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1 A simple regression model

The first data set is based on the PISA data set used before and is provided in
pisa manifest.dat. As you might have guessed, the students were clustered in schools
(which were clustered in cities, counties, departments, states, countries etc.). Here, we
first use manifest data to start some simple coding in stan. The data set contains a
school id, the reading skills, the online activities and the reading attitude. All variables
(except the school id) were standardized (for illustrative purposes).

1. Run a simple regression model that predicts the reading skills using the online
activities and the reading attitude. Include an interaction between the two pre-
dictors. Ignore the clustering for now.

2. Interpret the results.

3. Now formulate the model syntax for a Bayesian regression in stan. The syntax
for the first example is provided in regression.stan for you (we will go over the
syntax step by step). Run the model.

(a) Check the convergence of the model.

(b) Interpret the results. Compare it to the OLS regression.
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2 Some multilevel models

For this exercise, we will use the same data as before, but we will incorporate the
clustering in schools in the analysis.

1. Run a simple random intercept model that predicts the reading skills using the
online activities and the reading attitude accounting for the clustering in schools.
Include an interaction between the two predictors. Use the lmer package that
provides an ML estimator for multilevel models.

2. Do the results change compared to the regression model above? Is there an effect
of the clustering? [We will not go into detail about model comparison here because
it is different in Bayesian modeling.]

3. Now extend the model syntax for a Bayesian multilevel model using the syntax
for the regression model. You will need to account for the following steps (see
also mlm1 start.stan) in the model syntax:

• Data is extended including now: number of schools (Ns), cluster indicator
(school).

• Parameters include a vector for the random intercept u0 (length Ns) and a
standard deviation for the random intercept (sigmau0).

• Transformed parameters still need muy but the random intercept u0 must
be added in the model formulation.

• The model now needs specifications for the distribution of u0 and a prior
for sigmau0.

4. Check the convergence, interpret the results and compare it to the lmer-results.

5. Extend the model to also include a random slope for the two predictor variables
(both are within level predictors). First, run the model in lmer. Use uncorrelated
random terms.

6. Then, formulate a model in stan that assumes uncorrelated random terms. Test
the model. Do you need the random slope?

For the extension of the random intercept model you need to add the following
aspects (all other things are as above):

• Data: same as before.

• In the model (name the file mlm2 start.stan): Parameters: include an
additional vectors for the random slopes u1 and u2 (again with length Ns)
and their SD’s (sigmau1,sigmau2).

• Adequately extend the model formulation for muy.

• Model: Specifications for the distributions of u1,u2 and priors for sig-
mau1,sigmau2.
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3 A simple structural equation model

The next exercise again uses the Kenny-Judd data set from Day 3 (where we started
with the constrained approach; data kj.dat). We will now implement an SEM with
interaction effect in stan. As you will notice, this is quite straightforward because the
products of the latent variables can directly be included.
This first example is a demonstration and we will go step by step through the syntax
of sem1.stan. One of the main practical aspects is the naming of parameters etc. (to
keep an overview). Here, we use the following convention (later you can use whatever
you want).

• Regression coefficients are in a vector called b1. The intercept is separate (b0).

• Factor loadings are vectors with the letter l (small L) followed by x or y.

• (Residual) SD’s are vector names sigma followed by the respective variable (e.g.,
x, i.e. sigmax).

• Correlation matrices are names rho, covariance matrices phi. If more than one
matrix exist, add again the variables’ name (e.g., xi)

• (Conditional) means are vectors names mu followed by the respective variable
(e.g. muxi or mueta)

1. Test the interaction model for the Kenny-Judd model. Check the convergence
and the results.

2. Add quadratic effects to the model (name the file sem1a.stan). You need to
adjust the length of b1 (was 3) and change the equation for mueta. What do
you conclude about the nonlinear structure in the data set?

3. The model syntax also provides a “Cholesky version” of the model (sem1b.stan).
In fact, this is the recommended version in stan because multivariate distributions
are complicated to sample from. We will go in detail if we have time for it
(otherwise you can test it at home using sem1b.stan).
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4 A multilevel structural equation model

The final data set returns to our PISA example in pisa mlsem.dat. We will consider
only the two-level version with clustering in schools.

1. The first model only includes reading skills and online activities (demo, code is
provided in mlsem1.stan):

• Formulate a model that includes a random intercept for the reading skills.

• Each latent variable (reading skills and online activities) loads on 3 indica-
tors. Use the first indicator as a scaling variable.

• Include a quadratic and a cubic effect for online activities.

2. Final model: We now also include the reading attitude. Add the following ele-
ments (exercise):

• Add a measurement model for reading attitude.

• Use a multivariate formulation for the latent predictors (either by using
multi normal and a covariance matrix as in sem1.stan or by using the
Cholesky version as in sem1b.stan)

• Include linear and quadratic effects for online activities and reading attitude
as well as their interaction. Remember to extend the vector b1 for that.
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