (Kelava,
2008; Kelava & Brandt, 2009) were implemented in R
(R Development Core Team, 2011). For LMS (Klein &
Moosbrugger, 2000) we used the implementation in Mplus
v6.11 (Muthén & Muthén 1998–2010), for QML (Klein
& Muthén, 2007) we used a stand-alone software (QML
v3.11) that can be obtained from the original author. Syntax
for LMS and QML can be found in Kelava et al., (2011).
Syntax for the ExUC approach can be found in Kelava and
Brandt (2009). Syntax for the 2SMM and the MM approach
can be obtained from the authors.

To conduct a fair comparison among the five approaches,
the standard error estimates were based on a robust esti-
mation using the observed Fisher information (sandwich
estimator; White, 1982; Yuan & Bentler, 2000). The sand-
wich estimator is already implemented for QML in QML
v3.11 as well as for LMS in Mplus; for the ExUC and the
2SMM approach the package lavaan in R was used (ML
estimation with observed Fisher information). Beyond this,
default settings (e.g., default start values, default number of
iterations, and default numerical algorithms) supplied by the
programs were used.

Results of the Simulation Study

In the first subsection, we present the results that were
obtained when an interaction model was specified as anal-
ysis model (Aint). In the second subsection, we present the
results that were obtained when a model with both interac-
tion and quadratic effects was specified as analysis model
(Afull). For each analysis model, we show results for Type
I error and power conditions for normally and nonnormally
distributed latent predictor variables. The percentage of sig-
nificant t-values for the parameter estimates was calculated
for each linear and nonlinear effect of the structural model.
These percentages are interpreted as power for detecting the
corresponding parameter when the population parameter is
different from zero, or as Type I error when the population
parameter is equal to zero.

We report the relative bias for the linear and the nonlin-
ear effects. Across models we calculated the ratio SE/SD

between the average estimated standard error (̂SE) and the
standard deviation of the parameter estimates (Monte-Carlo
SD). A relative bias of the parameter estimates above 5%
was interpreted as slightly biased, and above 10% as biased.

2For the interaction model actually the term unconstrained approach
(Marsh et al., 2004, 2006) would be more adequate, but for simplicity we
refer to the approach as ExUC approach throughout the rest of the article,
which is the more general approach.
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Accordingly, a ratio SE/SD below .90 or above 1.10 was
interpreted as biased (cf. Hoogland & Boomsma, 1998).

Analysis Model: Interaction Model (Aint)

Results for the analysis model Aint specified with a single
interaction effect are presented in Tables 2 to 5.

Population model Mlin. The analysis of the linear
population model Mlin for normally distributed predictors
(Type I error condition; Table 2) showed unbiased param-
eter estimates across all five approaches. The mean esti-
mates for the interaction parameter lay between .003 (for
QML) and .006 (for the MM approach). The MM approach
showed somewhat inflated standard error estimates (SE/SD

TABLE 2
Simulation Results for the Linear Population Model (Mlin) Under the Condition of Normally Distributed Data (Analysis Model Aint)

θ
¯̂
θ bias( ¯̂

θ )% SD ̂SE SE/SD % significance

MM approach
γ 1 .316 .314 −0.61% .051 .050 .973 100.00%
γ 2 .316 .317 0.34% .049 .050 1.010 100.00%
ω12 .000 .006 n. def. .072 .082 1.150 3.20%

2SMM approach
γ 1 .316 .315 −0.50% .055 .052 .946 100.00%
γ 2 .316 .318 0.62% .052 .051 .992 100.00%
ω12 .000 .004 n. def. .047 .046 .982 5.40%

LMS
γ 1 .316 .315 −0.53% .055 .053 .967 100.00%
γ 2 .316 .318 0.56% .052 .053 1.013 100.00%
ω12 .000 .004 n. def. .046 .046 .989 6.00%

QML
γ 1 .316 .314 −0.78% .055 .053 .950 100.00%
γ 2 .316 .318 0.60% .054 .052 .975 100.00%
ω12 .000 .003 n. def. .046 .046 .996 5.71%

ExUC approach
γ 1 .316 .315 −0.54% .055 .053 .966 100.00%
γ 2 .316 .318 0.55% .052 .052 1.012 100.00%
ω12 .000 .004 n. def. .047 .046 .978 5.60%

Note. MM = method of moments approach; 2SMM = two-stage method of moments; LMS = latent moderated structural equations approach; QML =
quasi-maximum likelihood approach; ExUC = extended unconstrained approach.

TABLE 3
Simulation Results for the Linear Population Model (Mlin) Under the Condition of Nonnormally Distributed Data (Analysis Model Aint )

θ
¯̂
θ bias( ¯̂

θ )% SD ̂SE SE/SD % significance

MM approach
γ 1 .316 .314 −0.70% .051 .050 .975 100.00%
γ 2 .316 .318 0.63% .051 .050 .986 100.00%
ω12 .000 .309 n. def. .129 .118 .913 77.80%

2SMM approach
γ 1 .316 .313 −1.13% .056 .054 .963 99.60%
γ 2 .316 .318 0.48% .056 .054 .972 100.00%
ω12 .000 .005 n. def. .043 .039 .909 8.00%

LMS
γ 1 .316 .308 −2.66% .056 .055 .978 99.60%
γ 2 .316 .313 −1.13% .055 .055 .997 100.00%
ω12 .000 .018 n. def. .043 .039 .914 10.60%

QML
γ 1 .316 .308 −2.70% .058 .055 .951 99.59%
γ 2 .316 .313 −0.95% .057 .055 .965 100.00%
ω12 .000 .017 n. def. .043 .039 .904 10.52%

ExUC approach
γ 1 .316 .309 −2.42% .056 .054 .973 99.60%
γ 2 .316 .314 −0.84% .055 .055 .989 100.00%
ω12 .000 .017 n. def. .042 .038 .902 11.40%

Note. MM = method of moments approach; 2SMM = two-stage method of moments; LMS = latent moderated structural equations approach; QML =
quasi-maximum likelihood approach; ExUC = extended unconstrained approach.
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TABLE 4
Simulation Results for the Population Model With Interaction Effect (Mint ) Under the

Condition of Normally Distributed Data (Analysis Model Aint )

θ
¯̂
θ bias( ¯̂

θ )% SD ̂SE SE/SD % significance

MM approach
γ 1 .316 .315 −0.49% .053 .052 .973 100.00%
γ 2 .316 .318 0.44% .051 .051 1.010 100.00%
ω12 .139 .145 4.76% .075 .084 1.125 37.80%

2SMM approach
γ 1 .316 .315 −0.53% .052 .048 .924 100.00%
γ 2 .316 .318 0.46% .049 .048 .985 100.00%
ω12 .139 .143 3.05% .045 .043 .961 89.80%

LMS
γ 1 .316 .315 −0.50% .052 .050 .958 100.00%
γ 2 .316 .318 0.43% .049 .050 1.019 100.00%
ω12 .139 .143 2.92% .044 .043 .975 90.00%

QML
γ 1 .316 .315 −0.47% .053 .049 .938 100.00%
γ 2 .316 .317 0.39% .050 .049 .979 100.00%
ω12 .139 .142 2.40% .045 .043 .963 89.92%

ExUC approach
γ 1 .316 .315 −0.54% .052 .049 .950 100.00%
γ 2 .316 .318 0.44% .049 .049 1.009 100.00%
ω12 .139 .143 2.96% .046 .044 .970 88.80%

Note. MM = method of moments approach; 2SMM = two-stage method of moments; LMS = latent moderated structural equations approach; QML =
quasi-maximum likelihood approach; ExUC = extended unconstrained approach.

TABLE 5
Simulation Results for the Population Model With Interaction Effect (Mint ) Under the

Condition of Nonnormally Distributed Data (Analysis Model Aint )

θ
¯̂
θ bias( ¯̂

θ )% SD ̂SE SE/SD % significance

MM approach
γ 1 .316 .363 14.95% .057 .057 .997 100.00%
γ 2 .316 .368 16.49% .055 .057 1.039 100.00%
ω12 .139 .516 271.55% .155 .177 1.146 91.53%

2SMM approach
γ 1 .316 .313 −1.03% .054 .051 .940 100.00%
γ 2 .316 .317 0.18% .052 .051 .977 100.00%
ω12 .139 .145 4.32% .042 .038 .896 93.40%

LMS
γ 1 .316 .308 −2.45% .054 .053 .972 100.00%
γ 2 .316 .312 −1.22% .052 .053 1.020 100.00%
ω12 .139 .161 15.88% .041 .038 .924 96.80%

QML
γ 1 .316 .309 −2.42% .055 .052 .947 100.00%
γ 2 .316 .312 −1.26% .053 .052 .990 100.00%
ω12 .139 .160 15.40% .041 .038 .920 96.58%

ExUC approach
γ 1 .316 .315 −0.53% .054 .052 .957 100.00%
γ 2 .316 .318 0.68% .052 .052 1.000 100.00%
ω12 .139 .154 10.67% .043 .038 .881 95.80%

Note. MM = method of moments approach; 2SMM = two-stage method of moments; LMS = latent moderated structural equations approach; QML =
quasi-maximum likelihood approach; ExUC = extended unconstrained approach.

= 1.150). The Type I error rates for the latent interaction
parameter were close to the nominal 5% rate (ranging from
3.20% for the MM approach to 6.00% for LMS).

The analysis of the linear population model Mlin for
nonnormally distributed predictors (Table 3) led to an
overestimated average interaction effect parameter (.309) for
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the MM approach. The average interaction effect parame-
ters for the other four approaches lay between .005 (for the
2SMM approach) and .018 (for LMS). Standard error esti-
mates were fairly unbiased for all approaches with a SE/SD
ratio between .902 (for the ExUC approach) and .914 (for
LMS). The Type I error rates were inflated for the MM
approach (77.80%), for LMS (10.60%), for QML (10.52%),
and for the ExUC approach (11.40%). The 2SMM approach
showed a Type I error rate of 8.00%.

Population model Mint. Analyzing the nonlinear popu-
lation model Mint for normally distributed predictors (power
condition; Table 4) showed unbiased parameter estimates for
all five approaches. The relative bias lay between 2.40%
(for QML) and 4.76% (for the MM approach). The mean
standard error was overestimated for the MM approach
(SE/SD = 1.125) and unbiased for the other four approaches
(with SE/SD between .961 for the 2SMM approach and
.975 for LMS). The MM approach showed inefficient esti-
mates for the interaction effect with a power of 37.80%
in comparison to 89.80% for the 2SMM approach, 90.00%

for LMS, 89.92% for QML, and 88.80% for the ExUC
approach.

The results for the nonlinear population model Mint for
nonnormally distributed predictors (Table 5) showed biased
parameter estimates for the interaction effect for the MM
approach with a relative bias of 271.55% (.516 instead of
.139) as well as for LMS (15.88%), QML (15.40%), and the
ExUC approach (10.67%). For the the 2SMM approach the
interaction effect parameter was unbiased with a relative bias
of 4.32%. The average standard errors were biased for the
MM, the 2SMM, and the ExUC approach (SE/SD = 1.146,
.896, and .881, respectively). The average standard error of
the interaction effect for the MM approach was larger than
for the other approaches (.177 vs. .038 for each of the other
approaches). The power for the interaction effect lay between
91.53% (for the MM approach) and 96.80% (for LMS).

Specified Model: Nonlinear Model With Interaction
and Quadratic Effects (Afull)

Results for the analysis model Afull, specified with interaction
and quadratic effects are presented in Tables 6 to 9.

TABLE 6
Simulation Results for the Linear Population Model (Mlin) Under the Condition of Normally Distributed Data (Analysis Model Afull )

θ
¯̂
θ bias( ¯̂

θ )% SD ̂SE SE/SD % significance

MM approach
γ 1 .316 .314 −0.63% .055 .053 .971 99.80%
γ 2 .316 .317 0.37% .053 .053 1.012 100.00%
ω12 .000 −.064 n. def. .174 .075 .431 36.80%
ω11 .000 .056 n. def. .207 .025 .120 74.80%
ω22 .000 .056 n. def. .205 .025 .121 72.00%

2SMM approach
γ 1 .316 .315 −0.44% .055 .052 .936 99.80%
γ 2 .316 .318 0.70% .052 .052 .995 99.80%
ω12 .000 .006 n. def. .067 .064 .949 6.40%
ω11 .000 −.002 n. def. .046 .042 .905 6.60%
ω22 .000 −.001 n. def. .046 .041 .911 7.80%

LMS
γ 1 .316 .315 −0.53% .055 .053 .961 99.80%
γ 2 .316 .318 0.61% .052 .053 1.021 100.00%
ω12 .000 .006 n. def. .066 .063 .956 6.20%
ω11 .000 −.002 n. def. .046 .042 .914 6.60%
ω22 .000 −.001 n. def. .045 .041 .918 7.60%

QML
γ 1 .316 .314 −0.76% .056 .053 .934 100.00%
γ 2 .316 .318 0.63% .052 .052 .999 100.00%
ω12 .000 .005 n. def. .066 .063 .954 7.04%
ω11 .000 −.002 n. def. .045 .041 .910 7.45%
ω22 .000 −.001 n. def. .045 .041 .906 8.28%

ExUC approach
γ 1 .316 .315 −0.53% .055 .053 .957 99.80%
γ 2 .316 .318 0.58% .052 .052 1.015 99.80%
ω12 .000 .007 n. def. .069 .065 .940 6.80%
ω11 .000 −.002 n. def. .047 .042 .900 6.80%
ω22 .000 −.001 n. def. .046 .042 .917 8.20%

Note. MM = method of moments approach; 2SMM = two-stage method of moments; LMS = latent moderated structural equations approach; QML =
quasi-maximum likelihood approach; ExUC = extended unconstrained approach.
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TABLE 7
Simulation Results for the Linear Population Model (Mlin) Under the Condition of Nonnormally Distributed Data (Analysis Model Afull )

θ
¯̂
θ bias( ¯̂

θ )% SD ̂SE SE/SD % significance

MM approach
γ 1 .316 .314 −0.70% .055 .053 .973 100.00%
γ 2 .316 .318 0.69% .054 .053 .987 100.00%
ω12 .000 .208 n. def. .198 .110 .555 52.71%
ω11 .000 .084 n. def. .192 .035 .181 68.14%
ω22 .000 .075 n. def. .184 .033 .181 67.74%

2SMM approach
γ 1 .316 .315 −0.51% .081 .077 .953 98.20%
γ 2 .316 .319 0.96% .076 .077 1.016 98.40%
ω12 .000 .009 n. def. .058 .054 .935 9.00%
ω11 .000 −.002 n. def. .034 .030 .882 8.60%
ω22 .000 −.002 n. def. .033 .030 .909 8.60%

LMS
γ 1 .316 .298 −5.72% .071 .069 .971 99.00%
γ 2 .316 .303 −4.11% .066 .068 1.040 99.40%
ω12 .000 .002 n. def. .058 .055 .942 7.80%
ω11 .000 .011 n. def. .033 .030 .903 10.40%
ω22 .000 .011 n. def. .033 .030 .912 11.00%

QML
γ 1 .316 .298 −5.77% .073 .068 .943 99.38%
γ 2 .316 .303 −4.06% .067 .068 1.022 99.79%
ω12 .000 .001 n. def. .059 .055 .931 8.47%
ω11 .000 .011 n. def. .034 .030 .888 10.12%
ω22 .000 .011 n. def. .033 .030 .908 11.16%

ExUC approach
γ 1 .316 .298 −5.64% .071 .068 .967 99.20%
γ 2 .316 .303 −4.20% .065 .068 1.040 99.20%
ω12 .000 .004 n. def. .060 .055 .913 8.00%
ω11 .000 .009 n. def. .030 .027 .883 11.20%
ω22 .000 .009 n. def. .030 .027 .906 11.80%

Note. MM = method of moments approach; 2SMM = two-stage method of moments; LMS = latent moderated structural equations approach; QML =
quasi-maximum likelihood approach; ExUC = extended unconstrained approach.

Population model Mlin. The analysis of data of the
linear population model Mlin for normally distributed predic-
tors (Type I error condition; Table 6) showed that the mean
parameter estimates for the MM approach were close to the
population parameters (–.064 for the interaction effect and
.056 for both quadratic effects). The estimates for the 2SMM
approach, for LMS, QML, and for the ExUC approach were
unbiased with mean parameter estimates between −.001
(for the quadratic effect ω11 for all four approaches) and
.007 (for the interaction effect ω12 for the ExUC approach).
The standard error estimates for the MM approach were
severely underestimated (SE/SD between .120 and .431).
This ratio was not inflated due to outliers; a graphical inspec-
tion showed that the parameter estimates followed a normal
distribution. For all other approaches the standard errors
were close to unbiased (SE/SD between .900 for the ExUC
approach and .956 for LMS). The MM approach produced
36.80% spurious interaction and 72.00% to 74.80% spurious
quadratic effects. The Type I error rates for the other four
approaches were acceptable (ranging from 6.20% for LMS
to 8.28% for QML).

Analyzing data of the linear population model Mlin for
nonnormally distributed predictors (Table 7) for the MM
approach showed a biased interaction effect estimate of
.208 and biased quadratic effect estimates of .084 and .075.
For the 2SMM and the ExUC approach, parameter esti-
mates were unbiased (between −.002 and .009). For LMS
and QML the quadratic effects were slightly biased, with
an average estimate of .011. The standard errors of the
MM approach were severely underestimated (SE/SD rang-
ing from .181 for the quadratic effects to .555 for the
interaction effect). Biased standard error estimates were
also found for the first quadratic effect for the 2SMM
approach, for QML, and for the ExUC approach (SE/SD
between .882 and .888). The Monte Carlo SD for the
MM approach was about four to five times larger than the
Monte Carlo SDs for the other approaches. The Type I error
rate of the MM approach was severely inflated (52.71%
to 68.14%). LMS, QML, and the ExUC approach showed
minimally higher Type I error rates (between 7.80% and
11.80%) than the 2SMM approach (between 8.60% and
9.00%).
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TABLE 8
Simulation Results for the Nonlinear Population Model (Mfull ) Under the Condition of Normally Distributed Data (Analysis Model Afull )

θ
¯̂
θ bias( ¯̂

θ )% SD ̂SE SE/SD % significance

MM approach
γ 1 .316 .316 −0.11% .058 .057 .975 99.80%
γ 2 .316 .317 0.24% .055 .057 1.025 100.00%
ω12 .139 .151 8.98% .178 .083 .463 56.40%
ω11 .101 .113 11.50% .207 .027 .130 74.80%
ω22 .101 .082 −19.38% .202 .027 .134 74.40%

2SMM approach
γ 1 .316 .314 −0.60% .055 .049 .888 100.00%
γ 2 .316 .317 0.36% .050 .049 .977 100.00%
ω12 .139 .146 5.28% .064 .061 .948 67.20%
ω11 .101 .099 −1.93% .044 .040 .907 69.40%
ω22 .101 .100 −1.40% .043 .039 .922 71.20%

LMS
γ 1 .316 .315 −0.48% .055 .052 .952 100.00%
γ 2 .316 .317 0.34% .049 .052 1.045 100.00%
ω12 .139 .145 4.18% .063 .060 .955 66.80%
ω11 .101 .100 −1.33% .043 .040 .928 70.40%
ω22 .101 .100 −0.92% .042 .039 .937 71.20%

QML
γ 1 .316 .315 −0.46% .055 .050 .902 100.00%
γ 2 .316 .317 0.20% .050 .050 .982 100.00%
ω12 .139 .145 4.26% .063 .060 .953 67.20%
ω11 .101 .099 −1.82% .043 .040 .925 69.42%
ω22 .101 .100 −1.06% .042 .039 .934 71.63%

ExUC approach
γ 1 .316 .314 −0.56% .054 .050 .914 100.00%
γ 2 .316 .317 0.29% .049 .049 1.003 100.00%
ω12 .139 .146 5.01% .067 .062 .933 64.60%
ω11 .101 .100 −1.27% .045 .041 .901 66.80%
ω22 .101 .100 −0.98% .044 .040 .929 69.40%

Note. MM = method of moments approach; 2SMM = two-stage method of moments; LMS = latent moderated structural equations approach; QML =
quasi-maximum likelihood approach; ExUC = extended unconstrained approach.

Population model Mfull. The results for the data of the
nonlinear population model Mfull for normally distributed
predictors (power condition; Table 8) showed that the mean
parameter estimates for the MM approach were biased
(11.50% and –19.38% for the quadratic effects, and 8.98%
for the interaction effect). The 2SMM approach, LMS, QML,
and the ExUC approach showed unbiased (or only slightly
biased) parameter estimates with a relative bias between –
0.92% (for LMS) and 5.28% (for the 2SMM approach).
The standard error estimates for the MM approach were
strongly biased with SE/SD between .130 and .463. The
standard errors for the other four approaches were unbi-
ased with a ratio SE/SD between .901 (for the ExUC
approach) and .955 (for LMS). The power for the nonlinear
effects was slightly larger for the 2SMM approach and for
QML (between 67.20% and 71.63%) compared to the ExUC
approach (64.60%–69.40%).

The results for the data of the nonlinear population
model Mfull for nonnormally distributed predictors (Table 9)
showed that the MM approach produced biased quadratic

effects (–30.95% and –29.40%) and a biased interaction
effect (207.71%). The 2SMM and the ExUC approach
showed unbiased (or only slightly biased) parameter esti-
mates (between –2.12% and 9.22%). LMS and QML showed
overestimated quadratic effects with a bias of about 19%.
The standard error estimates for the MM approach were
underestimated (SE/SD ranging from .221 and .224 for the
quadratic effects to .714 for the interaction effect). For the
2SMM approach the standard error estimate for the first
quadratic effect was underestimated (SE/SD = .880). The
standard error estimates for LMS and QML were unbiased.
For the ExUC approach standard errors were underestimated
for all nonlinear effects (SE/SD between .857 and .898). For
the MM approach the power for the quadratic effects was
smaller than the estimated Type I error rate (which was due
to the biased estimates and the larger standard error estimates
in the power condition). The power for the 2SMM approach,
LMS, QML, and the ExUC approach was high on average:
For the interaction effect the power was above 65.00% and
for the quadratic effects it was above 80.96%.
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TABLE 9
Simulation Results for the Nonlinear Population Model (Mfull ) Under the Condition of Nonnormally Distributed Data (Analysis Model Afull )

θ
¯̂
θ bias( ¯̂

θ )% SD ̂SE SE/SD % significance

MM approach
γ 1 .316 .363 14.93% .058 .057 .994 100.00%
γ 2 .316 .368 16.38% .054 .057 1.045 100.00%
ω12 .139 .427 207.71% .229 .163 .714 72.47%
ω11 .101 .070 −30.95% .148 .033 .224 47.77%
ω22 .101 .071 −29.40% .151 .033 .221 45.14%

2SMM approach
γ 1 .316 .315 −0.42% .078 .073 .942 98.40%
γ 2 .316 .320 1.05% .072 .074 1.029 98.80%
ω12 .139 .152 9.22% .060 .058 .962 73.75%
ω11 .101 .099 −2.12% .034 .030 .880 84.17%
ω22 .101 .098 −3.15% .033 .031 .946 80.96%

LMS
γ 1 .316 .315 −0.35% .068 .066 .969 99.80%
γ 2 .316 .319 0.82% .063 .066 1.045 99.60%
ω12 .139 .137 −1.69% .060 .057 .947 65.00%
ω11 .101 .121 19.51% .034 .032 .927 92.60%
ω22 .101 .120 18.99% .033 .032 .944 91.80%

QML
γ 1 .316 .314 −0.74% .069 .065 .940 100.00%
γ 2 .316 .317 0.28% .063 .064 1.022 99.80%
ω12 .139 .137 −1.53% .060 .057 .949 65.66%
ω11 .101 .120 18.96% .034 .032 .935 92.57%
ω22 .101 .120 18.77% .033 .032 .944 91.97%

ExUC approach
γ 1 .316 .316 −0.16% .068 .064 .943 99.80%
γ 2 .316 .319 0.85% .063 .064 1.017 99.60%
ω12 .139 .149 7.38% .063 .056 .898 72.40%
ω11 .101 .106 4.34% .032 .027 .857 92.00%
ω22 .101 .105 3.55% .031 .027 .898 91.80%

Note. MM = method of moments approach; 2SMM = two-stage method of moments; LMS = latent moderated structural equations approach; QML =
quasi-maximum likelihood approach; ExUC = extended unconstrained approach.

DISCUSSION

For the analysis of latent nonlinear effects in empirical set-
tings it is necessary to rely on procedures that result in esti-
mates with an acceptably small bias and correct inferences
that include a nominal Type I error rate and a high power.
Although most approaches rely on certain distributional
assumptions that include the normality of latent and mani-
fest variables, these assumptions are often not met in applied
empirical settings. In this article, we examined five different
approaches in a simulation study regarding their properties
in two different settings: First, we tested their performance
with regard to the analysis of single interaction effects ver-
sus the analysis of multiple nonlinear effects. Second, we
tested their performance in the presence of either normally
or nonnormally distributed latent predictors.

Discussion of the Results of the Simulation Study

The results of the simulation study showed that the param-
eter estimates for the ExUC approach led only to a small
bias for all nonlinear effects under the condition of normal

or nonnormal latent predictors. Although a robust estimator
for the standard errors was used, the standard errors were
underestimated under the condition of nonnormal predictors.
This resulted in an inflated Type I error rate that is in line
with other simulation studies reported previously (e.g.,Marsh
et al., 2004). Although the sandwich estimator is asymp-
totically unbiased (White, 1982), its properties in smaller
samples might not always lead to unbiased standard error
estimates.

The advantage of the two distribution analytic
approaches, LMS and QML, lies in a high efficiency
for the estimation of multiple nonlinear effects in settings
with normal latent predictors. Under the condition of
nonnormal predictors, however, parameter estimates might
be moderately biased, whereas standard error estimates
remained unbiased. The two methods showed only small
differences in their estimation results, which is in line with
the findings by Kelava et al. (2011).

The 2SMM approach showed unbiased and efficient
parameter and standard error estimates under the con-
dition of normal predictors. The standard errors were
slightly underestimated under the conditions of nonnormal
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predictors. The results for the 2SMM approach supported
the claimed robustness against nonnormal predictors (Wall
& Amemiya, 2003).

The MM approach led to unbiased parameter estimates
for the interaction model under the condition of normal latent
predictors. Under the condition of nonnormal predictors
or multiple nonlinear effects, parameter and standard error
estimates were severely biased in the presented simulation
study.

Guidelines for Applications

For different degrees of normality of the indicators of the pre-
dictors and for different numbers of nonlinear effects we give
four recommendations for the selection of the approaches.
A nonnormality of the indicators of the dependent variable is
not taken into account here, because their distribution should
be nonnormal in general if nonlinear effects are present in the
data (cf. Klein & Moosbrugger, 2000). The guidelines should
be used with caution and under the limitations concerning
latent and manifest distributions presented next.

First, when indicators of the latent predictors are normally
distributed and single interaction effects are estimated, each
one of the approaches can be used, for instance, the MM
approach or LMS, although power for detecting an interac-
tion using the MM approach might be low. Second, when
indicators of the latent predictors are normally distributed
and multiple nonlinear effects are estimated, the distribu-
tion analytic approaches, LMS and QML, lead to the most
efficient estimates with the highest power and should be
used due to their theoretical and empirical properties. Third,
when indicators of the latent predictors are nonnormally dis-
tributed and it is not expected that residuals are strongly
nonnormal, especially the 2SMM approach leads to unbiased
results and can be used if single interaction effects are esti-
mated. If its implementation is difficult the ExUC approach
is a useful alternative. Fourth, when indicators of the latent
predictors are nonnormally distributed and multiple nonlin-
ear effects are estimated, the 2SMM and the ExUC approach
lead to unbiased estimates, but the 2SMM covers the Type
I error rate slightly better. Therefore, the 2SMM approach
should be preferred.

Limitations

There are also two limitations that are of relevance to dis-
cuss. The first limitation concerns the validation of the
distributional assumptions. In the simulation study pre-
sented in this article, we assumed that the nonnormality
of the indicators was caused by nonnormally distributed
latent predictor variables. In practice, however, the source
of nonnormality cannot be precisely attributed to either the
predictors or the measurement errors. It can only be inferred
by plausible assumptions, but not statistically (Molenaar,
Dolan, & Verhelst, 2010). These assumptions might include

findings from previous studies concerning the distribution
of the construct of interest, or specific situational aspects
that influence the distribution of the measurement errors,
for example, ceiling effects that occurred in the measure-
ment of the constructs. However, in most practical situations
one would only implement an SEM model when the indi-
cator variables are reliable (MacCallum & Austin, 2000).
In this case, the indicators have a large amount of “true”
variance that amounts to the latent predictor. When indica-
tors are skewed, it is plausible to assume that the skewness is
caused by the latent predictor. In the case of unreliable indi-
cators, this conclusion appears not to be valid. The results
of the approaches discussed in this article should then be
interpreted with caution.

The second limitation concerns the question of what a
realistic sample size is. The sample size in the simulation
study was set to N = 400 to reflect a typical medium to large
sample size for a structural equation model in the social sci-
ences (Jaccard & Wan, 1995). We did not examine smaller
or larger sample sizes. For smaller sample sizes it can be
expected that the method of moments-based approaches and
the ExUC approach might become less stable because the
estimation of higher order moments needs a sufficient sam-
ple size, and because the ExUC approach has a large number
of free parameters. With a larger sample size, at least the
estimates of the method of moments-based approaches can
be expected to improve. It was beyond the scope of this arti-
cle, however, to find the critical sample size when estimates
become acceptable in the context of nonnormally distributed
data.

Final Considerations and Future Directions

The decision on whether a distributional assumption poses a
restriction on the application of a method depends on at least
three aspects: the plausibility of the assumption in empiri-
cally relevant settings, the robustness of the method against
a violation of the assumption, and the testability of the
assumption. For the approaches within the nonlinear SEM
framework we discussed the plausibility of the distributional
assumptions and we then tested their robustness. The answer
to the third aspect, the testability of the assumption, is—as
was pointed out earlier—only possible to a limited degree.
Our results indicate that the assumption of normal latent pre-
dictors is a serious assumption for some approaches, and that
researchers need to attend to this assumption when making a
decision about what approach to use.

Future research should focus on the refinement of existing
approaches in two ways. First, the unbiased and efficient esti-
mation of multiple effects should be explored in ways where
distributional assumptions are violated in other empirically
relevant settings, for example, when ordinal or censored data
are used. There, the application of robust versions of the
estimators for the different approaches might improve esti-
mation properties; for example, bootstrap standard errors for
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the ExUC approach might improve the Type I error rate in
certain settings (Brandt, 2009). Second, there is still a lack
of implementation and straightforward extension in existing
SEM software for some of the approaches, especially the
2SMM approach.
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