The Briefest R overview, Ever

Paul Johnson ${ }^{1}$
${ }^{1}$ Center for Research Methods and Data Analysis

$$
2019
$$

KU
 CENTER FOR RESEARCH METHODS \& DATA ANALYSIS
 College of Liberal Arts \& Sciences

Outline

(1) Overview
(2) Data Import
(3) Packages

4 Data Analysis

- Regression model
(5) Plots
(6) Statistical Distributions
- Normal
- Multivariate Normal
- Wishart
(7) Conclusion

This is Brief

- This talk introduces the vital R (R Core Team, 2017) terminology and usage necessary to get started with structural equation modeling
- Lets assume you have R and Rstudio already installed. If you don't, hurry up (Windows, Mac)
- We can't make you R experts in 1 hour, but
- if you knew R before, you might remember
- if you never used R before, this is an interesting way to start

Extract our Zip file

- If you did not extract our zip folder yet, please do so now (In Win10, one can be fooled by the File Explorer. Do please drag the folder out of the zip)
- Use File manager to look for the folder sem-2/sem-2-1-R.
- We write 1 file (sem-2-1.R.lyx). It creates
- sem-2-1-R.pdf
- sem-2-1-R.R

What you should do

- DO NOT LAUNCH R or Rstudio from the program/applications menu
- Instead, use your file manager, navigate to sem-2/sem-2-1-R
- Find sem-2-1-R.R, and use "open with" on that file. Choose Rstudio.
- If you prefer another IDE (Notepad++, Emacs, Eclipse, OK!. On Windows, don't choose R)
- Our R file has "code chunks" that parallel the examples below.

All data analysis consists of 6 steps

(1) Data import
(2) Recoding
(3) Exploration

4 Analysis
(5) Export of Tables \& Graphs
(6) Writeup

Data Input Formats

- Base R includes importers for some data types
- Addon packages packages exist and can open various other types (with varying degrees of success)
- SPSS, Stata, SAS
- Excel

Check which data files we have in "data"

- Check what files we provided for you in our data directory

```
ddir <- "data"
list.files(ddir)
```

[1] "affect.csv"
look in neighboring folder "data"

- Aside: R can create directories (dir.create()), copy files (file.copy()), etc.

Use read.table to import the csv file

```
fn <- "affect.csv"
affect <- read.table(file.path(ddir, fn), header
    = TRUE, sep = ",", stringsAsFactors = FALSE)
```

- First argument is a file name. Note, I'm using the R function file.path which joins together the data directory and the file name.
- 3 named arguments:
- header $=$ TRUE : use the first row as variable names
- sep = "," : use the comma as the separator
- stringsAsFactors $=$ FALSE : Leave character variables as characters. Do not turn them into labeled discrete variables (R factors)

Check the result

- That thing is a data.frame object

str (affect)

	ta.frame':	380	obs. of 19 variables:
\$	Agency 1	num	$\begin{array}{llllll}3.5 & 2.5 & 1.83 & 2.77 & 3.17\end{array}$
\$	Agency 2	num	$4 \quad 3.17 \quad 2 \quad 3.06 \quad 3.33$
\$	Agency 3	num	$\begin{array}{lllll}4 & 3 & 1.5 & 2.36 & 2.83\end{array}$
\$	Intrin1	num	$\begin{array}{lllll}4 & 3.21 & 3 & 3.13 & 3.5\end{array}$
\$	Intrin2	num	$\begin{array}{lllllllllll}4 & 2 & 3 & 4 & 4 & 2.5 & 3.5 & 3 & 2 & 3.5\end{array}$
\$	Intrin3	num	$\begin{array}{llllllllll}4 & 3 & 2 & 3 & 4 & 3 & 4 & 2 & 3 & 3\end{array}$
\$	Extrin1	num	$\begin{array}{lllllll}1 & 1.83 & 1 & 1.08 & 1.83\end{array}$
\$	Extrin2	num	$12.6711 .17 \quad 2$
\$	Extrin3	num	1.51 .83111 .83
\$	PosAFF1	num	$\begin{array}{lllll}4 & 3 & 3.02 & 3 & 3.78\end{array}$
\$	PosAFF2	num	$\begin{array}{llllllllllll}4 & 3.5 & 2.5 & 2.5 & 3.5 & 3 & 2.5 & 2 & 3 & 3\end{array}$
\$	PosAFF3	num	$4 \begin{array}{llllllllll}4 & 2.5 & 3 & 3 & 3 & 3 & 3 & 2.5 & 3.5 & 3\end{array}$
\$	NegAFF1	num	11.5122 .512 .5121122 .5
\$	NegAFF2	num	$11.6912 .5 \quad 2$
\$	NegAFF3	num	11.511 .51 .5
\$	Sex	int	$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
\$	gender :	chr	"male" "male" "male" "male"
\$	ethnicity:	chr	"Hispanic" "White" "White" "White"
\$	race :	chr	"Nonwhite" "White" "White" "White"

Check the result ...

- data.frame: columns can be different types of variables character: character strings
integer: only integers, no floating point
numeric: floating point
- Other types we don't see here
logical: Coded either TRUE or FALSE, symbols that are interpreted as 1 and 0
factor: R's way of creating categorical variables, either nominal or ordered
Date: Can subtract dates to find time between
- The same information can be encoded in different ways
- Sex is an integer
- Gender is a character variable
- Can see in spreadsheet-like thing with the View() function:

```
View(affect)
```


R factor

- In R, the term "factor" is used for a categorical variable that has "internal integer values" but those values display as "labeled levels".

genderf	internal integer	label
1	"male"	
	2	"female"

- Here we create a new factor variable "affect\$genderf" by pulling in affect\$gender telling it which levels we want, in what order.

```
affect$genderf <- factor(affect$gender, levels =
    c("male", "female"))
```

- Key elements
- Creates a new column inside affect (there are several other ways to do this)
- The function factor() creates a factor

R factor ...

- Check that gender and genderf are different things, but represent same information
The table function can create a quick cross-tabulation:

```
table("genderf" = affect$genderf, "gender" =
    affect$gender)
```

```
gender
genderf 
```

Notice the table output is more sparse if we don't include names for the arguments:

```
table(affect$genderf, affect$gender)
```

	female	male
male	0	195
female	185	0

R factor ...

- Can use jazzier names if you like

```
table("gender as factor" = affect$genderf, "Sex
    as an integer" = affect$Sex)
```

	Sex			
gender as	an	integer		
	factor	1	2	
	male	195	0	
	female	0	185	

- I'll also need an ethnicity factor variable in a later section:

```
affect$ethnicityf <- factor(affect$ethnicity)
```

I allowed R to create the levels in alphabetical order, as we see here:

```
table("ethnicity factor" = affect$ethnicityf,
    "ethnicity" = affect$ethnicity)
```


R factor ...

| ethnicity | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| ethnicity factor | Asian | Black | Hispanic | White |
| Asian | 38 | 0 | 0 | 0 |
| Black | 0 | 19 | 0 | 0 |
| Hispanic | 0 | 0 | 67 | 0 |
| White | 0 | 0 | 0 | 256 |

- Worth mentioning: R is case sensitive
- If I create variables, they always start with small letters
- This input data used capital and small letters, regrettably.

About packages

- R is a computational engine
- to which packages are attached
- The R distribution includes
- 15 base packages (incl. base, datasets, stats, stats4, graphics)
- 15 recommended packages (incl. foreign, MASS, mgcv, nlme, survival)
- The Comprehensive R Archive Network (CRAN) has 12K other "contributed" packages.

Please install a couple of packages

```
CRAN <- "http://rweb.crmda.ku.edu/cran"
KRAN <- "http://rweb.crmda.ku.edu/kran"
options(repos = c(KRAN, CRAN))
install.packages(c("kutils", "rockchalk"), dep =
    c("Depends", "Imports", "LinkingTo"))
```

This specifies CRMDA server KRAN first, so if we have updates they are found, but then it also looks on the more general CRAN network.

- When you run install. packages(), R may ask if you if it can create a personal package repository for you. Generally, the answer is "yes".
- About the packages
- kutils: data management functions created at CRMDA
- rockchalk: regression functions

Package function example: Data Descriptions

summary (affect)

Agency 1	Agency 2	Agency 3	Intrin1
Min. : 1.000	Min. : 1.000	Min. $\quad 1.000$	Min. $\quad 1.000$
1st Qu.:2.052	1st Qu.:2.167	1st Qu.:2.167	1st Qu.:2.500
Median :2.494	Median :2.500	Median :2.500	Median :3.000
Mean : 2.442	Mean :2.550	Mean :2.544	Mean : 3.002
3 rd Qu.: 2.833	3rd Qu.:2.898	3rd Qu.:2.833	3rd Qu.:3.500
Max. $: 4.000$	Max. $: 4.000$	Max. $: 4.000$	Max. $: 4.000$
Intrin2	Intrin3	Extrin 1	Extrin2
Min. $: 1.000$	Min. 1.000	Min. 00.9717	Min. 1.000
1st Qu.:2.500	1st Qu.:2.500	1st Qu.:1.3190	1st Qu.:1.185
Median $: 3.000$	Median :3.000	Median : 1.5000	Median :1.538
Mean :2.987	Mean :3.080	Mean : 1.6151	Mean :1.686
3 rd Qu.: 4.000	3rd Qu.: 4.000	3rd Qu.:1.8333	3 rd Qu. 2.000
Max. $: 4.025$	Max. $: 4.077$	Max. $\quad 3.5215$	Max. 3.500
Extrin3	PosAFF1	PosAFF2	PosAFF3
Min. 00.9548	Min. $: 1.000$	Min. $: 1.000$	Min. 1.000
1st Qu.:1.1667	1st Qu.:2.744	1st Qu.:2.500	1st Qu.:2.500
Median : 1.5000	Median $: 3.023$	Median :3.000	Median :3.000
Mean :1.6333	Mean :3.136	Mean $: 2.991$	Mean :3.069
3rd Qu.:1.9320	3 rd Qu.:3.500	3 rd Qu.:3.500	3rd Qu.:3.500
Max. 3.8397	Max. $: 4.000$	Max. $: 4.000$	Max. $: 4.000$
NegAFF1	NegAFF2	NegAFF3	Sex

Package function example: Data Descriptions ...

```
Min. :0.8845 Min. :0.864 Min. :0.9186 Min. :1.000
1st Qu.:1.0000 1st Qu.:1.000 1st Qu.:1.0000 1st Qu.:1.000
Median :1.5000 Median :1.495 Median :1.5000 Median :1.000
Mean :1.7007 Mean :1.527 Mean :1.5448 Mean :1.487
3rd Qu.:2.0000 3rd Qu.:2.000 3rd Qu.:2.0000 3rd Qu.:2.000
Max. :4.0000 Max. :4.000 Max. :4.0000 Max. :2.000
    gender
Length:380
Class : character
Mode :character
        ethnicity
        Length:380
        Class : character
        Length:380
        Class :character
        Mode :character Mode :character
    genderf ethnicityf
male :195 Asian : 38
female:185 Black : 19
    Hispanic: 67
    White :256
```


Data Descriptions

library (rockchalk)
 summarize(affect)

Data Descriptions

nobs :	: 380	nobs :	380.000	nobs :	380.000	nobs	380
nmiss	: 0	nmiss	0.000	nmiss	0.000	nmiss	0
entropy	1	entropy :	1. 374	entropy :	0.911	entropy	1
normedEntropy:	: 1	normedEntropy:	0.687	normedEntropy:	0.911	normedEntropy :	1
ethnicityf							
Asian : 38							
Black : 19							
Hispanic: 67							
White : 256							
nobs :	: 380						
nmiss :	: 0						
entropy :	: 1						
normedEntropy:							

Outline

(1) Overview
(2) Data Import
(3) Packages

4 Data Analysis

- Regression model
(5) Plots
(6) Statistical Distributions
- Normal
- Multivariate Normal
- Wishart
(7) Conclusion

The Im function

- Linear regression uses $\operatorname{Im}()$

```
summary(lm(PosAFF1 ~ genderf, data = affect))
```

```
Call:
```

lm(formula $=$ PosAFF1 ~genderf, data $=$ affect)
Residuals:
Min 1Q Median 3Q Max
$\begin{array}{lllll}-2.1522 & -0.4087 & -0.1134 & 0.3804 & 0.8804\end{array}$
Coefficients:

| | Estimate | Std. Error | t value | Pr (>\|t|) | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 3.11964 | 0.04786 | 65.178 | $<2 \mathrm{e}-16$ | $* * *$ |
| genderffemale | 0.03260 | 0.06860 | 0.475 | 0.635 | |

Signif. codes: $0{ }^{\prime} *_{* *}$, $0.001^{\prime} *_{*}$, 0.01 ' $^{\prime} 0.05$, , 0.1 , 1
Residual standard error: 0.6684 on 378 degrees of freedom
Multiple R-squared: 0.0005973 , Adjusted R-squared: -0.002047
F-statistic: 0.2259 on 1 and 378 DF, p-value: 0.6349

- Did you see some output whir past you?

The Im function ...

- Instead, we save the output into an object named "m1" (our choice)

```
m1 <- lm(PosAFF1 ~ genderf, data = affect)
summary(m1)
```

Call:
lm(formula $=$ PosAFF1 \sim genderf, data $=$ affect)
Residuals:
Min 1Q Median 3Q Max
$\begin{array}{lllll}-2.1522 & -0.4087 & -0.1134 & 0.3804 & 0.8804\end{array}$

Coefficients:

```
            Estimate Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\)
(Intercept) \(3.11964 \quad 0.04786 \quad 65.178<2 e-16\) ***
\(\begin{array}{lllll}\text { genderffemale } 0.03260 & 0.06860 & 0.475 & 0.635\end{array}\)
Signif. codes: \(0{ }^{\prime}{ }^{* * *}\), \(0.001^{\prime}{ }^{* *}\), \(0.01^{\prime}{ }^{*}\), 0.05 ,', 0.1 , 1
Residual standard error: 0.6684 on 378 degrees of freedom
Multiple R-squared: 0.0005973, Adjusted R-squared: -0.002047
F-statistic: 0.2259 on 1 and 378 DF, p-value: 0.6349
```


The Im function ...

- summary() is a generic function, there are different "implementations" customized to the different types of inputs
- What other follow-up functions might be used?
anova Stat tests to compare models (F , or χ^{2})
predict obtain predicted values, either for observed cases or hypothetical inputs
resid display residuals plot regression diagnostics

Add more predictors

```
m2 <- lm(PosAFF1 ~ genderf + Agency1, data =
    affect)
```

" + " sign serves obvious role

```
summary(m2)
```

Call:
lm(formula $=$ PosAFF1 \sim genderf + Agency1, data $=$ affect)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-2.21823	-0.40443	0.00502	0.51699	1.27670

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	2.45163	0.16694	14.686	$<2 e-16$	$* * *$
genderffemale	0.04212	0.06720	0.627	0.531	
Agency1	0.27167	0.06516	4.169	$3.8 e-05$	$* * *$

Signif. codes: $0{ }^{\prime}{ }^{* * *}$, $0.001^{\prime}{ }^{* *}$, $0.01^{\prime}{ }^{*}$, 0.05 , , 0.1 , 1
Residual standard error: 0.6544 on 377 degrees of freedom

Add more predictors ...

```
Multiple R-squared: 0.04464, Adjusted R-squared: 0.03958
F-statistic: 8.809 on 2 and 377 DF, p-value: 0.0001824
```


Other follow ups you might try

- R uses function anova() as a general purpose comparison tool. Confusing to people who expect it means ANOVA but it does not.
- anova behaves differently if we supply just one model

```
anova(m2)
```

```
Analysis of Variance Table
Response: PosAFF1
\begin{tabular}{lrrrrrr} 
& Df & Sum Sq & Mean Sq & F value & \(\operatorname{Pr}(>F)\) & \\
genderf & 1 & 0.101 & 0.1009 & 0.2357 & 0.6276 & \\
Agency1 & 1 & 7.443 & 7.4425 & 17.3820 & \(3.796 e-05\) & \(* * *\) \\
Residuals & 377 & 161.422 & 0.4282 & & &
\end{tabular}
Residuals 377 161.422 0.4282
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
```

anova(m1, m2)

Other follow ups you might try ...

- or two models
anova (m1, m2)

```
Analysis of Variance Table
Model 1: PosAFF1 ~ genderf
Model 2: PosAFF1 ~ genderf + Agency1
    Res.Df RSS Df Sum of Sq F Fr Pr (>F)
1 378 168.86
2 377 161.42 1 7.4425 17.382 3.796e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Other follow ups you might try ...

- Regression diagnostics using influence measures

```
m2.inf <- influence.measures(m2)
summary(m2.inf)
```

Potentially influential observations of							
	dfb. 1	dfb.gndr	dfb . Agn 1	dffit	cov.r	cook.d	hat
26	0.32	-0.11	-0.29	0.33 *	1.00	0.04	0.03 _*
38	0.06	-0.03	-0.05	0.06	$1.02{ }^{*}$ *	0.00	0.02
95	0.10	0.04	-0.12	-0.13	$1.03{ }^{*}$	0.01	0.03 _*
124	-0.01	-0.01	0.01	0.01	1.03 *	0.00	0.02
136	0.14	-0.05	-0.12	0.14	$1.03{ }^{*}$ *	0.01	0.03 _*
146	-0.09	-0.03	0.11	0.12	1.03_*	0.01	0.03 *
177	0.00	0.13	-0.05	-0.19	0.96 *	0.01	0.01
193	0.22	0.10	-0.27	-0.32_*	0.99	0.03	0.02
194	0.22	0.10	-0.27	-0.32_*	0.99	0.03	0.02
219	0.06	-0.12	-0.06	-0.17	0.98_*	0.01	0.01
245	0.08	0.03	-0.09	0.10	1.03_*	0.00	0.02
252	-0.10	0.04	0.10	0.12	1.03_*	0.00	0.03 *
274	-0.11	-0.12	0.12	-0.21	0.97 _*	0.01	0.01
275	0.02	-0.14	-0.02	-0.19	0.96 _*	0.01	0.01
336	0.08	-0.18	-0.08	-0.27 _ *	0.92_*	0.02	0.01

Other follow ups you might try ...

365	0.02	0.01	-0.02	0.03	$1.03_{-} *$	0.00	0.02
376	0.02	-0.14	-0.02	-0.19	$0.96_{-} *$	0.01	0.01
380	-0.13	-0.12	0.14	-0.22	$0.98_{-} *$	0.02	0.01

KU

High Level plot functions in R Base

- functions provided with base R
create a "device"

plot	hist	barplot
plot.default	boxplot	dotchart
matplot	coplot	

- Run "example(hist)", "example(barplot)", and so forth
- Run "demo(graphics)"

Low Level plotting functions

- High level functions create basic plot framework, coordinates
- Low Level functions: added accents or features

text	points	lines	box
arrows	segments	mtext	abline
axis	legend	title	polygon
rect			

Regression plot from the rockchalk package

```
library(rockchalk)
plotSlopes(m2, plotx = "Agency1", modx =
    "genderf", interval = "confidence")
```


Regression plot from the rockchalk package ...

Many plot-oriented packages

- In R's recommended set, the package lattice is intended to produce polished "trellis" plots
- The separate sections are referred to as "panels", which allow intricate customizations
- The formula uses the pipe "|" to signify subgroups

```
library(lattice)
histogram( ~ PosAFF1 | genderf, data = affect,
    xlab = "Positive Affect")
```


Many plot-oriented packages ...

- A popular package ggplot2 offers similar output under the guise of "facets".

Outline

(1) Overview
(2) Data Import
(3) Packages
(4) Data Analysis

- Regression model
(5) Plots
(6) Statistical Distributions
- Normal
- Multivariate Normal
- Wishart
(7) Conclusion

Normal jargon

- In SEM, you can't turn a page without somebody writing "assuming the data is multivariate normally distributed ..." or $\mathbf{X} \sim M V N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. They also talk about Wishart distribution likelihood. A lot!
- That's mystifying to most social scientists
- R offers some ways to explore the gaps in our understanding.
- We start with 1 Normal variable, then look at multivariate Normal, then Wishart.

Pull one Normal sample

```
set.seed(234234)
N <- 1000
mu <- 44
sigma <- 10
x <- rnorm(N, m = mu, s = sigma)
hist(x, breaks = 30)
```


Pull one Normal sample ...

The Normal probability model

The Normal probability model

That's the probability density,

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

In my mind, it is written like this (anticipates multivariate Normal)

$$
\frac{1}{(2 \pi)^{1 / 2} \sigma} e^{-\frac{1}{2}(x-\mu) \frac{1}{\sigma^{2}}(x-\mu)}
$$

Outline

(1) Overview
(2) Data Import
(3) Packages

4 Data Analysis

- Regression model
(5) Plots
(6) Statistical Distributions
- Normal
- Multivariate Normal
- Wishart
(7) Conclusion

Draw an MVN sample

- First, we need to create a mean vector mu

```
library(rockchalk)
mu <- c(3, 1, 44, 19) # numbers from top of my
    head
mu
```

```
[1] }
```

- and a covariance matrix sigma

```
rho <- lazyCor(c(0.5, 0.6, 0.7, -0.1, 0.1, 0.2))
sd <- c(1, 2, 7, 4)
Sigma <- lazyCov(rho, sd)
Sigma
```


Draw an MVN sample ...

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1.0	1.0	4.2	2.8
$[2]$,	1.0	4.0	-1.4	0.8
$[3]$,	4.2	-1.4	49.0	5.6
$[4]$,	2.8	0.8	5.6	16.0

- Note I'm using "Sigma" here as name for covariance matrix, to signify it stands for Σ, not "sigma" σ.
- Ask for one random sample from that MVN generator

```
N <- 1
mvrnorm(N, m = mu, S = Sigma)
```

[1] $2.647835-1.278373 \quad 51.68672915 .517961$

- What did you get? Is that " 4 people-worth" of data, or " 1 person's data"?
- Ask for 5 cases from that generator

Draw an MVN sample ...

$$
\begin{aligned}
& \mathrm{N}<-5 \\
& \mathrm{mvrnorm}(\mathrm{~N}, \mathrm{~m}=\mathrm{mu}, \mathrm{~S}=\text { Sigma) }
\end{aligned}
$$

$$
[, 1] \quad[, 2] \quad[, 3] \quad[, 4]
$$

$$
\begin{array}{lllll}
{[1,]} & 2.2850417 & 2.3721830 & 35.21399 & 17.396727
\end{array}
$$

$$
\left[\begin{array}{lllll}
{[2,]} & 2.7031800 & 1.6026484 & 42.71234 & 17.042282
\end{array}\right.
$$

$$
\left[\begin{array}{lllll}
{[3,]} & -0.5003047 & -2.8547621 & 37.42284 & 6.372255
\end{array}\right.
$$

$$
[4,] \quad 4.1630361-0.6135541 \quad 58.45679 \quad 19.259787
$$

$$
\left[\begin{array}{llllll}
{[5,]} & 2.9469960 & 3.9712670 & 40.34506 & 14.036906
\end{array}\right.
$$

- Dial up the sample size to 500 . Call the result X, get a pair plot

$$
\begin{aligned}
& \mathrm{N}<-500 \\
& \mathrm{X}<-\mathrm{mvrnorm}(\mathrm{~N}, \mathrm{~m}=\mathrm{mu}, \mathrm{~S}=\text { Sigma) } \\
& \text { pairs (X) }
\end{aligned}
$$

Draw an MVN sample ...

Sample versus Sigma

The sample variance/covariance matrix

```
var(X)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1.057213	1.1005485	4.383614	2.9438276
$[2]$,	1.100549	4.3144473	-1.067406	0.8533109
$[3]$,	4.383614	-1.0674059	47.564156	6.9088575
$[4]$,	2.943828	0.8533109	6.908857	16.1618587

is not exactly the same as Sigma.

- But it hovers around Sigma, doesn't it? Check for yourself.

```
X <- mvrnorm(N, m = mu, S = Sigma)
var(X)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	0.9428358	0.8792096	4.156707	2.6206476
$[2]$,	0.8792096	3.9736975	-1.956495	0.3235383
$[3]$,	4.1567068	-1.9564948	50.783077	5.1520706
$[4]$,	2.6206476	0.3235383	5.152071	15.6659116

Sample versus Sigma ...

- Pull another sample, calculate the variance matrix again

```
X <- mvrnorm(N, m = mu, S = Sigma)
var(X)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1.106521	1.100028	4.846117	2.965107
$[2]$,	1.100028	4.146812	-1.390915	1.240546
$[3]$,	4.846117	-1.390915	53.874826	7.121330
$[4]$,	2.965107	1.240546	7.121330	15.287877

- Again (again, again, again)

```
X <- mvrnorm(N, m = mu, S = Sigma)
var(X)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1.059179	1.1419708	4.4572142	2.867251
$[2]$,	1.141971	4.1243364	-0.6975967	1.136091
$[3]$,	4.457214	-0.6975967	49.6711047	6.161464
$[4]$,	2.867251	1.1360906	6.1614637	15.743375

Sample versus Sigma ...

- Notice: The covariance matrix changes a little bit from one sample to another

Digression: The MVN Density Formula

- A vector of means $\mu=$ "mu" and a covariance matrix $\Sigma=$ "Sigma"
$\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{p}\end{array}\right] \sim M V N(\boldsymbol{\mu}, \boldsymbol{\Sigma})=M V N\left(\left[\begin{array}{c}\mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{p}\end{array}\right],\left[\begin{array}{cccc}\sigma_{1}^{2} & \sigma_{12} & & \sigma_{1 p} \\ \sigma_{12} & \sigma_{2}^{2} & & \sigma_{2 p} \\ & & \ddots & \\ \sigma_{1 p} & \sigma_{2 p} & & \sigma_{p}^{2}\end{array}\right]\right)$
- The multivariate PDF looks similar to the second way I wrote the Normal pdf for one variables

$$
f(\mathbf{x})=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{\frac{-1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

where p is the number of elements in μ and $|\Sigma|$ is the determinant of Σ.

- If you need to create Sigma, it is easiest do do that by starting with standard deviations and a correlation matrix

$$
S D \times C o r r \times S D
$$

Digression: The MVN Density Formula ...

$$
\begin{align*}
\text { Sigma }= & {\left[\begin{array}{ccccc}
\sigma_{x 1} & 0 & 0 & 0 & 0 \\
0 & \sigma_{x 2} & 0 & 0 & 0 \\
0 & 0 & \sigma_{x 3} & 0 & 0 \\
0 & 0 & 0 & \sigma_{x 4} & 0 \\
0 & 0 & 0 & 0 & \sigma_{x 5}
\end{array}\right] \times\left[\begin{array}{cccc}
1 & \rho_{12} & \rho_{13} & \cdots \\
\rho_{21} & 1 & \rho_{23} & \\
\rho_{2 p} \\
\rho_{31} & \ddots & 1 & \\
\vdots & & & \rho_{3 p} \\
\rho_{p 1} & 11 & \rho_{11} & \rho_{11}
\end{array}\right] } \\
& \times\left[\begin{array}{ccccc}
\sigma_{x 1} & 0 & 0 & 0 & 0 \\
0 & \sigma_{x 2} & 0 & 0 & 0 \\
0 & 0 & \sigma_{x 3} & 0 & 0 \\
0 & 0 & 0 & \sigma_{x 4} & 0 \\
0 & 0 & 0 & 0 & \sigma_{x 5}
\end{array}\right] \tag{1}
\end{align*}
$$

Outline

(1) Overview
(2) Data Import
(3) Packages
(4) Data Analysis

- Regression model
(5) Plots
(6) Statistical Distributions
- Normal
- Multivariate Normal
- Wishart
(7) Conclusion

The Wishart

- The Wishart has special meaning for structural equation modelers.
- It is the distribution underlying the classic LISREL model and Maximum Likelihood estimation of SEM.

Where do Wishart Draws Come From?

- Draw X from mvrnorm. Suppose it has 1000 rows and 4 variables.
- We need the expected values to be 0 , so re-set mu

```
mu <- c(0, 0, 0, 0)
N <- 1000
X <- mvrnorm(N, m = mu, S = Sigma)
```

- Calculate the covariance matrix of \mathbf{X}. That is 4×4

```
var(X)
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	0.9422976	0.8845368	4.166469	2.572029
$[2]$,	0.8845368	3.9215809	-1.616552	0.201467
$[3]$,	4.1664686	-1.6165519	46.590962	6.564746
$[4]$,	2.5720286	0.2014670	6.564746	14.987849

Where do Wishart Draws Come From?

- Recall formula for covariance when $\mu=(0,0,0,0)^{T}$ is

$$
\frac{1}{N-1} \mathbf{X}^{T} \mathbf{X}
$$

- The variation of $\mathbf{X}^{T} \mathbf{X}$ from one-sample to another has a mathematical law, Wishart's distribution.
- Recall that our $\boldsymbol{\Sigma}$ is

Sigma

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1.0	1.0	4.2	2.8
$[2]$,	1.0	4.0	-1.4	0.8
$[3]$,	4.2	-1.4	49.0	5.6
$[4]$,	2.8	0.8	5.6	16.0

For a given N, the Wishart value will be something hovering around

$$
(N-1) * \text { Sigma }
$$

Where do Wishart Draws Come From?

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	999.0	999.0	4195.8	2797.2
$[2]$,	999.0	3996.0	-1398.6	799.2
$[3]$,	4195.8	-1398.6	48951.0	5594.4
$[4]$,	2797.2	799.2	5594.4	15984.0

The Wishart

- R provides a simulator for the Wishart distribution, it requires the parameters for the degrees of freedom ($\mathrm{N}-1$) and the covariance matrix.

```
rWishart(1, df = N - 1, Sigma = Sigma)
```

```
, , 1
\begin{tabular}{rrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & 963.5219 & 904.8346 & 4077.600 & 2689.9585 \\
{\([2]\),} & 904.8346 & 3905.8417 & -1584.001 & 455.8215 \\
{\([3]\),} & 4077.6003 & -1584.0012 & 49089.373 & 4401.6478 \\
{\([4]\),} & 2689.9585 & 455.8215 & 4401.648 & 16211.4643
\end{tabular}
```

- Draw another one
rWishart(1, df = N - 1, Sigma = Sigma)

The Wishart ...

```
, , 1
    [,1] [, 2] [, 3] [, 4]
[1,] 1027.3948 993.9768 4263.393 2906.1633
[2,] 993.9768 3872.0724 -1459.308 937.0922
[3,] 4263.3930-1459.3083 48596.057 6467.7721
[4,] 2906.1633 937.0922 6467.772 15680.1347
```


A Sample of Covariance Matrices?

- Draw 100 Wishart matrices

```
lotsofwishes <- rWishart(100, df = N - 1, Sigma =
    Sigma)
```

- They are an R "array", can get first matrix like this
lotsofwishes [, , 1]

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1018.6397	979.5887	4285.956	2850.5592
$[2]$,	979.5887	3842.1253	-1539.122	972.9656
$[3]$,	4285.9557	-1539.1221	49115.957	6045.3696
$[4]$,	2850.5592	972.9656	6045.370	15556.5362

- Or the 53rd like this:
lotsofwishes [, 53]

A Sample of Covariance Matrices? ...

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1061.316	1125.1713	4414.3902	2904.322
$[2]$,	1125.171	3933.0465	-640.3095	1421.105
$[3]$,	4414.390	-640.3095	49214.9351	5448.250
$[4]$,	2904.322	1421.1049	5448.2496	15957.901

- Here's where the structural equation modeling part comes back into play
- SEM compares a model/theoretical covariance with a sample covariance.
- The model/theoretical covariance, which is a matrix full of coefficients (loadings, etc) that represent our theoretical parameters.
- Estimator shifts the parameters to try to make the theoretical covariance similar to the observed covariance as possible.
- Even when we have N observations in a data set, the SEM calculations are based on distilled information, the $p \times p$ covariance matrix. SEM is, in a sense, based on 1 data point, which is a matrix.

4 Basic Goals Achieved

(1) Import data
(2) Revise data
(3) Do analysis (fit models)

- Create plots

If you ever need help

- Ask in the r-help email list, or in https://stackoverflow.com/questions/tagged/r
- Save some time: Ask your question with
- code you ran
- copy/pasted output \& error messages
- Output from sessionInfo()

References

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Session

sessionInfo ()

```
R version 3.6.0 (2019-04-26)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 19.04
```

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC = C
LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8
LC_MESSAGES = en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS = C
[10] LC_TELEPHONE=C
LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION = C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lattice_0.20-38 rockchalk_1.8.144

Session

```
loaded via a namespace (and not attached):
    [1] Rcpp_1.0.1 MASS_7.3-51.4 grid_3.6.0 plyr_1.8.4
        nlme_3.1-140 xtable_1.8-4
    [7] stats4_3.6.0 zip_2.0.2 carData_3.0-2 minqa_1.2.4
        nloptr_1.2.1 Matrix_1.2-17
[13] pbivnorm_0.6.0 boot_1.3-22 openxlsx_4.1.0 splines_3.6.0
    lme4_1.1-21 tools_3.6.0
[19] foreign_0.8-71 kutils_1.69 compiler_3.6.0 mnormt_1.5-5
    lavaan_0.6-3
```

