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Intro to Bayesian modeling

Conditional vs. unconditional probabilities

Unconditional probability to have a heart diseases P (H = 1), or to
follow a high fat diet P (D = 1), i.e. the marginal probabilities for
some events

Conditional probability to have a heart disease when following a high
fat diet P (H = 1|D = 1), i.e. the probability for some event for a
specific subgroup (if you only select people with a high fat diet, how
many of them have a heart disease?)
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Intro to Bayesian modeling

Example conditional vs. unconditional probabilities

H = 0 H = 1

D = 0 .60 .05 .65
D = 1 .20 .15 .35

.80 .20 1.00

The probability to have a heart disease is P (H = 1) = 20%.
The joint probability to have a person who follows a high fat diet and
to have a heart disease is P (H = 1, D = 1) = 15%
Conditional probabilities (of having a heart attack when following a
high fat diet):

P (H = 1|D = 1) =
P (H = 1, D = 1)

P (D = 1)
=
.15

.35
= .43 (1)

and for having a heart attack when not following a high fat diet

P (H = 1|D = 0) =
P (H = 1, D = 0)

P (D = 0)
=
.05

.65
= .08 (2)
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Intro to Bayesian modeling

Bayes theorem

The Bayes rule relates to conditional probabilities to each other:

P (D = 1|H = 1) =
P (H = 1|D = 1) · P (D = 1)

P (H = 1)
(3)
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Intro to Bayesian modeling

Model estimation

A (probability) model for a data set y is formulated using a
conditional density f(y|θ) for given parameter values θ.

This density is often written as:

LL(θ) = logL(θ) = f(y|θ) (4)

These parameter values are typically unknown and need to be
estimated.

This is often conducted by finding those values that have the highest
probability to produce the data:

θ̂ML = argmax
θ
LL(θ) (5)

and is called maximumum likelihood estimate.
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Intro to Bayesian modeling

Model estimation

For a cfa the density is given by

LL(θ) = log |Σ(θ)| − log |S|+ tr(SΣ(θ)−1)− p (6)

Characteristics:

No assumption about θ (e.g., plausible range)

Comparison of estimates only after estimation with θ̂ and V ar(θ̂)
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Intro to Bayesian modeling

Model estimation: including further information

Assume that y and θ both are random and have a probability
distribution (density).

Then the conditional density f(y|θ) is

f(y|θ) = f(y,θ)

f(θ)
(7)

where f(y,θ) is the joint distribution of the data and the parameters,
and f(θ) is a prior distribution (marginal density of θ)

However, what we are actually interested in is

f(θ|y) = f(y,θ)

f(y)
(8)

. . . which is the probability (distribution) for a parameter (vector)
given that we observed some data.

However, f(y,θ) is typically unknown.
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Intro to Bayesian modeling

Model estimation: The Bayes rule

Both equations can be combined using the Bayes rule from above:

f(θ|y) = f(y|θ) · f(θ)
f(y)

(9)

. . . or equivalently

f(θ|y)︸ ︷︷ ︸
posterior

= f(y|θ)︸ ︷︷ ︸
likelihood

· f(θ)︸︷︷︸
prior

· f(y)−1︸ ︷︷ ︸
constant

(10)

which is typically expressed as

f(θ|y) ∝ f(y|θ) · f(θ) (11)

where ∝ means “proportional to”
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Intro to Bayesian modeling

Bayes: Define estimator

Estimator:

θ̂mode := argmax
θ

f(θ|y) (12)

If the prior is a constant, i.e. f(θ) ∝ 1, it follows that

θ̂mode = argmax
θ

f(θ|y) (13)

= argmax
θ

f(y|θ)︸ ︷︷ ︸
likelihood

· f(θ)︸︷︷︸
∝1

(14)

= argmax
θ

LL(θ) = θ̂ML (15)

which is the ML estimator from above.
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Intro to Bayesian modeling

Bayes estimators with real (non-constant) priors

From the equations above, we can rewrite the model to get some
more information about the importance and the characteristics of the
prior

θ̂mode = argmax
θ

f(θ|y) (16)

= argmax
θ

f(y|θ) · f(θ) (17)

= argmax
θ

log f(y|θ) + log f(θ) (18)

= argmax
θ

LL(θ) + log f(θ) (19)

log f(θ) can be viewed as a penalty term to the ML estimate.
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Intro to Bayesian modeling

Bayes estimators with real (non-constant) priors

If the prior log f(θ) has mass on a specific θ0 then

. . . the LL(θ) has only a minor influence on the estimate θ̂mode

. . . and θ̂mode ≈ θ0

With increasing sample size, the impact of the prior vanishes, i.e. in
large sample sizes the ML estimator and the Bayes estimator will
produce the same estimates.
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Intro to Bayesian modeling

Example for consequences of (wrong) priors
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Figure: Consequences of priors (dotted lines) for posterior distribution (solid lines)
for the same data set (dashed lines).
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Intro to Bayesian modeling

Thought experiment for prior selection

Run experiment 1 → y1, ML estimate based on f(θ|y1) ∝ f(y2|θ) · 1
Run experiment 2 → y2

Now, we can use the information from the first experiment for the
second experiment:

f(θ|y2) ∝ f(y2|θ) · f(y1|θ) (20)
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Intro to Bayesian modeling

Thought experiment for prior selection

Then we have a Bayesian estimator

θ̂mode = argmax
θ

f(θ|y2) (21)

= argmax
θ

f(y2|θ) · f(y1|θ) (22)

= argmax
θ

LL2(θ) + LL1(θ) (23)

If y1,y2 are iid then it holds in general that LL(θ) =
∑n

i=1 LLi(θ)
and hence

θ̂mode = argmax
θ

n1+n2∑
i=1

LLi(θ) (24)

which is the ML estimate for merged data sets 1 and 2.
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Intro to Bayesian modeling

More on priors

For each parameter in a model, a prior distribution needs to be
chosen.

This includes two parts:

Choose a distribution type (e.g., normal)
Choose specific so called hyperparameters for the distribution (e.g.,
mean and variance)

Categorization of priors:

Uninformative: e.g., uniform distribution
Weakly informative: e.g., normal distribution with medium variance
(e.g., 2)
Informative: e.g., normal distribution with small variance (e.g., .1)
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Intro to Bayesian modeling

Typical priors

Normal distribution, e.g., for

Means
Regression coefficients
Covariances

Inverse Gamma distribution, e.g., for variances

Half-Cauchy distribution, e.g., for standard deviation

Inverse Wishart distribution, e.g., for covariance matrices

Lkj distribution for correlation matrices

Beta distribution, e.g., for correlation coefficients or probabilities
(bounded at 0 and 1)
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Intro to Bayesian modeling

Derivation of posterior distribution

The posterior distribution is typically a multivariate (conditional)
distribution for which no simple expression exists.

As a consequence, so called sampling procedures are used that sample
from the posterior distribution

The marginal distributions are then used for inference (e.g., mean,
standard deviation, median, percentiles, mode)

There exist different sampling procedures, which can be subsumed
under Monte Carlo Markov Chain (MCMC) procedures, for example,

Gibbs
Metropolis Hastings
Hamiltonian Monte Carlo (HMC)
. . .
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Intro to Bayesian modeling

Basic principles of MCMC

In each iteration i, a draw from the distribution f(zi−1) is conducted.
Each draw only depends on the previous sample and iteration.

f(z0)→ z1 → f(z1)→ z2 → f(z2)→ z3 . . . (25)

It can be shown that f(zi>t) approximates the true posterior
distribution f(z) after t iterations (e.g., t = 1000)

→ Stationary distribution that ignores the starting values z0.

The initial iterations are called burnin and are discarded

After stationarity is achieved, further samples are drawn and used for
the final estimates
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Intro to Bayesian modeling

Basic principles Gibbs

The Gibbs sampler samples from a full conditional distribution

Example: Data set y and two parameters µ, σ2:

1 Sample from f(µ|σ2
0 ,y): µ1

2 Sample from f(σ2|µ1,y): σ2
1

3 Sample from f(µ|σ2
1 ,y): µ2

4 Sample from f(σ2|µ2,y): σ2
2

5 . . .
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Intro to Bayesian modeling

Practical issues: Convergence

To ensure that a model converges, several chains are used that use
different sets of starting values: If the model converges, the
parameter estimates from all chains should be similar

Pairs of parameter estimates (e.g., from draws z1, z2) can be highly
correlated (autocorrelation). It is meaningful to skip some of the
iterations in between. This is called thinning and the amount of
thinning is indicated by the thinning factor (e.g., a factor of 3 uses
samples z1, z4, z7 . . .)

Convergence checks:

Rhat statistic
Trace plots
Density plots
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Intro to Bayesian modeling

Practical issues: Rhat statistic

Aka Potential scale reduction (PSR) or Gelman-Rubin convergence
criterion

Assesses within vs. between chain variability:

Rhat =

√
W +B

W
(26)

For convergence Rhat→ 1. As a rule of thumb Rhat < 1.1 indicates
convergence.

If model has not converged, use more iterations.

Brandt (KU) Nonlinear SEM June 7 22 / 60



Intro to Bayesian modeling

Examples in R and stan

1 Regression model

2 Multilevel model
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Simple models in stan Regression model

Regression model: Implementation in stan

Assume the following simple regression model with interaction effect:

yi = β0 + β1x1i + β2x2i + β3x1ix1i + εi (27)

with normal residual εi ∼ N(0, σ).

This model implies the following distribution of yi:

yi ∼ N(β0 + β1x1i + β2x2i + β3x1ix1i︸ ︷︷ ︸
=ŷi

, σ) (28)

= N(ŷi, σ) (29)

where ŷi is the conditional mean (or expected value) for yi for subject
i given predictor values x1i, x2i and parameters β0, . . . , β3.
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Simple models in stan Regression model

Regression model: Implementation in stan

For a model in stan, one needs to specify this mean and this variance
as well the priors for the parameters

Formulate a mean structure for y: muy=β0 + . . .
Formulate a statistical model for y: y ∼ normal(muy,sigmay)

Typical (weakly to non-informative) priors here are:

Regression coefficients: β ∼ N(0, 1)
Residual variance (sigmay): σ ∼ Cauchy(0, 2.5)
which is the Half Cauchy distribution
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Simple models in stan Regression model

Regression model: Implementation in stan

We now switch to R and implement the model for the pisa data set
(demo).
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Simple models in stan Multilevel model

Random intercept model: Implementation in stan

Assume the following extension of the regression model using a
clustering (e.g. student i in school j):

yij = β0 + β1x1ij + β2x2ij + β3x1ijx2ij + u0j + εij (30)

with normal residual εi ∼ N(0, σ) and random term u0j that indicates
cluster-specific deviations from the overall intercept.

This model implies the following distribution of yij and u0j :

yij ∼ N(β0 + β1x1ij + β2x2ij + β3x1ijx2ij + u0j , σ) (31)

u0j = N(0, σu) (32)
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Simple models in stan Multilevel model

Illustration of random intercept model

0

0 01

0
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Simple models in stan Multilevel model

Random intercept model: Implementation in stan

For a model in stan, one needs

Formulate a mean structure for y: muy=β0 + . . .+ u0
Formulate a statistical model for y: y ∼ normal(muy,sigmay)

Formulate a statistical model for u: u0 ∼ normal(0,sigmau)

Typical (weakly to non-informative) priors here are:

Regression coefficients: β ∼ N(0, 1)
(Residual) variance (sigmay,sigmau): σ ∼ Cauchy(0, 2.5)
which is the Half Cauchy distribution
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Simple models in stan Multilevel model

Random intercept model: Implementation in stan

We now switch to R and implement the model for the pisa data set
(exercise).
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Simple models in stan Multilevel model

Random intercept and slope model: Implementation in stan

Assume the following extension of the random intercept model using
random slopes for the two linear effects:

yij = β0 + β1x1ij + β2x2ij + β3x1ijx2ij

+ u0j + u1jx1ij + u2jx2ij + εij (33)

with normal residual εi ∼ N(0, σ) and random terms u0j , u1j , u2j
that indicate cluster-specific deviations from the overall trajectories.

This model implies the following distribution of yij and u0j :

yij ∼ N(β0 + β1x1ij + β2x2ij + β3x1ijx2ij

+ u0j + u1jx1ij + u2jx2ij , σ) (34)

ukj = N(0, σuk), k = 0, 1, 2 (35)
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Simple models in stan Multilevel model

Illustration of random intercept and slope model
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Simple models in stan Multilevel model

Random intercept and slope model: Implementation in stan

For a model in stan, one needs

Formulate a mean structure for y: muy=β0 + . . .+ u0 + . . .
Formulate a statistical model for y: y ∼ normal(muy,sigmay)

Formulate a univariate model for each u: e.g., u0 ∼
normal(0,sigmau0)

Or, a multivariate formulation, which in general is a meaningful
alternative: u ∼ multi normal(0,Sigmau).

We choose the univariate model for now because

The variances in this example are close to zero
Multivariate distributions should be reparameterized using a Cholesky
decomposition in stan (see below)
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Simple models in stan Multilevel model

Random intercept and slope model: Implementation in stan

We now switch to R and implement the model for the pisa data set
(exercise).
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Simple models in stan Structural equation model

SEM: Implementation in stan

For a SEM in stan, one needs to include a model for each observed
and latent variable.

Latent variables are treated as parameters that are unknown. Using
the sampler, one directly generates scores (idea: factor scores) for
each person and hence can directly use them for the model
formulation.

For each variable measurement or structural equations need to be
specified as well as a statistical model. This model can be univariate
(e.g., for indicator variables) or multivariate (e.g., for latent predictors
that correlate).
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Simple models in stan Structural equation model

SEM: Measurement model

For each observed variable x, y, one formulates a measurement
equation, for example

xi = τx + λxξi + δi (36)

yi = τy + λyηi + εi (37)

which results in a statistical model of

xi ∼ N(τx + λxξi, σδ) (38)

yi ∼ N(τy + λyηi, σε) (39)

and can be implemented in the same way as the regression model
above.
Constraints and fixed parameters can directly be included e.g., by
having

x1i ∼ N(ξi, σδ) (40)

for a scaling variable x1i and factor loading of 1 and intercept 0.
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Simple models in stan Structural equation model

SEM: Structural model

For each dependent variable η, one formulates a structural equation,
for example

ηi = β0 + β1ξ1i + β2ξ2i + β3ξ1ix2i + ζi (41)

which results in a statistical model of

ηi ∼ N(β0 + β1ξ1i + β2ξ2i + β3ξ1ix2i, σζ) (42)

and can be implemented in the same way as the regression model
above.
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Simple models in stan Structural equation model

SEM: Structural model

For predictor variables ξ1, ξ2, one typically formulates a multivariate
model using a vector of means and covariance matrix.

In stan there are several possibilities to do that
1 Generate a covariance matrix and use a multivariate (normal)

distribution for ξ
2 Generate a correlation matrix and standard deviations, and use a

multivariate (normal) distribution for ξ
3 Use a Cholesky transformation and generate univariate normal variables

that are transformed to ξ

where the advantages for estimation increase from 1 to 3 (i.e. 1 is
least preferable). In our example this leads to a sampling time
efficiency of the factor 3.
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Simple models in stan Structural equation model

SEM: Structural model

1 Covariance matrix: use
matrix[dim(xi),dim(xi)] phi; as parameter and
wishart(nu,Sigma); as prior
with hyperpriors nu (degrees of freedom), Sigma (covariance matrix).
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Simple models in stan Structural equation model

SEM: Structural model

2 Correlation matrix + SD’s: use

corr matrix[#(xi)] rho;

vector<lower=0>[#(xi)] sigmaxi;

as parameters for correlation matrix and vector of SD’s (dim(xi) is
the number of ξ’s) and

rho ∼ lkj corr(2);

sigmaxi ∼ cauchy(0,2.5);

as priors

Formulate the covariance matrix in the transformed parameters as

phi = quad form diag(rho,sigmaxi);

and xi is then

xi ∼ multi normal(muxi,phi);
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Simple models in stan Structural equation model

(3) Cholesky transformation

Each matrix ξ of correlated variables can be formulated as

ξ = µ+ Az (43)

where z ∼ N(0, I) are uncorrelated, standard normal variables and A
is a lower triangle matrix (Cholesky matrix).

This procedure has the advantage that univariate z’s can be
generated and then be transformed to correlated variables with
arbitrary mean vector and covariance matrix.

In stan this involves several steps but is more stable and way faster.

In general, it holds that if you can transform a multivariate problem
into a univariate one, then you should do that!
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Simple models in stan Structural equation model

(3) Cholesky transformation in stan for 2 predictor
variables

Parameters:

vector[2] muxi; // mean xi
vector<lower=0>[2] sigmaxi; // SD xi
cholesky factor corr[2] L1;

matrix[N,2] zi; // these are uncorrelated standard normal variables

Transformed parameters:

matrix[N,2] xi;

xi = muxi + zi*diag pre multiply(sigmaxi,L1)’; // this
generates xi

Brandt (KU) Nonlinear SEM June 7 42 / 60



Simple models in stan Structural equation model

(3) Cholesky transformation in stan for 2 predictor
variables

Model:

to vector(zi) ∼ normal(0,1);

muxi ∼ normal(0,1); // means
sigmaxi ∼ cauchy(0,2.5); // SDs
L1 ∼ lkj corr cholesky(2); // Cholesky matrix

Generated quantities:

matrix[2,2] phi; // covariance matrix for output
phi = diag pre multiply(sigmaxi,L1)*

diag pre multiply(sigmaxi,L1)’;
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Simple models in stan Structural equation model

Final remark on covariance/correlation matrices

One can also use the correlation matrix directly. In this case, the
variances of the latent variables are used as a scaling.

Then, only option 2 and 3 can be used. In both cases, one does not
need the SD’s of the latent variables but estimates factor loadings for
all indicators.
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Simple models in stan Structural equation model

SEM: Implementation in stan

We now switch to R and implement the SEM for the Kenny-Judd data set
(exercise and demo).
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Models and path diagrams

Single level factor model

Each indicator has the measurement model:

xi = λξi + δi (44)
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Models and path diagrams

Two level factor model (using Muthén type notation)
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Models and path diagrams

Two level factor model: Equations and interpretation

Each indicator has a measurement model that includes within and
between components:

xij = λwξ1ij + λbξ2j + δij + δuj (45)

ξ1ij is a within level factor representing the same individual
characteristics across items (e.g., individual math skills)
ξ2j is a between level factor representing the same school-specific
characteristics across items (e.g., average math skill level in school)
δij is a within level residual representing individual characteristics
independent of the factors (e.g., individual attention deficits)
δuj is a between level residual (random effect) representing
school-specific characteristics independent of the factors (e.g., this
specific math item was exercised a lot in this school but not in others)
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Models and path diagrams

Two level factor model with constraints

Figure: All school-specific deviations are due to differences in the latent factor. a)
and b) represent equivalent models.
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Models and path diagrams

Two level factor model: Equations and interpretation

Each indicator has a measurement model that includes within and
between components:

xij = λξ1ij + λξ2j + δij + δuj︸︷︷︸
=0

(46)

= λ(ξ1ij + ξ2j) + δij (47)

ξ1ij and ξ2j are a within and between level factors representing the
same individual and school-specific characteristics across items (e.g.,
individual math skills).
In this formulation, both factors have the same interpretations
(because factor loadings are constrained across levels).
The model decomposes within and between characteristics on the latent
level only. (This can be tested by estimating the variances of δuj first).
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Models and path diagrams

Multilevel SEM 1 with random intercept

Figure: Here ξ2 is a conceptually different between level factor with school-level
indicators (e.g., SES factor of the school area)
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Models and path diagrams

Multilevel SEM 1: Equations and interpretation

Again, all school specific aspects of the within level variables are due
to differences at the latent level. ξ1 does not have a school-level
variance component (it could be reading attitude, that does only
differ across students but not across schools)

The dependent variable has the following structural model:

η1ij = η2j + γ1ξ1ij + ζ1ij (48)

η2j = α+ γ2ξ2j + ζ2j (49)

γ1, γ2 are fixed effects of the within and between level factors ξ1, ξ2.
α is the intercept
ζ1ij is a residual on the within level
ζ2j is a residual on the between level. In manifest mlm, this is often
denoted as u0
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Models and path diagrams

Multilevel SEM 2 with random slope
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Models and path diagrams

Multilevel SEM 2: Equations and interpretation

The difference to ML-SEM 1 before is that γ1j is a random slope. In
principle any parameter in the model on the within level (also factor
loadings) can be formulated as random term that is incorporated in
the between level (but one should have a hypothesis on it).

The structural model is now given by:

η1ij = η2j + γ1jξ1ij + ζ1ij (50)

η2j = α+ γ2ξ2j + ζ2j (51)

γ1j = γ1 + γ3ξ2j + ζ3j (52)

γ1, γ2 are fixed effects. γ3 is a cross-level interaction.
α is the intercept
ζ1ij is a residual on the within level
ζ2j , ζ3j are residuals on the between level. In manifest mlm, thee are
often denoted as u0, u1

Brandt (KU) Nonlinear SEM June 7 54 / 60



Models and path diagrams Estimation methods

Estimation methods for ML SEM

1 Pseudobalanced ML (Muthén’s ML/MUML) [outdated]

2 Two phase direct estimation [outdated]

3 Weighted least squares (WLS) [fairly outdated]

4 Full maximum likelihood [e.g., in Mplus]

5 Bayesian estimator [e.g., in stan, jags, or Mplus]

In combination with nonlinear SEM, only the last two are applicable. The
Mplus implementation (with LMS) is very limited with the number of
nonlinear terms that can be modeled (and it takes very long for
computation)
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Models and path diagrams Estimation methods

Likelihood function for linear latent two level model (see
Rabe-Hesketh & Skrondal, 2006)

Level 2: n(3) schools j sampled with probabilities πj , wj = 1/πj

Level 1: n
(2)
j students i sampled from each school with probabilities

πi|j , wi|j = 1/πi|j

n
(1)
ij items k used for each students

Log likelihood function:

LL =
n(3)∑
j=1

log

∫
exp


n
(2)
j∑

i=1

log

∫
exp


n
(1)
ij∑

k=1

LL
(
ykij |ζ

(2)
ij , ζ

(3)
j

) g(ζ(2)ij )dζ
(2)
ij

 g(ζ(3)j )dζ
(3)
j (53)

where ζ
(2)
ij , ζ

(3)
j indicate the latent (random) variable that are

integrated out.
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Models and path diagrams Estimation methods

FIML for nonlinear models

Even for linear models, the likelihood function needs to be
approximated using numerical methods.

The main challenge for nonlinear models is that the inner part of the

function (LL
(
ykij |ζ

(2)
ij , ζ

(3)
j

)
) is replaced with the log likelihood

function used in LMS or NSEMM. This needs further (nested)
numerical approximation.

In principle, these ML-SEM can be extended to mixture models.
Again, this might lead to a strong computational burden.

Two example codes for a random intercept and a random slope model
is provided for Mplus. The random slope model needs further care
because the computational burden is too high (for demo version use
first 2 indicators for each construct).
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Bayesian implementation

The Bayesian implementation in stan is straightforward.

It is a combination of the mlm and the sem files that we used this
morning and can directly be integrated into a single file.

Here, again a Cholesky decomposition for the latent factors is
meaningful.
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Summary

The Bayesian framework is a very flexible framework in which almost
any model can be specified.

For complex nonlinear ML-SEM an identification needs to be ensured
(even more when semiparametric models are tried to be
implemented).

A careful investigation of priors and convergence is of utter
importance. Packages that automatically set priors are not
recommended even though they seem to be optimal from an applied
perspective.

Overall: Nonlinearity, nonnormality and clustered data structures
often occur in social sciences. They need to be addressed thoroughly
and adequately.

Future research is needed, for example to develop model fit measures.

Brandt (KU) Nonlinear SEM June 7 59 / 60



Summary

Thank you for your attention.
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