Package ‘rstan’

July 29, 2016
Type Package
Title R Interface to Stan
Version 2.11.1
Date 2016-07-28

Description User-facing R functions are provided to parse, compile, test,
estimate, and analyze Stan models by accessing the header-only Stan library
provided by the 'StanHeaders' package. The Stan project develops a
probabilistic programming language that implements full Bayesian statistical
inference via Markov Chain Monte Carlo, rough Bayesian inference via variational
approximation, and (optionally penalized) maximum likelihood estimation via
optimization. In all three cases, automatic differentiation is used to quickly
and accurately evaluate gradients without burdening the user with the need
to derive the partial derivatives.

License GPL (>= 3)
NeedsCompilation yes

Imports methods, stats4, inline, gridExtra (>= 2.0.0), Rcpp (>=
0.12.0)

Depends R (>=3.0.2), ggplot2 (>=2.0.0), StanHeaders (>=2.11.0)

LinkingTo Rcpp (>=0.12.0), ReppEigen, BH (>= 1.60), StanHeaders (>=
2.11.0)

Suggests RUnit, ReppEigen, BH (>= 1.60), parallel, KernSmooth, RCurl,
loo (>=0.1.6), shinystan (>= 2.1.0), rstudioapi, Matrix, knitr

URL https://groups.google.com/forum/#!forum/stan-users,
http://mc-stan.org

BugReports https://github.com/stan-dev/rstan/issues/
VignetteBuilder knitr

Author Jigiang Guo [aut],
Jonah Gabry [aut],
Ben Goodrich [cre, aut],
Daniel Lee [ctb],
Krzysztof Sakrejda [ctb],

https://groups.google.com/forum/#!forum/stan-users
http://mc-stan.org
https://github.com/stan-dev/rstan/issues/

2 R topics documented:

Trustees of Columbia University [cph],

Oleg Sklyar [cph] (R/cxxfunplus.R),

The R Core Team [cph] (R/pairs.R),

Jens Oehlschlaegel-Akiyoshi [cph] (R/pairs.R),
Hadley Wickham [cph] (R/rtools.R),

Joel de Guzman [cph] (Boost),

John Fletcher [cph] (Boost),

Thomas Heller [cph] (Boost),

Eric Niebler [cph] (Boost)

Maintainer Ben Goodrich <benjamin.goodrich@columbia.edu>
Repository CRAN
Date/Publication 2016-07-29 06:41:10

R topics documented:

IStan-package e e e e e e e e 3
ASLAITAY + v v v v e 5
Asmemcedist . . . L. e e e e 6
Diagnostic plots e e e e e 7
expose_stan_functionso 9
EXITACL . . . v v o e e e e e e e e e e e e e e e e 10
EXLraCt_SPArSE_PAILS v v v e e e e e e e e e e e e e e e e 13
log_prob-methods 14
Iookup e e 16
makeconf_path 17
100 70) 1110 o 18
OPtIMIZING . . .« . v o o i e e e e e e e e e e e e e e e e e e e 19
pairs.stanfit L L. e e e e e 22
plot-methods 23
Plots e e e 25
PIINt . . . o e 28
read_rdump 29
read_STAn_CSV o o o e e e e e 29
rstan-plotting-functions 30
rstan.package.skeletono L 31
rStan_gg OPLtiONS e e e e e e 32
ISEAN_OPLIONS o vt v vt e e e e e e e e e 32
samplingo 33
SELCPPO -« v v e e e e e e e 36
sflist2stanfit L e e e e 36
] 721 38
] 1T 45
stanfit-class L e e e e 48
stanmodel-class e e e 52
stan_demo e 53
stan_model L e 54

stan_rdump 56

rstan-package 3

STAN_VETSION v v v e e e e e e e e e e e e e e 58
summary-methods L e 59
traceplot 60
VD L e e 62
Index 65
rstan-package RStan — R interface to Stan
Description

RStan is the R interface to the Stan C++ package. RStan provides

« full Bayesian inference using the No-U-Turn sampler (NUTS), a variant of Hamiltonian Monte
Carlo (HMC)

 approximate Bayesian inference using automatic differentiation variational inference (ADVI)

* penalized maximum likelihood estimation using L-BFGS optimization

For more information about Stan visit http://mc-stan.org/.

Details

Package: rstan

Version: 2.10.0

Date: June 20, 2016
License: GPL-3

For more information on Stan and its modeling language, see the Stan Modeling Language User’s
Guide and Reference Manual available at http://mc-stan.org/.

Author(s)

Authors: Jigiang Guo <guojq28 @gmail.com>
Ben Goodrich <benjamin.goodrich@columbia.edu>
Jonah Gabry >jsg2201 @columbia.edu>

Maintainer: Ben Goodrich <benjamin.goodrich@columbia.edu>

http://mc-stan.org/
http://mc-stan.org/

References

rstan-package

Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:

//mc-stan.org/.

See Also

The stan function for details on fitting models and stanfit for information on the fitted model

objects.

Several related R packages are also available from the Stan Development Team: loo (loo-package)
offers model comparison on estimated out-of-sample predictive performance, shinystan (shinystan-
package) provides the ShinyStan GUI for exploring fitted Bayesian models, and rstanarm is an
appendage to rstan providing an R formula interface for Bayesian regression modeling.

Examples

Not run:

stanmodelcode <- "

data {
int<lower=0> N;
real y[N];

3

parameters {
real mu;

}

model {
target += normal_lpdf(mu |
target += normal_lpdf(y |
3

n

y <= rnorm(20)

dat <- list(N =20, y = y);

fit <- stan(model_code =
data = dat, iter
verbose = TRUE)

print(fit)

traceplot(fit)

extract samples
e <- extract(fit, permuted =
mu <- e$mu

m <- extract(fit, permuted =
print(dimnames(m))

using as.array directly on
m2 <- as.array(fit)

stanmodelcode, model_name =

0, 10);
mu, 1);

"example"”,
3, sample_file =

= 2012, chains =

TRUE) # return a list of arrays

FALSE, inc_warmup = FALSE) # return an array

stanfit objects

'norm.csv',

http://mc-stan.org/
http://mc-stan.org/

as.array 5

End(Not run)

as.array Create array, matrix, or data.frame objects from samples in a stanfit
object

Description

The samples (without warmup) included in a stanfit object can be coerced to an array, matrix,
or data. frame. Methods are also provided for checking and setting names and dimnames.

Usage
S3 method for class 'stanfit'
as.array(x, ...)
S3 method for class 'stanfit'
as.matrix(x, ...)
S3 method for class 'stanfit'
as.data.frame(x, ...)

S3 method for class 'stanfit'
is.array(x)
S3 method for class 'stanfit'

dim(x)

S3 method for class 'stanfit'
dimnames(x)

S3 method for class 'stanfit'
names(x)

S3 replacement method for class 'stanfit'
names(x) <- value

Arguments
X An object of S4 class stanfit.
Additional parameters that can be passed to extract for extracting samples
from x. For now, pars is the only additional parameter supported.
value For the names replacement method, a character vector to set/replace the param-
eter names in x.
Details

as.array and as.matrix can be applied to a stanfit object to coerce the samples without warmup
to array ormatrix. The as.data. frame method first calls as.matrix and then coerces this matrix
to adata.frame.

The array has three named dimensions: iterations, chains, parameters. For as.matrix, all chains
are combined, leaving a matrix of iterations by parameters.

6 As.mcmc.list

Value
as.array, as.matrix, and as.data. frame return an array, matrix, and data.frame, respectively.

dim and dimnames return the dim and dimnames of the array object that could be created, while
names returns the third element of the dimnames, which are the names of the margins of the posterior
distribution. The names assignment method allows for assigning more interpretable names to them.

is.array returns TRUE for stanfit objects that include samples; otherwise FALSE.

When the stanfit object does not contain samples, empty objects are returned from as.array,
as.matrix, as.data.frame, dim, dimnames, and names.

See Also

S4 class stanfit and its method extract

Examples

Not run:
ex_model_code <-
parameters {

real alphal2,3];
real betal[2];
}
model {
for (i in 1:2) for (j in 1:3)
alphali, j1 ~ normal(e, 1);
for (i in 1:2)
betali] ~ normal(e, 2);
beta ~ normal(@, 2) // vectorized version

}

1

fit the model
fit <- stan(model_code = ex_model_code, chains = 4)

dim(fit)

dimnames(fit)
is.array(fit)

a <- as.array(fit)

m <- as.matrix(fit)

d <- as.data.frame(fit)

End(Not run)

As.mcmc.list Create an mcme.list from a stanfit object

Description

Create an memc. list (coda) from a stanfit object.

Diagnostic plots 7

Usage
As.mcmc.list(object, pars, include = TRUE, ...)
Arguments
object object of class "stanfit”
pars optional character vector of parameters to include
include logical scalar indicating whether to include (the default) or exclude theh param-
eters named in pars
unused
Value

An object of class mcmc. list.

Diagnostic plots RStan Diagnostic plots

Description

Diagnostic plots for HMC and NUTS using ggplot2.

Usage
stan_diag(object,
information = c("sample”,"stepsize”, "treedepth”,"divergence"),
chain =0, ...)
stan_par(object, par, chain =0, ...)
stan_rhat(object, pars, ...)
stan_ess(object, pars, ...)
stan_mcse(object, pars, ...)
Arguments
object A stanfit or stanreg object.
information The information to be contained in the diagnostic plot.
par,pars The name of a single scalar parameter (par) or one or more parameter names
(pars).
chain If chain=0 (the default) all chains are combined. Otherwise the plot for chain

is overlaid on the plot for all chains combined.

For stan_diag and stan_par, optional arguments to arrangeGrob. For stan_rhat,
stan_ess, and stan_mcse, optional arguments to stat_bin.

8 Diagnostic plots

Details

stan_rhat,stan_ess,stan_mcse Respectively, these plots show the distribution of the Rhat statis-
tic, the ratio of effective sample size to total sample size, and the ratio of Monte Carlo standard
error to posterior standard deviation for the estimated parameters. These plots are not intended
to identify individual parameters, but rather to allow for quickly identifying if the estimated
values of these quantities are desireable for all parameters.

stan_par Calling stan_par generates three plots: (i) a scatterplot of par vs. the accumulated
log-posterior (1p__), (ii) a scatterplot of par vs. the average Metropolis acceptance rate
(accept_stat), and (iii) a violin plot showing the distribution of par at each of the sam-
pled step sizes (one per chain). For the scatterplots, red points are superimposed to indicate
which (if any) iterations encountered a divergent transition. Yellow points indicate a transition
that hit the maximum treedepth rather than terminated its evolution normally.

stan_diag The information argument is used to specify which plots stan_diag should generate:

e information='sample'Histograms of 1p__ and accept_stat, as well as a scatterplot
showing their joint distribution.

e information="'stepsize' Violin plots showing the distributions of 1p__ and accept_stat
at each of the sampled step sizes (one per chain).

e information="treedepth'Histogram of treedepth and violin plots showing the dis-
tributions of 1p__ and accept_stat for each value of treedepth.

e information='divergence' Violin plots showing the distributions of 1p__ and accept_stat
for iterations that encountered divergent transitions (divergent=1) and those that did not
(divergent=0).

Value

For stan_diag and stan_par, a list containing the ggplot objects for each of the displayed plots.

For stan_rhat, stan_ess, and stan_mcse, a single ggplot object.
Note

For details about the individual diagnostics and sampler parameters and their interpretations see the

Stan Modeling Language User’s Guide and Reference Manual athttp://mc-stan.org/documentation/.
See Also

List of RStan plotting functions, Plot options

Examples

Not run:
fit <- stan_demo("eight_schools")

stan_diag(fit, info = 'sample') # shows three plots together
samp_info <- stan_diag(fit, info = 'sample') # saves the three plots in a list
samp_info[[3]] # access just the third plot

stan_diag(fit, info = 'sample', chain = 1) # overlay chain 1

http://mc-stan.org/documentation/

expose_stan_functions 9

stan_par(fit, par = "mu")

End(Not run)

expose_stan_functions Expose user-defined Stan functions to R for testing and simulation

Description

The Stan modeling language allows users to define their own functions in a functions block at the
top of a Stan program. The expose_stan_functions utility function uses sourceCpp to export
those user-defined functions to the user’s workspace (.GlobalEnv) for testing inside R or for doing
posterior predictive simulations in R rather than in the generated quantities block of a Stan
program.

Usage

expose_stan_functions(stanmodel)

Arguments
stanmodel A stanmodel object, a stanfit object, a list produced by stanc or the path to
a Stan program (. stan file). In any of these cases, the underlying Stan program
should contain a non-empty functions block.
Details

There are a few special types of user-defined Stan functions for which some additional details are
relevant:

(P)RNG functions: If a user-defined Stan function ends in _rng, then it can use the Boost
pseudo-random number generator used by Stan. When exposing such functions to R, a seed
argument will be added to the formals. This seed argument defaults to QL, but any non-negative
integer can be passed as the seed the first time any user-defined function ending in _rng is called.
In other words, the Boost pseudo-random number generator is initialized with the given seed but
is declared with the static C++ keyword, meaning that it will not be reinitialized by subsequent
calls to user-defined functions ending in _rng.

LP functions: If a user-defined Stan function ends in _1p, then it can modify the log-probability
used by Stan to evaluate Metropolis proposals or as an objective function for optimization. When
exposing such functions to R, a 1p__ argument will be added to the formals. This 1p__ argument
defaults to zero, but a double precision scalar may be passed to this argument when the function
is called from R. Such a user-defined Stan function can terminate with return get_lp(); or can
execute print(lp__); to verify that the calculation is correct.

Value

The names of the new functions in .GlobalEnv are returned invisibly.

10 extract

See Also

sourceCpp

Examples

You could use a function like this to calculate the log-likelihood
for an observation over the posterior distribution to then use as
an ingredient to the calculation of the WAIC
mc <-
functions {
vector logLik(int y, real x, vector beta) {
vector[rows(beta)] loglLik;
for (i in 1:rows(beta)) {
loglLik[i] <- poisson_log_log(y, x * betal[il);
}
return loglik;
}
}
model {3}

cppcode <- stanc(model_code = mc, model_name = "Demonstration)
Not run:

expose_stan_functions(cppcode)

End(Not run)

extract Extract samples from a fitted Stan model

Description

Extract samples from a fitted model represented by an instance of class stanfit.

Usage

S4 method for signature 'stanfit'
extract(object, pars, permuted = TRUE, inc_warmup = FALSE,
include = TRUE)

Arguments
object An object of class stanfit.
pars An optional character vector providing the parameter names (or other quantity

names) of interest. If not specified, all parameters and other quantities are used.
The log-posterior with name 1p__ is also included by default.

extract 11

permuted A logical scalar indicating whether the draws after the warmup period in each
chain should be permuted and merged. If FALSE, the original order is kept. For
each stanfit object, the permutation is fixed (i.e., extracting samples a second
time will give the same sequence of iterations).

inc_warmup A logical scalar indicating whether to include the warmup draws. This argument
is only relevant if permuted is FALSE.

include A logical scalar indicating whether the parameters named in pars should be
included (TRUE) or excluded (FALSE).

Value

When permuted = TRUE, this function returns a named list, every element of which is an array
representing samples for a parameter with all chains merged together.

When permuted = FALSE, an array is returned; the first dimension is for the iterations, the second
for the number of chains, the third for the parameters. Vectors and arrays are expanded to one
parameter (a scalar) per cell, with names indicating the third dimension. See the examples (with
comments) below. The monitor function can be applied to the returned array to obtain a summary
(similar to the print method for stanfit objects).

Methods

extract signature(object = "stanfit") Extract samples from a fitted model represented by an
instance of class stanfit.

See Also

S4 class stanfit, as.array.stanfit, and monitor

Examples

Not run:
ex_model_code <-
parameters {

real alphal[2,3];
real beta[2];
3
model {
for (i in 1:2) for (j in 1:3)
alphali, jJ] ~ normal(e, 1);
for (i in 1:2)
beta ~ normal(Q, 2);

[

fit the model
fit <- stan(model_code = ex_model_code, chains = 4)

extract alpha and beta with 'permuted = TRUE'
fit_ss <- extract(fit, permuted = TRUE) # fit_ss is a list
list fit_ss should have elements with name 'alpha', 'beta', 'lp__'

extract

alpha <- fit_ss$alpha

beta <- fit_ss$beta

or extract alpha by just specifying pars = 'alpha'

alpha2 <- extract(fit, pars = 'alpha', permuted = TRUE)S$alpha
print(identical(alpha, alpha2))

or extract alpha by excluding beta and lp__
alpha3 <- extract(fit, pars = c('beta', 'lp__"),

permuted = TRUE, include = FALSE)$alpha
print(identical(alpha, alpha3))

get the samples for alphal1,1] and beta[2]
alpha_11 <- alpha[, 1, 1]
beta_2 <- betal, 2]

extract samples with 'permuted = FALSE'
fit_ss2 <- extract(fit, permuted = FALSE) # fit_ss2 is an array

the dimensions of fit_ss2 should be
"# of iterations * # of chains x # of parameters”
dim(fit_ss2)

since the third dimension of ‘fit_ss2‘ indicates

parameters, the names should be

alphal1,1], alphal[2,1], alphal[1,2], alphal[2,2],

alphal1,3], alphal[2,3], beta[1], betal[2], and lp__
“1p__" (the log-posterior) is always included

in the samples.

dimnames(fit_ss2)

End(Not run)

Create a stanfit object from reading CSV files of samples (saved in rstan

package) generated by funtion stan for demonstration purpose from model as follows.

#

excode <-

transformed data {

real y[20];
y[11 <- ©.5796; y[2] <- 0.2276; y[3] <- -0.2959;
y[4] <- -0.3742; y[5] <- 0.3885; y[6] <- -2.1585;
y[7]1 <- 0.7111; y[8] <- 1.4424; y[9] <- 2.5430;
y[10] <- 0.3746; y[11] <- 0.4773; y[12] <- 0.1803;
y[13] <- 0.5215; y[14] <- -1.6044; y[15] <- -0.6703;
y[16] <- 0.9459; y[17] <- -0.382; y[18] <- 0.7619;
y[19] <- 0.1006; y[20] <- -1.7461;

}

parameters {
real mu;
real<lower=0, upper=10> sigma;
vector[2] z[3];
real<lower=0> alpha;
}
model {

extract_sparse_parts 13

y ~ normal(mu, sigma);
for (i in 1:3)

z[i] ~ normal(Q, 1);
alpha ~ exponential(2);

}
exfit <- stan(model_code = excode, save_dso = FALSE, iter = 200,
sample_file = "rstan_doc_ex.csv")
#
exfit <- read_stan_csv(dir(system.file('misc', package = 'rstan'),

pattern='rstan_doc_ex_[[:digit:]].csv',
full.names = TRUE))

eel <- extract(exfit, permuted = TRUE)
print(names(eel))

for (name in names(eel)) {
cat(name, "\n")
print(dim(ee1[[namell))
3

ee2 <- extract(exfit, permuted = FALSE)
print(dim(ee2))
print(dimnames(ee2))

extract_sparse_parts Extract the compressed representation of a sparse matrix

Description

Create a list of vectors that represents a sparse matrix.

Usage

extract_sparse_parts(A)

Arguments

A A matrix or Matrix.

Details

The Stan Math Library has a function called csr_matrix_times_vector, which inputs a matrix in
compressed row storage form and a dense vector and returns their product without fillin. To use the
csr_matrix_times_vector function with a large sparse matrix, it is optimal in terms of memory
to simply pass the three vectors that characterize the compressed row storage form of the matrix to
the data block of the Stan program. The extract_sparse_parts function provides a convenient
means of obtaining these vectors.

14 log_prob-methods

Value

A named list with components

1. w A numeric vector containing the non-zero elements of A.
2. v An integer vector containing the column indices of the non-zero elements of A.

3. u An integer vector indicating where in w a given row’s non-zero values start.

Examples

A <= rbind(
c(19L, 27L, oL, oL),
c(oL, oL, oL, eoL),
c(oL, oL, oL, 52L),
c(81L, oL, 95L, 33L)
)

str(extract_sparse_parts(A))

log_prob-methods Model’s 1og_prob and grad_log_prob functions

Description

Using model’s log_prob and grad_log_prob functions on the unconstrained space of model pa-
rameters. Sometimes we need to convert the values of parameters from their support defined in the
parameters block (which might be constrained, and for simplicity, we call it the constrained space)
to the unconstrained space and vice versa. The constrain_pars and unconstrain_pars functions
are used for this purpose.

Usage

S4 method for signature 'stanfit'
log_prob(object, upars, adjust_transform = TRUE, gradient = FALSE)

S4 method for signature 'stanfit'
grad_log_prob(object, upars, adjust_transform = TRUE)

S4 method for signature 'stanfit'
get_num_upars(object)

S4 method for signature 'stanfit'
constrain_pars(object, upars)

S4 method for signature 'stanfit'
unconstrain_pars(object, pars)

log_prob-methods 15

Arguments
object An object of class stanfit.
pars An list specifying the values for all parameters on the constrained space.
upars A numeric vector for specifying the values for all parameters on the uncon-

strained space.

adjust_transform
Logical to indicate whether to adjust the log density since Stan transforms pa-
rameters to unconstrained space if it is in constrained space.

gradient Logical to indicate whether gradients are also computed as well as the log den-
sity.

Details

Stan requires that parameters be defined along with their support. For example, for a variance
parameter, we must define it on the positive real line. But inside Stan’s samplers, all parameters
defined on the constrained space are transformed to unconstrained space, so the log density function
need be adjusted (i.e., adding the log of the absolute value of the Jacobian determinant). With the
transformation, Stan’s samplers work on the unconstrained space and once a new iteration is drawn,
Stan transforms the parameters back to their supports. All the transformation are done by Stan
without interference from the users. However, when using the log density function for a model
exposed to R, we need to be careful. For example, if we are interested in finding the mode of
parameters on the constrained space, we then do not need the adjustment. For this reason, the
log_prob and grad_log_prob functions accept an adjust_transform argument.

Value

log_prob returns a value (up to an additive constant) the log posterior. If gradient is TRUE, the
gradients are also returned as an attribute with name gradient.

grad_log_prob returns a vector of the gradients. Additionally, the vector has an attribute named
log_prob being the value the same as 1og_prob is called for the input parameters.

get_num_upars returns the number of parameters on the unconstrained space.

constrain_pars returns a list and unconstrain_pars returns a vector.

Methods

log_prob signature(object = "stanfit")Compute the log posterior (1p__) for the model rep-
resented by a stanfit object.

grad_log_prob signature(object = "stanfit")Compute the gradients for log_prob as well
as the log posterior. The latter is returned as an attribute.

get_num_upars signature(object = "stanfit")Get the number of unconstrained parameters.

constrain_pars signature(object = "stanfit")Convert values of the parameter from uncon-
strained space (given as a vector) to their constrained space (returned as a named list).

unconstrain_pars signature(object = "stanfit")Contrary to constrained, conert values of
the parameters from constrained to unconstrained space.

16 lookup

References
The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org.

See Also

stanfit

Examples

Not run:
see the examples in the help for stanfit as well
do a simple optimization problem

opcode <- "
parameters {
real y;
}
model {
lp__ <- log(square(y - 5) + 1);
}

n

tfun <- function(y) log_prob(opfit, y)

tgrfun <- function(y) grad_log_prob(opfit, y)
or <- optim(1, tfun, tgrfun, method = 'BFGS')
print(or)

return the gradient as an attribute
tfun2 <- function(y) {

g <- grad_log_prob(opfit, y)

1p <- attr(g, "log_prob")

attr(lp, "gradient”) <- g

1p
3

or2 <- nlm(tfun2, 10)
or2

End(Not run)

lookup Look up the Stan function that corresponds to a R function or name.

Description

This function helps to map between R functions and Stan functions.

Usage

lookup(FUN, ReturnType = character())

http://mc-stan.org
http://mc-stan.org

makeconf_path 17

Arguments

FUN A character string naming a R function or a R function for which the (near)
equivalent Stan function is sought. If no matching R function is found, FUN is
reinterpreted as a regexp and matches are sought.

ReturnType A character string of positive length naming a valid return type for a Stan func-
tion: int, int[], matrix, real, reall,], real[], row_vector, T[], vector,
or void. If "ANY" is passed, then the entire data. frame is returned and can be
inspected with the View function, for example.

Value

Ordinarily, a data.frame with rows equal to the number of partial matches and four columns:

1. StanFunction Character string for the Stan function’s name.

2. Arguments Character string indicating the arguments to that Stan function.

3. ReturnType Character string indicating the return type of that Stan function.

4. Page Integer indicating the page of the Stan reference manual where that Stan function is

defined.

If there are no matching Stan functions, a character string indicating so is returned.

References

The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org/.

The Stan Development Team CmdStan Interface User’s Guide. http://mc-stan.org.

Examples
lookup (dnorm) # Stan equivalents for the normal PDF (in log form)
lookup("foo") # fails

lookup("Student”) # succeeds even though there is no such R function
lookup(”*poisson”) # every Stan function that starts with poisson

makeconf_path Obtain the full path of file Makeconf

Description
Obtain the full path of file Makeconf, in which, for example the flags for compiling C/C++ code are
configured.

Usage

makeconf_path()

http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org

18 monitor

Details

The configuration for compiling shared objects using R CMD SHLIB are set in file Makeconf. To
change how the C++ code is compiled, modify this file. For RStan, package inline compiles the
C++ code using R CMD SHLIB. To speed up compiled Stan models, increase the optimization level
to -03 defined in property CXXFLAGS in the file Makeconf. This file may also be modified to specify
alternative C++ compilers, such as clang++ or later versions of g++.

Value

An character string for the full path of file Makeconf.

See Also

stan

Examples

makeconf_path()

monitor Compute summaries of MCMC draws and monitor convergence

Description

Similar to the print method for stanfit objects, but monitor takes an array of simulations as its
argument rather than a stanfit object. For a 3-D array (iterations * chains * parameters) of MCMC
draws, monitor computes means, standard deviations, quantiles, Monte Carlo standard errors, split
Rhats, and effective sample sizes. By default, half of the iterations are considered warmup and are
excluded.

Usage

monitor(sims, warmup = floor(dim(sims)[1]1/2),
probs = ¢c(0.025, 0.25, 0.5, .75, 0.975),

digits_summary = 1, print = TRUE, ...)
Arguments
sims A 3-D array (iterations * chains * parameters) of MCMC simulations from any
MCMC algorithm.
warmup The number of warmup iterations to be excluded when computing the sum-
maries. The default is half of the total number of iterations. If sims doesn’t
include the warmup iterations then warmup should be set to zero.
probs A numeric vector specifying quantiles of interest. The defaults is c(0.025,0.25,0.5,0.75,0.975).

digits_summary The number of significant digits to use when printing the summary, defaulting to
1. Applies to the quantities other than the effective sample size, which is always
rounded to the nearest integer.

optimizing 19

print Logical, indicating whether to print the summary after the computations are
performed.

Additional arguments passed to the underlying print method.

Value

A 2-D array with rows corresponding to parameters and columns to the summary statistics.

References

The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org.

See Also

S4 class stanfit and particularly its print method.

Examples

csvfiles <- dir(system.file('misc', package = 'rstan'),
pattern = 'rstan_doc_ex_[0-9].csv', full.names = TRUE)
fit <- read_stan_csv(csvfiles)
The following is just for the purpose of giving an example
since print can be used for a stanfit object.
monitor(extract(fit, permuted = FALSE, inc_warmup = TRUE))

optimizing Obtain a point estimate by maximizing the joint posterior

Description

Obtain a point estimate by maximizing the joint posterior from the model defined by class stanmodel.
This method is a generic function of the S4 class stanmodel.

Usage

S4 method for signature 'stanmodel'
optimizing(object, data = list(),
seed = sample.int(.Machine$integer.max, 1), init = 'random',
check_data = TRUE, sample_file = NULL,
algorithm = c("LBFGS", "BFGS", "Newton"),
verbose = FALSE, hessian = FALSE, as_vector = TRUE,
draws = @, constrained = TRUE, ...)

http://mc-stan.org
http://mc-stan.org

20

Arguments

object
data

seed

init

check_data

sample_file

algorithm

verbose

hessian

as_vector

draws

constrained

optimizing

An object of class stanmodel.

A named list or environment providing the data for the model or a character
vector for all the names of objects used as data. See the Note section in stan.

The seed for random number generation. The default is generated from 1 to the
maximum integer supported by R on the machine. Even if multiple chains are
used, only one seed is needed, with other chains having seeds derived from that
of the first chain to avoid dependent samples. When a seed is specified by a
number, as.integer will be applied to it. If as. integer produces NA, the seed
is generated randomly. The seed can also be specified as a character string of
digits, such as "12345", which is converted to integer.

Initial values specification. See the detailed documentation for the init argument
in stan.

Logical, defaulting to TRUE. If TRUE the data will be preprocessed; otherwise
not. See the Note section in stan.

A character string of file name for specifying where to write samples for all
parameters and other saved quantities. If not provided, files are not created.
When the folder specified is not writable, tempdir() is used.

One of "Newton"”, "BFGS"”, and "LBFGS" (the default) indicating which opti-
mization algorithm to use.

TRUE or FALSE (the default): flag indicating whether to print intermediate output
from Stan on the console, which might be helpful for model debugging.

TRUE or FALSE (the default): flag indicating whether to calculate the Hessian (via
numeric differentiation of the gradient function in the unconstrained parameter
space).

TRUE (the default) or FALSE: flag indicating whether a vector is used to store the
point estimate found. A list can be used instead by specifying it to be FALSE.

A non-negative integer (that defaults to zero) indicating how many times to draw
from a multivariate normal distribution whose parameters are the mean vector
and the inverse negative Hessian in the unconstrained space.

A logical scalar indicating, if draws > @, whether the draws should be trans-
formed to the constrained space defined in the parameters block of the Stan
program. Defaults to TRUE.

Other optional parameters:

e iter (integer), the maximum number of iterations, defaulting to 2000.

* save_iterations (logical), a flag indicating whether to save the iterations,
defaulting to FALSE.

* refresh (integer), the number of interations between screen updates, de-
faulting to 100.

* init_alpha (double), for BFGS and LBFGS, the line search step size for
first iteration, defaulting to 0.001.

* tol_obj (double), for BFGS and LBFGS, the convergence tolerance on
changes in objective function value, defaulting to le-12.

optimizing 21

e tol_rel_obj (double), for BFGS and LBFGS, the convergence tolerance
on relative changes in objective function value, defaulting to 1e4.

* tol_grad (double), for BFGS and LBFGS, the convergence tolerance on
the norm of the gradient, defaulting to 1e-8.

* tol_rel_grad (double), for BFGS and LBFGS, the convergence tolerance
on the relative norm of the gradient, defaulting to 1e7.

* tol_param (double), for BFGS and LBFGS, the convergence tolerance on
changes in parameter value, defaulting to 1e-8.

* history_size (integer), for LBFGS, the number of update vectors to use
in Hessian approximations, defaulting to 5.

Refer to the manuals for both CmdStan and Stan for more details.

Value

If the optimization is done successfully, a list with named components:

par The point estimate found. Its form (vector or list) is determined by the as_vector
argument.

value The value of the log-posterior (up to an additive constant, the "1p__" in Stan)
corresponding to par.

hessian The Hessian matrix if hessian is TRUE

theta_tilde If draws > 0, the matrix of parameter draws in the constrained or unconstrained

space, depending on the value of the constrained argument.

log_p If draws > 9, a vector of length draws that contains the value of the log-posterior
evaluated at each row of theta_tilde.

log_g If draws > 9, a vector of length draws that contains the value of the logarithm
of the multivariate normal density evaluated at each row of theta_tilde.

If the optimization is not completed for reasons such as feeding wrong data, it returns NULL.

Methods

optimizing signature(object = "stanmodel”)
Call Stan’s optimization methods to obtain a point estimate for the model defined by S4 class
stanmodel given the data, initial values, etc.

See Also

stanmodel

Examples

Not run:
m <- stan_model(model_code = 'parameters {real y;} model {y ~ normal(@,1);}"')
f <- optimizing(m, hessian = TRUE)

End(Not run)

22 pairs.stanfit

pairs.stanfit Create a matrix of output plots from a stanfit object

Description

A pairs method that is customized for MCMC output

Usage

S3 method for class 'stanfit'
pairs(x, labels = NULL, panel = NULL, ...,
lower.panel = NULL,
upper.panel = NULL, diag.panel = NULL, text.panel = NULL,
label.pos = 0.5 + 1/3, cex.labels = NULL, font.labels = 1,
rowlattop = TRUE, gap = 1, log = "", pars = NULL, condition = "accept_stat__",
include = TRUE)

Arguments
X An object of S4 class stanfit
labels, panel, ..., lower.panel, upper.panel, diag.panel
Same as in pairs syntactically but see the Details section for different default
arguments

text.panel, label.pos, cex.labels, font.labels, rowlattop, gap
Same as in pairs.default

log Same as in pairs.default, which makes it possible to utilize logarithmic axes
and additionally accepts 1log = TRUE. See the Details section.

pars If not NULL, a character vector indicating which quantities to include in the plots,
which is passed to extract. Thus, by default, all unknown quantities are in-
cluded, which may be far too many to visualize on a small computer screen. If
include = FALSE, then the named parameters are excluded from the plot.

condition If NULL, it will plot roughly half of the chains in the lower panel and the rest in
the upper panel. An integer vector can be passed to select some subset of the
chains, of which roughly half will be plotted in the lower panel and the rest in the
upper panel. A list of two integer vectors can be passed, each specifying a subset
of the chains to be plotted in the lower and upper panels respectively. A single
number between zero and one exclusive can be passed, which is interpreted as
the proportion of realizations (among all chains) to plot in the lower panel start-
ing with the first realization in each chain, with the complement (from the end
of each chain) plotted in the upper panel. A (possibly abbreviated) character
vector of length one can be passed among "accept_stat__", "stepsize
"treedepth__", "n_leapfrog__", "divergent__" or "1p__", which are the
variables produced by get_sampler_params and get_logposterior. In that
case the lower panel will plot realizations that are below the median of the indi-
cated variable (or are zero in the case of "divergent__") and the upper panel
will plot realizations that are greater than or equal to the median of the indicated

n

—_ —_

plot-methods 23

variable (or are one in the case of "divergent__"). Finally, any logical vector
whose length is equal to the product of the number of iterations and the number
of chains can be passed, in which case realizations corresponding to FALSE and
TRUE will be plotted in the lower and upper panel respectively. The default is
"accept_stat__".

include Logical scalar indicating whether to include (the default) or excldue the param-
eters named in the pars argument from the plot.

Details

This method differs from the default pairs method in the following ways. If unspecified, the
smoothScatter function is used for the off-diagonal plots, rather than points, since the former is
more appropriate for visualizing thousands of draws from a posterior distribution. Also, if unspeci-
fied, histograms of the marginal distribution of each quantity are placed on the diagonal of the plot,
after pooling all of the chains specified by the chain_id argument.

The draws from the warmup phase are always discarded before plotting.

By default, the lower (upper) triangle of the plot contains draws with below (above) median accep-
tance probability. Also, if condition is not "divergent__", red points will be superimposed onto
the smoothed density plots indicating which (if any) iterations encountered a divergent transition.
Otherwise, yellow points indicate a transition that hit the maximum treedepth rather than terminated
its evolution normally.

You may very well want to specify the log argument for non-negative parameters. However, the
pairs function will drop (with a message) parameters that are either constant or duplicative with
previous parameters. For example, if a correlation matrix is included among pars, then neither its
diagonal elements (which are always 1) nor its upper triangular elements (which are the same as
the corresponding lower triangular elements) will be included. Thus, if log is an integer vector,
it needs to pertain to the parameters after constant and duplicative ones are dropped. It is perhaps
easiest to specify log = TRUE, which will utilize logarithmic axes for all non-negative parameters,
except 1p__ and any integer valued quantities.

See Also

S4 class stanfit and its method extract as well as the pairs generic function. Also, see get_sampler_params
and get_logposterior.

Examples

example(read_stan_csv)
pairs(fit, pars = c("mu”, "sigma", "alpha", "lp__"), log = TRUE, las = 1)
sigma and alpha will have logarithmic axes

plot-methods Plots for stanfit objects

24 plot-methods

Description

The default plot shows posterior uncertainty intervals and point estimates for parameters and gen-
erated quantities. The plot method can also be used to call the other rstan plotting functions via
the plotfun argument (see Examples).

Usage
S4 method for signature 'stanfit,missing'’
plot(x, ..., plotfun)
Arguments
X An instance of class stanfit.
plotfun A character string naming the plotting function to apply to the stanfit object. If

plotfun is missing, the default is to call stan_plot, which generates a plot of
credible intervals and point estimates. See rstan-plotting-functions for the
names and descriptions of the other plotting functions. plotfun can be either
the full name of the plotting function (e.g. "stan_hist") or can be abbreviated
to the part of the name following the underscore (e.g. "hist").

Optional arguments to plotfun.

Value

A ggplot object that can be further customized using the ggplot2 package.

Note

Because the rstan plotting functions use ggplot2 (and thus the resulting plots behave like ggplot
objects), when calling a plotting function within a loop or when assigning a plot to a name (e.g.,
graph <- plot(fit, plotfun = "rhat")), if you also want the side effect of the plot be-
ing displayed you must explicity print it (e.g., (graph <- plot(fit, plotfun = "rhat")),
print(graph <- plot(fit, plotfun = "rhat"))).

See Also

List of RStan plotting functions, Plot options

Examples

Not run:

library(rstan)

fit <- stan_demo("eight_schools")

plot(fit)

plot(fit, show_density = TRUE, ci_level = 0.5, fill_color = "purple"”)
plot(fit, plotfun = "hist", pars = "theta”, include = FALSE)

plot(fit, plotfun = "trace”, pars = c("mu”, "tau"), inc_warmup = TRUE)
plot(fit, plotfun = "rhat"”) + ggtitle("Example of adding title to plot"”)

End(Not run)

Plots

25

Plots

ggplot2 for RStan

Description

Visual posterior analysis using ggplot2.

Usage

stan_plot(object, pars, include = TRUE, unconstrain = FALSE, ...)

stan_trace(object, pars, include = TRUE, unconstrain = FALSE,
inc_warmup = FALSE, nrow = NULL, ncol = NULL, ...,
window = NULL)

stan_scat(object, pars, unconstrain = FALSE,

inc_warmup = FALSE, nrow = NULL, ncol = NULL, ...)
stan_hist(object, pars, include = TRUE, unconstrain = FALSE,
inc_warmup = FALSE, nrow = NULL, ncol = NULL, ...)

stan_dens(object, pars, include = TRUE, unconstrain = FALSE,
inc_warmup = FALSE, nrow = NULL, ncol = NULL, ...,
separate_chains = FALSE)

stan_ac(object, pars, include = TRUE, unconstrain = FALSE,
inc_warmup = FALSE, nrow = NULL, ncol = NULL, ...,
separate_chains = FALSE, lags = 25, partial = FALSE)

quietgg(gg)

Arguments

object

pars

include

unconstrain

inc_warmup

nrow,ncol

window

A stanfit or stanreg object.

Optional character vector of parameter names. If object is a stanfit object, the
default is to show all user-defined parameters or the first 10 (if there are more
than 10). If object is a stanreg object, the default is to show all (or the first
10) regression coefficients (including the intercept). For stan_scat only, pars
should not be missing and should contain exactly two parameter names.

Should the parameters given by the pars argument be included (the default) or
excluded from the plot?

Should parameters be plotted on the unconstrained space? Defaults to FALSE.
Only available if object is a stanfit object.

Should warmup iterations be included? Defaults to FALSE.
Passed to facet_wrap.

Optional additional named arguments passed to geoms (e.g. for stan_trace
the geom is geom_path and we could specify linetype, size, alpha, etc.). For
stan_plot there are also additional arguments that can be specified in . .. (see
Details).

For stan_trace window is used to control which iterations are shown in the
plot. See traceplot.

26

Plots

separate_chains
For stan_dens, should the density for each chain be plotted? The default is
FALSE, which means that for each parameter the draws from all chains are com-
bined. For stan_ac, if separate_chains=FALSE (the default), the autocorrela-
tion is averaged over the chains. If TRUE each chain is plotted separately.

lags For stan_ac, the maximum number of lags to show.
partial For stan_ac, should partial autocorrelations be plotted instead? Defaults to
FALSE.
gg A ggplot object or an expression that creates one.
Details
For stan_plot, there are additional arguments that can be specified in The optional arguments

and their default values are:

point_est = "median” The point estimate to show. Either "median" or "mean".
show_density = FALSE Should kernel density estimates be plotted above the intervals?

ci_level = 0.8 The posterior uncertainty interval to highlight. Central 100*ci_level% inter-
vals are computed from the quantiles of the posterior draws.

outer_level = 0.95 An outer interval to also draw as a line (if show_outer_line is TRUE) but
not highlight.

show_outer_line = TRUE Should the outer_level interval be shown or hidden? Defaults to =
TRUE (to plot it).

fill_color, outline_color, est_color Colors to override the defaults for the highlighted inter-
val, the outer interval (and density outline), and the point estimate.

Value

A ggplot object that can be further customized using the ggplot2 package.

Note

Because the rstan plotting functions use ggplot2 (and thus the resulting plots behave like ggplot
objects), when calling a plotting function within a loop or when assigning a plot to a name (e.g.,
graph <- plot(fit, plotfun = "rhat")), if you also want the side effect of the plot be-
ing displayed you must explicity print it (e.g., (graph <- plot(fit, plotfun = "rhat")),
print(graph <- plot(fit, plotfun = "rhat"))).

See Also

List of RStan plotting functions, Plot options

Examples

example("read_stan_csv")
stan_plot(fit)
stan_trace(fit)

Plots 27

Not run:
library(gridExtra)
fit <- stan_demo("eight_schools")

stan_plot(fit)
stan_plot(fit, point_est = "mean”, show_density = TRUE, fill_color = "maroon")

histograms

stan_hist(fit)

suppress ggplot2 messages about default bindwidth
quietgg(stan_hist(fit))

quietgg(h <- stan_hist(fit, pars = "theta”, binwidth = 5))

juxtapose histograms of tau and unconstrained tau

tau <- stan_hist(fit, pars = "tau")

tau_unc <- stan_hist(fit, pars = "tau", unconstrain = TRUE) +
xlab(”tau unconstrained”)

grid.arrange(tau, tau_unc)

kernel density estimates

stan_dens(fit)

(dens <- stan_dens(fit, fill = "skyblue",))

dens <- dens + ggtitle("Kernel Density Estimates\n") + xlab("")
dens

(dens_sep <- stan_dens(fit, separate_chains = TRUE, alpha = 0.3))

dens_sep + scale_fill_manual(values = c("red”, "blue”, "green", "black"))
(dens_sep_stack <- stan_dens(fit, pars = "theta”, alpha = 0.5,
separate_chains = TRUE, position = "stack"))

traceplot
trace <- stan_trace(fit)

trace +

scale_color_manual (values = c("red”, "blue”, "green”, "black"))
trace +

scale_color_brewer(type = "div") +

theme(legend.position = "none")

facet_style <- theme(strip.background = element_rect(fill = "white"),
strip.text = element_text(size = 13, color = "black"))
(trace <- trace + facet_style)

scatterplot
(mu_vs_tau <- stan_scat(fit, pars = c("mu”, "tau"), color = "blue”, size = 4))
mu_vs_tau +

coord_flip() +

theme (panel.background = element_rect(fill = "black"))

End(Not run)

28 print

print Print a summary for a fitted model represented by a stanfit object

Description

Print basic information regarding the fitted model and a summary for the parameters of interest
estimated by the samples included in a stanfit object.

Usage

S3 method for class 'stanfit'
print(x, pars = x@sim$pars_oi,
probs = c(0.025, 0.25, 0.5, 0.75, 0.975),

digits_summary = 2, include = TRUE, ...)
Arguments
X An object of S4 class stanfit.
pars A character vector of parameter names. The default is all parameters for which
samples are saved. If include = FALSE, then the specified parameters are

excluded from the printed summary.
probs A numeric vector of quantiles of interest. The defaultis c(0.025,0.25,0.5,0.75,0.975).

digits_summary The number of significant digits to use when printing the summary, defaulting to
1. Applies to the quantities other than the effective sample size, which is always
rounded to the nearest integer.

include Logical scalar (defaulting to TRUE) indicating whether to include or exclude the
parameters named by the pars argument.

Additional arguments passed to the summary method for stanfit objects.

Details

The information regarding the fitted model includes the number of iterations, the number of chains,
the total number of saved iterations, the estimation algorithm used, and the timestamp indicating
when sampling finished.

The parameter summaries computed include means, standard deviations (sd), quantiles, Monte
Carlo standard errors (se_mean), split Rhats, and effective sample sizes (n_eff). The summaries
are computed after dropping the warmup iterations and merging together the draws from all chains.

In addition to the model parameters, summaries for the log-posterior (1p__) are also reported.

See Also

S4 class stanfit and particularly its method summary, which is used to obtain the values that are
printed.

read_rdump 29

read_rdump Read data in an R dump file to a list

Description

Create an R list from an R dump file

Usage
read_rdump(f)

Arguments

f A character string providing the dump file name.

Details

The R dump file can be read directly by R function source, which by default would read the data
into the user’s workspace (the global environment). This function instead read the data to a list,
making it convenient to prepare data for the stan model-fitting function.

Value

A list containing all the data defined in the dump file with keys corresponding to variable names.

See Also

stan_rdump; dump

Examples

X <= 1; y <= 1:10; z <- array(1:10, dim = c(2,5))
stan_rdump(ls(pattern = '*[xyz]'), "xyz.Rdump")
1 <- read_rdump('xyz.Rdump')

print(l)

read_stan_csv Read CSV files of samples generated by (R)Stan into a stanfit object

Description
Create a stanfit object from the saved CSV files that are created by Stan or RStan and that include
the samples drawn from the distribution of interest to facilitate analysis of samples using RStan.
Usage

read_stan_csv(csvfiles, col_major = TRUE)

30 rstan-plotting-functions

Arguments
csvfiles A character vector providing CSV file names
col_major The order for array parameters; default to TRUE
Details

Stan and RStan could save the samples to CSV files. This function reads the samples and using the
comments (beginning with "#") to create a stanfit object. The model name is derived from the
first CSV file.

col_major specifies how array parameters are ordered in each row of the CSV files. For example,
parameter "a[2,2]" would be ordered as "al1,1], al[2,1], al1,2], al[2,2]" if col_major is
TRUE.

Value

A stanfit object (with invalid stanmodel slot). This stanfit object cannot be used to re-run the
sampler.

See Also

stanfit

Examples

csvfiles <- dir(system.file('misc', package = 'rstan'),
pattern = 'rstan_doc_ex_[0-9].csv', full.names = TRUE)
fit <- read_stan_csv(csvfiles)

rstan-plotting-functions
RStan Plotting Functions

Description

List of RStan plotting functions that return ggplot objects

RStan plotting functions

Posterior intervals and point estimates stan_plot

Traceplots stan_trace

Histograms stan_hist

Kernel density estimates stan_dens

Scatterplots stan_scat

Diagnostics for Hamiltonian Monte Carlo and the No-U-Turn Sampler stan_diag
Rhat stan_rhat

rstan.package.skeleton 31

Ratio of effective sample size to total posterior sample size stan_ess
Ratio of Monte Carlo standard error to posterior standard deviation stan_mcse

Autocorrelation stan_ac

See Also

Plot options

rstan.package.skeleton
Create a Skeleton for a New Source Package with Stan Programs

Description

This function is very similar to package.skeleton but is designed for source packages that want
to include Stan Programs that can be built into binary versions.

Usage
rstan.package.skeleton(name = "anRpackage"”, list = character(),
environment = .GlobalEnv, path = ".",
force = FALSE, code_files = character(),
stan_files = character())
Arguments

name, list, environment, path, force, code_files
Same is in package.skeleton

stan_files A character vector with paths to .stan files to include in the package. Otherwise
similar to code_files.

Details

This function first calls package.skeleton and then adds the files listed in stan_files to an
exec directory. Finally, it downloads several files from the rstanarm GitHub repository to facilitate
building the resulting package. Note that rstanarm is licensed under the GPL >= 3, so package
builders who do not want to be governed by that license should not use the downloaded files that
contain R code. Otherwise, it may be worth considering whether it would be easier to include your
.stan programs and supporting R code in the rstanarm package.

Value

Used for its side-effects

See Also

https://github.com/stan-dev/rstanarm/ for an example of how to create a package that con-
tains pre-compilable .stan programs

https://github.com/stan-dev/rstanarm/

32 rstan_options

Examples

See example(package.skeleton)

rstan_gg_options Set default appearance options

Description

Set default appearance options

Usage

rstan_gg_options(...)

rstan_ggtheme_options(...)

Arguments
For rstan_ggtheme_options, see theme for the theme elements that can be
specifiedin Forrstan_gg_options, ... canbe fill, color, chain_colors,
size, pt_color, or pt_size. See Examples.

See Also

List of RStan plotting functions

Examples

rstan_ggtheme_options(panel.background = element_rect(fill = "gray"),
legend.position = "top")
rstan_gg_options(fill = "skyblue", color = "skyblue4", pt_color = "red")

rstan_options Set and read options used in RStan

Description

Set and read options used in RStan. Some settings as options can be controlled by the user.

Usage

rstan_options(...)

sampling 33

Arguments
Arguments of the form opt = val set option opt to value val. Arguments of
the form opt set the function to return option opt’s value. Each argument must
be a character string.

Details

The available options are:

1. plot_rhat_breaks: The cut off points for Rhat for which we would indicate using a different
color. This is a numeric vector, defaulting to c(1.1, 1.2, 1.5, 2). The value for this
option will be sorted in ascending order, so for example plot_rhat_breaks = c(1.2, 1.5)
is equivalent to plot_rhat_breaks = c(1.5, 1.2).

2. plot_rhat_cols: A vector of the same length as plot_rhat_breaks that indicates the colors
for the breaks.

3. plot_rhat_nan_col: The color for Rhat when it is Inf or NaN.

4. plot_rhat_large_col: The color for Rhat when it is larger than the largest value of plot_rhat_breaks.

5. rstan_alert_col: The color used in method plot of S4 class stanfit to show that the
vector/array parameters are truncated.

6. rstan_chain_cols: The colors used in methods plot and traceplot of S4 class stanfit
for coloring different chains.

7. rstan_warmup_bg_col: The background color for the warmup area in the traceplots.

8. boost_lib: The path for the Boost C++ library used to compile Stan models. This option is
valid for the whole R session if not changed again.

9. eigen_lib: The path for the Eigen C++ library used to compile Stan models. This option is
valid for the whole R session if not changed again.

10. auto_write: A logical scalar (defaulting to FALSE) that controls whether a compiled instance
of a stanmodel-class is written to the hard disk in the same directory as the . stan program.
Value

The values as a 1ist for existing options and NA for non-existent options. When only one option is
specified, its old value is returned.

sampling Draw samples from a Stan model

Description

Draw samples from the model defined by class stanmodel. This method is a generic function of
the S4 class stanmodel.

34 sampling

Usage

S4 method for signature 'stanmodel'
sampling(object, data = list(), pars = NA,
chains = 4, iter = 2000, warmup = floor(iter/2), thin =1,
seed = sample.int(.Machine$integer.max, 1),
init = 'random', check_data = TRUE,
sample_file = NULL, diagnostic_file = NULL, verbose = FALSE,
algorithm = c("NUTS", "HMC", "Fixed_param”),
control = NULL, include = TRUE,
cores = getOption("mc.cores”, 1L),
open_progress = interactive() && !isatty(stdout()) &&
lidentical(Sys.getenv("RSTUDIO"), "1"),

show_messages = TRUE, ...)
Arguments
object An object of class stanmodel.
data A named list or environment providing the data for the model or a character

vector for all the names of objects used as data. See the Note section in stan.

pars A vector of character strings specifying parameters of interest. The default is
NA indicating all parameters in the model. If include = TRUE, only samples
for parameters named in pars are stored in the fitted results. Conversely, if
include = FALSE, samples for all parameters except those named in pars are
stored in the fitted results.

chains A positive integer specifying the number of Markov chains. The default is 4.

iter A positive integer specifying the number of iterations for each chain (including
warmup). The default is 2000.

warmup A positive integer specifying the number of warmup (aka burnin) iterations per

chain. If step-size adaptation is on (which it is by default), this also controls
the number of iterations for which adaptation is run (and hence these warmup
samples should not be used for inference). The number of warmup iterations
should not be larger than iter and the default is iter/2.

thin A positive integer specifying the period for saving samples. The default is 1,
which is usually the recommended value.

seed The seed for random number generation. The default is generated from 1 to the
maximum integer supported by R on the machine. Even if multiple chains are
used, only one seed is needed, with other chains having seeds derived from that
of the first chain to avoid dependent samples. When a seed is specified by a
number, as.integer will be applied to it. If as. integer produces NA, the seed
is generated randomly. The seed can also be specified as a character string of
digits, such as "12345", which is converted to integer.

init Initial values specification. See the detailed documentation for the init argument
in stan.
check_data Logical, defaulting to TRUE. If TRUE the data will be preprocessed; otherwise

not. See the Note section in stan.

sampling 35

sample_file An optional character string providing the name of a file. If specified the draws
for all parameters and other saved quantities will be written to the file. If not pro-
vided, files are not created. When the folder specified is not writable, tempdir ()
is used. When there are multiple chains, an underscore and chain number are
appended to the file name.

diagnostic_file
An optional character string providing the name of a file. If specified the diag-
nostics data for all parameters will be written to the file. If not provided, files
are not created. When the folder specified is not writable, tempdir () is used.
When there are multiple chains, an underscore and chain number are appended
to the file name.

verbose TRUE or FALSE: flag indicating whether to print intermediate output from Stan
on the console, which might be helpful for model debugging.

algorithm One of algorithms that are implemented in Stan such as the No-U-Turn sampler
(NUTS, Hoffman and Gelman 2011), static HMC, or Fixed_param.

control A named list of parameters to control the sampler’s behavior. See the details
in the documentation for the control argument in stan.

include Logical scalar defaulting to TRUE indicating whether to include or exclude the
parameters given by the pars argument. If FALSE, only entire multidimensional
parameters can be excluded, rather than particular elements of them.

cores Number of cores to use when executing the chains in parallel, which defaults to
1 but we recommend setting the mc. cores option to be as many processors as
the hardware and RAM allow (up to the number of chains).

open_progress Logical scalar that only takes effect if cores > 1 but is recommended to be
TRUE in interactive use so that the progress of the chains will be redirected to
a file that is automatically opened for inspection. For very short runs, the user
might prefer FALSE.

show_messages Either a logical scalar (defaulting to TRUE) indicating whether to print the sum-
mary of Informational Messages to the screen after a chain is finished or a char-
acter string naming a path where the summary is stored. Setting to FALSE is not
recommended unless you are very sure that the model is correct up to numerical
error.

Additional arguments can be chain_id, init_r, test_grad, append_samples,
refresh, enable_random_init. See the documentation in stan.

Value
An object of S4 class stanfit representing the fitted results. Slot mode for this object indicates if
the sampling is done or not.

Methods

sampling signature(object = "stanmodel”)

Call a sampler (NUTS, HMC, or Fixed_param depending on parameters) to draw samples
from the model defined by S4 class stanmodel given the data, initial values, etc.

36 sflist2stanfit

See Also

stanmodel, stanfit, stan

Examples

Not run:
m <- stan_model(model_code = 'parameters {real y;} model {y ~ normal(@,1);}')
f <- sampling(m, iter = 100)

End(Not run)

set_cppo Defunct function to set the compiler optimization level

Description

This function returns nothing and does nothing except throw a warning. See http://cran.r-project.
org/doc/manuals/r-release/R-admin.html#Customizing-package-compilation forinforma-
tion on customizing the compiler options, but doing so should be unnecessary for normal useage.

Usage

set_cppo(...)

Arguments

Any input is ignored

Value

An invisible NULL

sflist2stanfit Merge a list of stanfit objects into one

Description

This function takes a list of stanfit objects and returns a consolidated stanfit object. The
stanfit objects to be merged need to have the same configuration of iteration, warmup, and thin,
besides being from the same model. This could facilitate some parallel usage of RStan. For exam-
ple, if we call stan by parallel and it returns a list of stanfit objects, this function can be used to
create one stanfit object from the list.

Usage

sflist2stanfit(sflist)

http://cran.r-project.org/doc/manuals/r-release/R-admin.html#Customizing-package-compilation
http://cran.r-project.org/doc/manuals/r-release/R-admin.html#Customizing-package-compilation

sflist2stanfit 37

Arguments

sflist A list of stanfit objects.

Value

An S4 object of stanfit consolidated from all the input stanfit objects.

Note

This function should be called in rare circumstances because sampling has a cores argument that
allows multiple chains to be executed in parallel. However, if you need to depart from that, the
best practice is to use sflist2stanfit on alist of stanfit objects created with the same seed but
different chain_id (see example below). Using the same seed but different chain_id can make sure
the random number generations for all chains are not correlated.

This function would do some check to see if the stanfit objects in the input list can be merged.
But the check is not sufficient. So generally, it is the user’s responsibility to make sure the input is
correct so that the merging makes sense.

The date in the new stanfit object is when it is merged.

get_seed function for the new consolidated stanfit object only returns the seed used in the first
chain of the new object.

The sampler such as NUTS?2 that is displayed in the printout by print is the sampler used for the
first chain. The print method assumes the samplers are the same for all chains.

The included stanmodel object, which includes the compiled model, in the new stanfit object is
from the first element of the input list.

References

The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org/.

See Also

stan

Examples

Not run:
library(rstan)
scode <- "
data {
int<lower=1> N;
3
parameters {
real y1[NJ;
real y2[N];
3
model {
y1 ~ normal(Q, 1);

http://mc-stan.org/
http://mc-stan.org/

38 stan

y2 ~ double_exponential(@, 2);
3

n

seed <- 123 # or any other integer

foo_data <- list(N = 2)

foo <- stan(model_code = scode, data = foo_data, chains = 1, iter = 1)

f1 <- stan(fit = foo, data = foo_data, chains = 1, seed = seed, chain_id = 1)
f2 <- stan(fit = foo, data = foo_data, chains = 2, seed = seed, chain_id = 2:3)
f12 <- sflist2stanfit(list(f1, f2))

parallel stan call for unix-like 0S
library(parallel)

if (.Platform$0S.type == "unix") {
sflistl <-
mclapply(1:4, mc.cores = 4,
function(i) stan(fit = foo, data = foo_data, seed = seed,

chains = 1, chain_id = i, refresh = -1))
3 <- sflist2stanfit(sflistl)
3
if (.Platform$0S.type == "windows") { # also works on non-Windows

CL <- makeCluster(4)
clusterExport(cl = CL, c("foo_data", "foo", "seed"))
sflist1 <- parLapply(CL, 1:4, fun = function(cid) {
require(rstan)
stan(fit = foo, data = foo_data, chains = 1,
iter = 2000, seed = seed, chain_id = cid)

b

fit <- sflist2stanfit(sflist1)
print(fit)

stopCluster(CL)

1} # end example for Windows

End(Not run)

stan Fit a model using Stan

Description

Fit a model defined in the Stan modeling language and return the fitted result as an instance of
stanfit.

Usage

nn

stan(file, model_name = "anon_model”, model_code = ,
fit = NA, data = list(), pars = NA, chains = 4,
iter = 2000, warmup = floor(iter/2), thin = 1,
init = "random”, seed = sample.int(.Machine$integer.max, 1),

stan 39

algorithm = c("NUTS", "HMC", "Fixed_param”),

control = NULL,

sample_file = NULL, diagnostic_file = NULL,

save_dso = TRUE,

verbose = FALSE, include = TRUE,

cores = getOption("mc.cores”, 1L),

open_progress = interactive() && !isatty(stdout()) &&
lidentical(Sys.getenv("RSTUDIO"), "1"),

boost_lib = NULL,
eigen_lib = NULL)

Arguments

file A character string file name or a connection that R supports containing the text
of a model specification in the Stan modeling language; a model may also be
specified directly as a character string using parameter model_code or through
a previous fit using parameter fit. When fit is specified, parameter file is
ignored.

model_name A character string naming the model; defaults to "anon_model”. However, the
model name would be derived from file or model_code (if model_code is the
name of a character string object) if model_name is not specified.

model_code A character string either containing the model definition or the name of a char-
acter string object in the workspace. This parameter is used only if parameter
file is not specified. When fit is specified, the model compiled previously is
used so specifying model_code is ignored.

fit An instance of S4 class stanfit derived from a previous fit; defaults to NA. If
fit is not NA, the compiled model associated with the fitted result is re-used;
thus the time that would otherwise be spent recompiling the C++ code for the
model can be saved.

data A named list or environment providing the data for the model, or a character
vector for all the names of objects used as data. See the Note section below.

pars A vector of character strings specifying parameters of interest. The default is
NA indicating all parameters in the model. If include = TRUE, only samples
for parameters named in pars are stored in the fitted results. Conversely, if
include = FALSE, samples for all parameters except those named in pars are
stored in the fitted results.

chains A positive integer specifying the number of Markov chains. The default is 4.

iter A positive integer specifying the number of iterations for each chain (including
warmup). The default is 2000.

warmup A positive integer specifying the number of warmup (aka burnin) iterations per
chain. If step-size adaptation is on (which it is by default), this also controls
the number of iterations for which adaptation is run (and hence these warmup
samples should not be used for inference). The number of warmup iterations
should not be larger than iter and the default is iter/2.

thin A positive integer specifying the period for saving samples. The default is 1,
which is usually the recommended value.

40

stan

init Can be the digit 9, the strings "0" or "random”, a function that returns a named
list, or a list of named lists.

init="random" (default): Let Stan generate random initial values for all pa-
rameters. The seed of the random number generator used by Stan can be
specified via the seed argument. If the seed for Stan is fixed, the same
initial values are used. The default is to randomly generate initial values
between -2 and 2 on the unconstrained support. The optional additional
parameter init_r can be set to some value other than 2 to change the range
of the randomly generated inits.

init="0", init=@: Initialize all parameters to zero on the unconstrained sup-
port.

inits via list: Set inital values by providing a list equal in length to the number
of chains. The elements of this list should themselves be named lists, where
each of these named lists has the name of a parameter and is used to specify
the initial values for that parameter for the corresponding chain.

inits via function: Set initial values by providing a function that returns a list
for specifying the initial values of parameters for a chain. The function can
take an optional parameter chain_id through which the chain_id (if spec-
ified) or the integers from 1 to chains will be supplied to the function for
generating initial values. See the Examples section below for examples of
defining such functions and using a list of lists for specifying initial values.

When specifying initial values via a 1list or function, any parameters for
which values are not specified will receive initial values generated as described
in the init="random" description above.

seed The seed for random number generation. The default is generated from 1 to the
maximum integer supported by R on the machine. Even if multiple chains are
used, only one seed is needed, with other chains having seeds derived from that
of the first chain to avoid dependent samples. When a seed is specified by a
number, as. integer will be applied to it. If as. integer produces NA, the seed
is generated randomly. The seed can also be specified as a character string of
digits, such as "12345", which is converted to integer.

algorithm One of algorithms that are implemented in Stan such as the No-U-Turn sampler
(NUTS, Hoffman and Gelman 2011), static HMC, or Fixed_param.
sample_file An optional character string providing the name of a file. If specified the draws

for all parameters and other saved quantities will be written to the file. If not pro-
vided, files are not created. When the folder specified is not writable, tempdir ()
is used. When there are multiple chains, an underscore and chain number are
appended to the file name.
diagnostic_file

An optional character string providing the name of a file. If specified the diag-
nostics data for all parameters will be written to the file. If not provided, files
are not created. When the folder specified is not writable, tempdir () is used.
When there are multiple chains, an underscore and chain number are appended
to the file name.

save_dso Logical, with default TRUE, indicating whether the dynamic shared object (DSO)
compiled from the C++ code for the model will be saved or not. If TRUE, we can

stan

verbose

control

include

cores

open_progress

41

draw samples from the same model in another R session using the saved DSO
(i.e., without compiling the C++ code again). This parameter only takes effect if
fit is not used; with fit defined, the DSO from the previous run is used. When
save_dso=TRUE, the fitted object can be loaded from what is saved previously
and used for sampling, if the compiling is done on the same platform, that is,
same operating system and same architecture (32bits or 64bits).

TRUE or FALSE: flag indicating whether to print intermediate output from Stan
on the console, which might be helpful for model debugging.

A named list of parameters to control the sampler’s behavior. It defaults to
NULL so all the default values are used. First, the following are adaptation param-
eters for sampling algorithms. These are parameters used in Stan with similar
names here.

e adapt_engaged (logical)

* adapt_gamma (double, positive, defaults to 0.05)

¢ adapt_delta (double, between 0 and 1, defaults to 0.8)

* adapt_kappa (double, positive, defaults to 0.75)

* adapt_t@ (double, positive, defaults to 10)

e adapt_init_buffer (integer, positive, defaults to 75)

* adapt_term_buffer (integer, positive, defaults to 50)

* adapt_window (integer, positive, defaults to 25)
In addition, algorithm HMC (called ’static HMC’ in Stan) and NUTS share the
following parameters:

* stepsize (double, positive)

e stepsize_jitter (double, [0,1])

* metric (string, one of "unit_e", "diag_e", "dense_e")
For algorithm HMC, we can also set

* int_time (double, positive)
For algorithm NUTS, we can set

* max_treedepth (integer, positive)
For test_grad mode, the following parameters can be set

e epsilon (double, defaults to 1e-6)
e error (double, defaults to 1e-6)

Logical scalar defaulting to TRUE indicating whether to include or exclude the
parameters given by the pars argument. If FALSE, only entire multidimensional
parameters can be excluded, rather than particular elements of them.

Number of cores to use when executing the chains in parallel, which defaults to
1 but we recommend setting the mc. cores option to be as many processors as
the hardware and RAM allow (up to the number of chains).

Logical scalar that only takes effect if cores > 1 but is recommended to be
TRUE in interactive use so that the progress of the chains will be redirected to
a file that is automatically opened for inspection. For very short runs, the user
might prefer FALSE.

42 stan

Other optional parameters:
e chain_id (integer)
e init_r (double, positive)
* test_grad (logical)
e append_samples (logical)
* refresh(integer)
e enable_random_init(logical)
* save_warmup(logical)

chain_id can be a vector to specify the chain_id for all chains or an integer. For
the former case, they should be unique. For the latter, the sequence of integers
starting from the given chain_id are used for all chains.

init_r is used only for generating random initial values, specifically when
init="random" or not all parameters are initialized in the user-supplied list
or function. If specified, the initial values are simulated uniformly from inter-
val [-init_r, init_r] rather than using the default interval (see the manual of
(cmd)Stan).

test_grad (logical). If test_grad=TRUE, Stan will not do any sampling. In-
stead, the gradient calculation is tested and printed out and the fitted stanfit
object is in test gradient mode. By default, it is FALSE.

append_samples (logical). Only relevant if sample_file is specified and is

an existing file. In that case, setting append_samples=TRUE will append the
samples to the existing file rather than overwriting the contents of the file.

refresh (integer) can be used to control how to indicate the progress dur-

ing sampling (i.e. show the progress every refresh iterations). By default,
refresh = max(iter/10, 1). The progress indicator is turned off if refresh <= @.

enable_random_init (logical) being TRUE enables specifying initial values
randomly when the initial values are not fully specified from the user.
save_warmup (logical) indicates whether to save draws during the warmup
phase and defaults to TRUE. Some memory related problems can be avoided by
setting it to FALSE, but some diagnostics are more limited if the warmup draws
are not stored.

boost_lib The path for an alternative version of the Boost C++ to use instead of the one in
the BH package.
eigen_lib The path for an alternative version of the Eigen C++ library to the one in ReppEigen.
Details

stan does all of the work of fitting a Stan model and returning the results as an instance of stanfit.
First, it translates the Stan model to C++ code. Second, the C++ code is compiled into a binary
shared object, which is loaded into the current R session (an object of S4 class stanmodel is cre-
ated). Finally, samples are drawn and wrapped in an object of S4 class stanfit, which has methods
such as print, summary, and plot to inspect and retrieve the results of the fitted model.

stan can also be used to sample again from a fitted model under different settings (e.g., different
iter, data, etc.) by using the fit argument to specify an existing stanfit object. In this case, the
compiled C++ code for the model is reused.

stan 43

Value

An object of S4 class stanfit. However, if cores > 1 and there is an error for any of the chains,
then the error(s) are printed. If all chains have errors and an error occurs before or during sampling,
the returned object does not contain samples. But the compiled binary object for the model is still
included, so we can reuse the returned object for another sampling.

Note

The data passed to stan are preprocessed before being passed to Stan. If data is not a character
vector, the data block of the Stan program is parsed and R objects of the same name are searched
starting from the calling environment. Then, if data is list-like but not a data. frame the elements
of data take precedence. This behavior is similar to how a formula is evaluated by the 1m function
when data is supplied. In general, each R object being passed to Stan should be either a numeric
vector (including the special case of a ’scalar’) or a numeric array (matrix). The first exception is
that an element can be a logical vector: TRUE’s are converted to 1 and FALSE’s to 0. An element can
also be a data frame or a specially structured list (see details below), both of which will be converted
into arrays in the preprocessing. Using a specially structured list is not encouraged though it might
be convenient sometimes; and when in doubt, just use arrays.

This preprocessing for each element mainly includes the following:

1. Change the data of type from double to integer if no accuracy is lost. The main reason is
that by default, R uses double as data type such as in a <- 3. But Stan will not read data of
type int from real and it reads data from int if the data type is declared as real.

2. Check if there is NA in the data. Unlike BUGS, Stan does not allow missing data. Any NA
values in supplied data will cause the function to stop and report an error.

3. Check data types. Stan allows only numeric data, that is, doubles, integers, and arrays of these.
Data of other types (for example, characters and factors) are not passed to Stan.

4. Check whether there are objects in the data list with duplicated names. Duplicated names, if
found, will cause the function to stop and report an error.

5. Check whether the names of objects in the data list are legal Stan names. If illegal names
are found, it will stop and report an error. See (Cmd)Stan’s manual for the rules of variable
names.

6. When an element is of type data. frame, it will be converted to matrix by function data.matrix.

7. When an element is of type 1ist, it is supposed to make it easier to pass data for those declared
in Stan code such as "vector[J] y1[I]" and "matrix[J,K] y2[I]". Using the latter as
an example, we can use a list for y2 if the list has "I" elements, each of which is an array
(matrix) of dimension "J*K". However, it is not possible to pass a list for data declared such
as "vector[K] y3[I,J]"; the only way for it is to use an array with dimension "I*J*K". In
addition, technically a data. frame in R is also a list, but it should not be used for the purpose
here since a data. frame will be converted to a matrix as described above.

Stan treats a vector of length 1 in R as a scalar. So technically if, for example, "real y[1]1;" is
defined in the data block, an array such as "y = array(1.0, dim = 1)" in R should be used.
This is also the case for specifying initial values since the same underlying approach for reading
data from R in Stan is used, in which vector of length 1 is treated as a scalar.

44 stan

In general, the higher the optimization level is set, the faster the generated binary code for the model
runs, which can be set in a Makevars file. However, the binary code generated for the model runs
fast by using a higher optimization level at the cost of longer times to compile the C++ code.

References

The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org.

The Stan Development Team CmdStan Interface User’s Guide. http://mc-stan.org.

See Also

stanc for translating model code in Stan modeling language to C++, sampling for sampling, and
stanfit for the fitted results.

see extract and as.array.stanfit for extracting samples from stanfit objects.

Examples

Not run:
#i##H# example 1
library(rstan)
scode <- "
parameters {
real y[2];
3
model {
y[11 ~ normal(e, 1);
y[2] ~ double_exponential(@, 2);

n

fitl <- stan(model_code = scode, iter = 10, verbose = FALSE)
print(fit1)
fit2 <- stan(fit = fit1, iter = 10000, verbose = FALSE)

extract samples as a list of arrays
e2 <- extract(fit2, permuted = TRUE)

using as.array on the stanfit object to get samples
a2 <- as.array(fit2)

#i### example 2

the result of this package is included in the package

excode <- '

transformed data {
real y[20];
y[1] <- 0.5796; y[2] <- 0.2276; y[3] <- -0.2959;
y[4] <- -0.3742; y[5] <- 0.3885; y[6] <- -2.1585;
y[7] <- 0.7111; y[8] <- 1.4424; y[9] <- 2.5430;
y[10] <- 0.3746; y[11] <- 0.4773; y[12] <- 0.1803;
y[13] <- 0.5215; y[14] <- -1.6044; y[15] <- -0.6703;

http://mc-stan.org
http://mc-stan.org
http://mc-stan.org

stanc

y[16] <- 0.9459; y[17] <- -0.382; y[18] <- 0.7619;
y[19] <- 0.1006; y[20] <- -1.7461;
}
parameters {
real mu;
real<lower=0, upper=10> sigma;
vector[2] z[3];
real<lower=0> alpha;
}
model {
y ~ normal(mu, sigma);
for (i in 1:3)
z[i] ~ normal(@, 1);
alpha ~ exponential(2);
}

exfit <- stan(model_code = excode, save_dso = FALSE, iter = 500)
print(exfit)
plot(exfit)

End(Not run)
Not run:
examples of specify argument ‘init‘ for function stan

define a function to generate initial values that can
be fed to function stan's argument ‘init®
function form 1 without arguments
initf1 <- function() {
list(mu = 1, sigma = 4, z = array(rnorm(6), dim = c(3,2)), alpha
3
function form 2 with an argument named ‘chain_id®
initf2 <- function(chain_id = 1) {
cat("chain_id =", chain_id, "\n")
list(mu = 1, sigma = 4, z = array(rnorm(6), dim = c(3,2)), alpha
3

generate a list of lists to specify initial values
n_chains <- 4
init_11 <- lapply(1:n_chains, function(id) initf2(chain_id = id))

exfit@ <- stan(model_code = excode, init = initf1)
stan(fit = exfit@, init = initf2)

stan(fit = exfit@, init = init_11, chains = n_chains)

End(Not run)

chain_id)

45

stanc Translate Stan model specification to C++ code

46

stanc

Description

Translate a model specification in Stan code to C++ code, which can then be compiled and loaded
for sampling.

Usage

stanc(file, model_code = , model_name = "anon_model”, verbose = FALSE,
obfuscate_model_name = TRUE)
stanc_builder(file, isystem = dirname(file),
verbose = FALSE, obfuscate_model_name = FALSE)

Arguments

file A character string or a connection that R supports specifying the Stan model
specification in Stan’s modeling language.

model_code Either a character string containing a Stan model specification or the name of a
character string object in the workspace. This parameter is used only if parame-
ter file is not specified, so it defaults to the empty string.

model_name A character string naming the model. The default is "anon_model”. However,
the model name will be derived from file or model_code (if model_code is the
name of a character string object) if model_name is not specified.

verbose Logical, defaulting to FALSE. If TRUE more intermediate information is printed

during the translation procedure.

obfuscate_model_name
Logical, defaulting to TRUE, indicating whether to use a randomly-generated
character string for the name of the C++ class. This prevents name clashes
when compiling multiple models in the same R session.

isystem A character vector of length one naming a path to look for file paths in file
that are to be included within the Stan program named by file. See the Details
section below.

Details

The stanc_builder function supports the standard C++ convention of specifying something like
#include "my_includes.txt” on an entire line within the file named by the file argument.
In other words, stanc_builder would look for "my_includes.txt"” in (or under) the directory
named by the isystem argument and insert its contents verbatim at that position before calling
stanc on the resulting model_code. This mechanism reduces the need to copy common chunks of
code across Stan programs.

Note that line numbers referred to in parser warnings or errors refer to the postprocessed Stan
program rather than file. In the case of a parser error, the postprocessed Stan program will be
printed after the error message. Line numbers referred to in messages while Stan is executing also
refer to the postprocessed Stan program which can be obtained by calling get_stancode.

stanc 47

Value

A list with named entries:

1. model_name Character string for the model name.
2. model_code Character string for the model’s Stan specification.
3. cppcode Character string for the model’s C++ code.

4. status Logical indicating success/failure (TRUE/FALSE) of translating the Stan code.

Note

Unlike R, in which variable identifiers may contain dots (e.g. a. 1), Stan prohibits dots from occur-
ring in variable identifiers. Furthermore, C++ reserved words and Stan reserved words may not be
used for variable names; see the Stan User’s Guide for a complete list.

References

The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org/.

The Stan Development Team CmdStan Interface User’s Guide. http://mc-stan.org.

See Also

stan_model and stan

Examples

"

stanmodelcode <-

data {
int<lower=0> N;
real y[N];

3

parameters {
real mu;

3

model {
mu ~ normal(Q, 10);
y ~ normal(mu, 1);

}

n

r <- stanc(model_code = stanmodelcode, model_name = "normall")
str(r)

http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org

48

stanfit-class

stanfit-class Class stanfit: fitted Stan model

Description

The components (slots) of a stanfit object and the various available methods are described below.
When methods have their own more detailed documentation pages links are provided.

Objects from the Class

An object of class stanfit contains the output derived from fitting a Stan model as returned by the
top-level function stan or the lower-level methods sampling and vb (which are defined on class
stanmodel). Many methods (e.g., print, plot, summary) are provided for summarizing results and
various access methods also allow the underlying data (e.g., simulations, diagnostics) contained in
the object to be retrieved.

Slots

model_name: The model name as a string.

model_pars: A character vector of names of parameters (including transformed parameters and
derived quantities).

par_dims: A named list giving the dimensions for all parameters. The dimension for a scalar
parameter is given as numeric ().

mode: An integer indicating the mode of the fitted model. @ indicates sampling mode, 1 indicates
test gradient mode (no sampling is done), and 2 indicates error mode (an error occurred before
sampling). Most methods for stanfit objects are useful only if mode=0.

sim: A list containing simulation results including the posterior draws as well as various pieces of
metadata used by many of the methods for stanfit objects.

inits: The initial values (either user-specified or generated randomly) for all chains. This is a list
with one component per chain. Each component is a named list containing the initial values
for each parameter for the corresponding chain.

stan_args: A list with one component per chain containing the arguments used for sampling (e.g.
iter, seed, etc.).

stanmodel: The instance of S4 class stanmodel.
date: A string containing the date and time the object was created.

.MISC: Miscellaneous helper information used for the fitted model. This is an object of type
environment. Users rarely (if ever) need to access the contents of .MISC.

Methods

Printing, plotting, and summarizing:

show Print the default summary for the model.

print Print a customizable summary for the model. See print.stanfit.

stanfit-class 49

plot Create various plots summarizing the fitted model. See plot,stanfit-method.

summary Summarize the distributions of estimated parameters and derived quantities using the pos-
terior draws. See summary, stanfit-method.

get_posterior_mean Get the posterior mean for parameters of interest (using pars to specify a
subset of parameters). Returned is a matrix with one column per chain and an additional
column for all chains combined.

Extracting posterior draws:

extract Extract the draws for all chains for all (or specified) parameters. See extract.

as.array, as.matrix, as.data.frame Coerce the draws (without warmup) to an array, matrix or
data frame. See as.array.stanfit.

As.mcmc.list Convertastanfit objecttoanmcmc.list asinpackage coda. See As.mcmc.list.

get_logposterior Get the log-posterior at each iteration. Each element of the returned 1ist is the
vector of log-posterior values (up to an additive constant, i.e. up to a multiplicative constant
on the linear scale) for a single chain. The optional argument inc_warmup (defaulting to TRUE)
indicates whether to include the warmup period.

Diagnostics, log probability, and gradients:

get_sampler_params Obtain the parameters used for the sampler such as stepsize and treedepth.
The results are returned as a list with one component (an array) per chain. The array has num-
ber of columns corresponding to the number of parameters used in the sampler and its column
names provide the parameter names. Optional argument inc_warmup (defaulting to TRUE)
indicates whether to include the warmup period.

get_adaptation_info Obtain the adaptation information for the sampler if NUTS was used. The
results are returned as a list, each element of which is a character string with the info for a
single chain.

log_prob Compute the log probability density (1p__) for a set of parameter values (on the uncon-
strained space) up to an additive constant. The unconstrained parameters are specified using
a numeric vector. The number of parameters on the unconstrained space can be obtained us-
ing method get_num_upars. A numeric value is returned. See also the documentation in
log_prob.

grad_log_prob Compute the gradient of log probability density function for a set of parameter
values (on the unconstrained space) up to an additive constant. The unconstrained parame-
ters are specified using a numeric vector with the length being the number of unconstrained
parameters. A numeric vector is returned with the length of the number of unconstrained pa-
rameters and an attribute named log_prob being the 1p__. See also the documentation in
grad_log_prob.

get_num_upars Get the number of unconstrained parameters of the model. The number of param-
eters for a model is not necessarily equal to this number of unconstrained parameters. For
example, when a parameter is specified as a simplex of length K, the number of unconstrained
parameters is K-1.

unconstrain_pars Transform the parameters to unconstrained space. The input is a named list
as for specifying initial values for each parameter. A numeric vector is returned. See also the
documentation in unconstrain_pars.

50 stanfit-class

constrain_pars Get the parameter values from their unconstrained space. The input is a numeric
vector. A list is returned. This function is contrary to unconstrain_pars. See also the
documentation in constrain_pars.

Metadata and miscellaneous:

get_stancode Get the Stan code for the fitted model as a string. The result can be printed in a
readable format using cat.

get_stanmodel Get the object of S4 class stanmodel of the fitted model.

get_elapsed_time Get the warmup time and sample time in seconds. A matrix of two columns is
returned with each row containing the warmup and sample times for one chain.

get_inits Get the initial values for parameters used in sampling all chains. The returned object
is a list with the same structure as the inits slot described above. If object@mode=2 (error
mode) an empty list is returned.

get_cppo_mode Get the optimization mode used for compilation. The returned string is one of
"fast"”, "presentation2”, "presentationl”, and "debug".

get_seed Get the (P)RNG seed used. When the fitted object is empty (mode=2), NULL might be
returned. In the case that the seeds for all chains are different, use get_seeds.

get_seeds Get the seeds used for all chains. When the fitted object is empty (mode=2), NULL might
be returned.

References
The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org.

See Also

stan and stanmodel

Examples

Not run:
showClass("stanfit")
ecode <- '
parameters {
real<lower=0> y[2];

3
model {

y ~ exponential(1);
3

fit <- stan(model_code = ecode, iter = 10, chains = 1)
fit2 <- stan(fit = fit)

print(fit2)

plot(fit2)

traceplot(fit2)

ainfo <- get_adaptation_info(fit2)

cat(ainfol[[1]1])

http://mc-stan.org
http://mc-stan.org

stanfit-class

seed <- get_seed(fit2)

sp <- get_sampler_params(fit2)

sp2 <- get_sampler_params(fit2, inc_warmup = FALSE)
head(spL[1]11)

1p <- log_prob(fit, c(1, 2))
grad <- grad_log_prob(fit, c(1, 2))
1p2 <- attr(grad, "log_prob"”) # should be the same as "lp”

get the number of parameters on the unconstrained space
n <- get_num_upars(fit)

parameters on the positive real line (constrained space)
y1 <= list(y = rep(1, 2))

uy <- unconstrain_pars(fit, y1)
uy should be c(@, @) since here the log transformation is used
ylstar <- constrain_pars(fit, uy)

print(y1)
print(ylstar) # ylstart should equal to y1

End(Not run)

Create a stanfit object from reading CSV files of samples (saved in rstan

package) generated by funtion stan for demonstration purpose from model as follows.

#

excode <-

transformed data {

real y[20];
y[1] <- 0.5796; y[2] <- 0.2276; y[3] <- -0.2959;
y[4] <- -0.3742; y[5] <- 0.3885; y[6] <- -2.1585;
y[7]1 <- 0.7111; y[8] <- 1.4424; y[9] <- 2.5430;
y[10] <- 0.3746; y[11] <- 0.4773; y[12] <- 0.1803;
y[13] <- 0.5215; y[14] <- -1.6044; y[15] <- -0.6703;
y[16] <- 0.9459; y[17] <- -0.382; y[18] <- 0.7619;
y[19] <- 0.1006; y[20] <- -1.7461;

}
parameters {
real mu;
real<lower=0, upper=10> sigma;
vector[2] z[3];
real<lower=0> alpha;
}
model {
y ~ normal(mu, sigma);
for (i in 1:3)
z[i] ~ normal(@, 1);
alpha ~ exponential(2);
}

exfit <- stan(model_code = excode, save_dso = FALSE, iter = 200,

52 stanmodel-class

sample_file = "rstan_doc_ex.csv")
#
exfit <- read_stan_csv(dir(system.file('misc', package = 'rstan'),

pattern='rstan_doc_ex_[[:digit:]].csv',
full.names = TRUE))

print(exfit)
plot(exfit)

adaptinfo <- get_adaptation_info(exfit)
seed <- get_seed(exfit)

sp <- get_sampler_params(exfit)

ml <- As.mcmc.list(exfit)
cat(get_stancode(exfit))

stanmodel-class Class representing model compiled from C++

Description

A stanmodel object represents the model compiled from C++ code. The sampling method defined
in this class may be used to draw samples from the model and optimizing method is for obtaining
a point estimate by maximizing the log-posterior.

Objects from the Class

Instances of stanmodel are usually created by calling function stan_model or function stan.

Slots

model_name: The model name, an object of type character.
model_code: The Stan model specification, an object of type character.
model_cpp: Object of type 1ist that includes the C++ code for the model.

mk_cppmodule: A function to return a RCpp module. This function will be called in function
sampling and optimzing with one argument (the instance of stanmodel itself).

dso: Object of S4 class cxxdso. The container for the dynamic shared objects compiled from the
C++ code of the model, returned from function cxxfunction in package inline.

Methods

show signature(object = "stanmodel"): print the Stan model specification.
vb signature(object = "stanmodel”): use the variational Bayes algorithms.
sampling signature(object = "stanmodel”): draw samples for the model (see sampling).

optimizing signature(object = "stanmodel”): obtain a point estimate by maximizing the
posterior (see optimizing).

stan_demo 53

get_cppcode signature(object = "stanmodel”): return the C++ code for the model as a
character string. This is part of the C++ code that is compiled to the dynamic shared object
for the model.

get_cxxflags signature(object = "stanmodel”): return the CXXFLAGS used for compiling
the model. The returned string is like CXXFLAGS = -03.
Note

Objects of class stanmodel can be saved for use across R sessions only if save_dso = TRUE is set
during calling functions that create stanmodel objects (e.g., stan and stan_model).

Even if save_dso = TRUE, the model cannot be loaded on a platform (operating system, 32 bits or
64 bits, etc.) that differs from the one on which it was compiled.

See Also

stan_model, stanc sampling, optimizing, vb

Examples

showClass(”stanmodel™)

stan_demo Demonstrate examples included in Stan

Description

Stan includes a variety of examples and most of the BUGS example models that are translated into
Stan modeling language. One example is chosen from a list created from matching user input and
gets fitted in the demonstration.

Usage
stan_demo(model = character(0),

method = c("sampling”, "optimizing"”, "meanfield”, "fullrank"), ...)

Arguments
model A character string for model name to specify which model will be used for
demonstration. The default is an empty string, which prompts the user to select
one the available models. If model = 0, a character vector of all models is
returned without any user intervention. If model = i where i > 0, then the ith
available model is chosen without user intervention, which is useful for testing.
method Whether to call sampling (the default), optimizing, or one of the variants of

vb for the demonstration

Further arguments passed to method.

54 stan_model

Value

An S4 object of stanfit, unless model = 0, in which case a character vector of paths to available
models is returned.

References

The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org/.

See Also

sampling, optimizing

Examples

Not run:
dogsfit <- stan_demo("dogs"”) # run the dogs model
fitl <- stan_demo(1) # run model_names[1]

End(Not run)

stan_model Construct a Stan model

Description

Construct an instance of S4 class stanmodel from a model specified in Stan’s modeling language.
A stanmodel object can then be used to draw samples from the model. The Stan program (the
model expressed in the Stan modeling language) is first translated to C++ code and then the C++
code for the model plus other auxiliary code is compiled into a dynamic shared object (DSO) and
then loaded. The loaded DSO for the model can be executed to draw samples, allowing inference
to be performed for the model and data.

Usage

stan_model (file, model_name = "anon_model”,
model_code = "", stanc_ret = NULL,
boost_lib = NULL, eigen_lib = NULL,
save_dso = TRUE, verbose = FALSE,
auto_write = rstan_options("auto_write"),
obfuscate_model_name = TRUE)

http://mc-stan.org/
http://mc-stan.org/

stan_model 55

Arguments

file A character string or a connection that R supports specifying the Stan model
specification in Stan’s modeling language.

model_name A character string naming the model; defaults to "anon_model”. However, the
model name will be derived from file or model_code (if model_code is the
name of a character string object) if model_name is not specified.

model_code Either a character string containing the model specification or the name of a
character string object in the workspace. This is an alternative to specifying the
model via the file or stanc_ret arguments.

stanc_ret A named list returned from a previous call to the stanc function. The list can be
used to specify the model instead of using the file or model_code arguments.

boost_lib The path to a version of the Boost C++ library to use instead of the one in the
BH package.

eigen_lib The path to a version of the Eigen C++ library to use instead of the one in the
RcppEigen package.

save_dso Logical, defaulting to TRUE, indicating whether the dynamic shared object (DSO)
compiled from the C++ code for the model will be saved or not. If TRUE, we can
draw samples from the same model in another R session using the saved DSO
(i.e., without compiling the C++ code again).

verbose Logical, defaulting to FALSE, indicating whether to report additional intermedi-
ate output to the console, which might be helpful for debugging.

auto_write Logical, defaulting to the value of rstan_options(”auto_write"), indicating

whether to write the object to the hard disk using saveRDS. Although this argu-

ment is FALSE by default, we recommend calling rstan_options("auto_write"” = TRUE)
in order to avoid unnecessary recompilations. If file is supplied and its dirname

is writable, then the object will be written to that same directory, substituting a

.rda extension for the . stan extension. Otherwise, the object will be written to

the tempdir.

obfuscate_model_name
A logical scalar that is TRUE by default and passed to stanc.

Details

If a previously compiled stanmodel exists on the hard drive, its validity is checked and then returned
without recompiling. The most common form of invalidity seems to be Stan code that ends with a
} rather than a blank line, which causes the hash checker to think that the current model is different
than the one saved on the hard drive. To avoid reading previously compiled stanmodels from the
hard drive, supply the stanc_ret argument rather than the file or model_code arguments.

There are three ways to specify the model’s code for stan_model:

1. parameter model_code: a character string containing the Stan model specification,

2. parameter file: afile name (or a connection) from which to read the Stan model specification,
or

3. parameter stanc_ret: a list returned by stanc to be reused.

56 stan_rdump

Value

An instance of S4 class stanmodel that can be passed to the sampling, optimizing, and vb func-
tions.

References

The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org/.

See Also

stanmodel for details on the class.

sampling, optimizing, and vb, which take a stanmodel object as input, for estimating the model
parameters.

More details on Stan, including the full user’s guide and reference manual, can be found at http:
//mc-stan.org/.

Examples

Not run:

stancode <- 'data {real y_mean;} parameters {real y;} model {y ~ normal(y_mean,1);}'
mod <- stan_model(model_code = stancode)

fit <- sampling(mod, data = list(y_mean = 0))

fit2 <- sampling(mod, data = list(y_mean = 5))

End(Not run)

stan_rdump Dump the data for a Stan model to R dump file in the limited format
that Stan can read.

Description

This function takes a vector of names of R objects and outputs text representations of the objects
to a file or connection. The file created by stan_rdump is typically used as data input of the Stan
package (http://mc-stan.org/) or sourced into another R session. The usage of this function is
very similar to dump in R.

Usage

stan_rdump(list, file = "", append = FALSE,
envir = parent.frame(),
width = options("width")$width,
quiet = FALSE)

http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org/

stan_rdump 57

Arguments
list A vector of character string: the names of one or more R objects to be dumped.
See the note below.
file Either a character string naming a file or a connection. "" indicates output to the
console.
append Logical: if TRUE and file is a character string, output will be appended to file;
otherwise, it will overwrite the contents of file.
envir The environment to search for objects.
width The width for maximum characters on a line. The output is broken into lines
with width.
quiet Whether to suppress warning messages that would appear when a variable is
not found or not supported for dumping (not being numeric or it would not be
converted to numeric) or a variable name is not allowed in Stan.
Value

An invisible character vector containing the names of the objects that were dumped.

Note

stan_rdump only dumps numeric data, which first can be a scalar, vector, matrix, or (multidimen-
sional) array. Additional types supported are logical (TRUE and FALSE), factor, data.frame and
a specially structured list.

The conversion for logical variables is to map TRUE to 1 and FALSE to 0. For factor variable, func-
tion as. integer is used to do the conversion (If we want to transform a factor f to approximately
its original numeric values, see the help of function factor and do the transformation before calling
stan_rdump). In the case of data. frame, function data.matrix is applied to the data frame before
dumping. See the notes in stan for the specially structured 1ist, which will be converted to array
before dumping.

stan_rdump will check whether the names of objects are legal variable names in Stan. If an illegal
name is found, data will be dumped with a warning. However, passing the name checking does not
necessarily mean that the name is legal. More details regarding rules of variable names in Stan can
be found in Stan’s manual.

If objects with specified names are not found, a warning will be issued.

References

The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org.

See Also

dump

http://mc-stan.org
http://mc-stan.org

58 stan_version

Examples

set variables in global environment

a <-17.5

b <-c(1,2,3)

write variables a and b to file ab.data.R in working directory
stan_rdump(c('a','b'), "ab.data.R")

x <= 1; y <= 1:10; z <~ array(1:10, dim = c(2,5))
stan_rdump(ls(pattern = '"*[xyz]'), "xyz.Rdump")
cat(paste(readLines("xyz.Rdump”), collapse = '\n'), '\n')
unlink("xyz.Rdump")

stan_version Obtain the version of Stan

Description

The stan version is in form of major.minor.patch; the first version is 1.0.0, indicating major
version 1, minor version 0 and patch level 0. Functionality only changes with minor versions and
backward compatibility will only be affected by major versions.

Usage

stan_version()

Value

A character string giving the version of Stan used in this version of RStan.

References
The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org/.

See Also

stan and stan_model

Examples

stan_version()

http://mc-stan.org/
http://mc-stan.org/

summary-methods 59

summary-methods Summary method for stanfit objects

Description
Summarize the distributions of estimated parameters and derived quantities using the posterior
draws.

Usage

S4 method for signature 'stanfit'
summary(object, pars, probs = c(0.025, 0.25, 0.50, 0.75, 0.975),

use_cache = TRUE, ...)
Arguments
object An instance of class stanfit.
pars A character vector of parameter names. Defaults to all parameters as well as the
log-posterior (1p__).
probs A numeric vector of quantiles of interest. The defaultis c(0.025,0.25,0.5,0.75,0.975).
use_cache Logical, defaulting to TRUE. When use_cache=TRUE the summary quantities for

all parameters are computed and cached for future use. Setting use_cache=FALSE
can be used to avoid performing the summary computations for all parameters
if pars is given as some specific parameters.

Currently unused.

Value

The summary method returns a named list with elements summary and c_summary, which contain
summaries for for all chains merged and individual chains, respectively. Included in the summaries
are quantiles, means, standard deviations (sd), effective sample sizes (n_eff), and split Rhats (the
potential scale reduction derived from all chains after splitting each chain in half and treating the
halves as chains). For the summary of all chains merged, Monte Carlo standard errors (se_mean)
are also reported.

See Also

monitor, which computes similar summaries but accepts an array of MCMC draws as its input
rather than a stanfit object.

Examples

Not run:
ecode <- '
parameters {
real<lower=0> y[2];

3

60

model {

traceplot

y ~ exponential(1);

3

fit <- stan(model_code = ecode)
s <- summary(fit, probs = c(0.1, 0.9))
s$summary # all chaines merged
s$c_summary # individual chains

End(Not run)

traceplot

Markov chain traceplots

Description

Draw the traceplot corresponding to one or more Markov chains, providing a visual way to inspect
sampling behavior and assess mixing across chains and convergence.

Usage

S4 method for signature 'stanfit'
traceplot(object, pars, include = TRUE, unconstrain = FALSE,
inc_warmup = FALSE, window = NULL, nrow = NULL, ncol = NULL, ...)

Arguments

object

pars

include

inc_warmup

window

unconstrain

nrow,ncol

Value

An instance of class stanfit.

A character vector of parameter names. Defaults to all parameters or the first 10
parameters (if there are more than 10).

Should the parameters given by the pars argument be included (the default) or
excluded from the plot? Only relevant if pars is not missing.

TRUE or FALSE, indicating whether the warmup sample are included in the trace
plot; defaults to FALSE.

A vector of length 2. Iterations between window[1] and window[2] will be
shown in the plot. The default is to show all iterations if inc_warmup is TRUE
and all iterations from the sampling period only if inc_warmup is FALSE. If
inc_warmup is FALSE the iterations specified in window should not include iter-
ations from the warmup period.

Should parameters be plotted on the unconstrained space? Defaults to FALSE.
Passed to facet_wrap.

Optional arguments to pass to geom_path (e.g. size, linetype, alpha, etc.).

A ggplot object that can be further customized using the ggplot2 package.

traceplot

Methods

traceplot signature(object = "stanfit"”)Plot the sampling paths for all chains.

See Also

List of RStan plotting functions, Plot options

Examples

Not run:

library(rstan)

fit <- stan(model_code = "parameters {real y;} model {y ~ normal(@,1);3}")
traceplot(fit)

traceplot(fit, inc_warmup = TRUE, nrow = 2)

traceplot(fit, window = c(1500, 1600))

End(Not run)

Create a stanfit object from reading CSV files of samples (saved in rstan
package) generated by funtion stan for demonstration purpose from model as follows.

#
excode <- '
transformed data {
real y[20];
y[1] <- 0.5796; y[2] <- 0.2276; y[3] <- -0.2959;
y[4] <- -0.3742; y[5] <- 0.3885; y[6] <- -2.1585;
y[7]1 <= 0.7111; y[8]1 <- 1.4424; y[9] <- 2.5430;
y[10] <- 0.3746; y[11] <- 0.4773; y[12] <- 0.1803;
y[13] <- 0.5215; y[14] <- -1.6044; y[15] <- -0.6703;
y[16] <- 0.9459; y[17] <- -0.382; y[18] <- 0.7619;
y[19] <- 0.1006; y[20] <- -1.7461;
}
parameters {
real mu;
real<lower=0, upper=10> sigma;
vector[2] z[3];
real<lower=0> alpha;
}
model {
y ~ normal(mu, sigma);
for (i in 1:3)
z[i] ~ normal(Q, 1);
alpha ~ exponential(2);
}
exfit <- stan(model_code = excode, save_dso = FALSE, iter = 200,
sample_file = "rstan_doc_ex.csv")
#
exfit <- read_stan_csv(dir(system.file('misc', package = 'rstan'),

pattern='rstan_doc_ex_[[:digit:]].csv',
full.names = TRUE))

62

print(exfit)

traceplot(exfit)
traceplot(exfit,
traceplot(exfit,

vb

size = 0.25)
pars = "sigma"”, inc_warmup = TRUE)

trace <- traceplot(exfit, pars = c("z[1,1]", "z[3,1]1"))
trace + scale_color_discrete() + theme(legend.position = "top")

vb

Run Stan’s variational algorithm for approximate posterior sampling

Description

Approximately draw from a posterior distribution using variational inference. We recommend call-
ing stan or sampling for final inferences and only using vb to get a rough idea of the parameter

distributions.

Usage

S4 method for signature 'stanmodel'

vb(object, data

= list(), pars = NA, include = TRUE,

seed = sample.int(.Machine$integer.max, 1),
init = 'random', check_data = TRUE,

sample_file
algorithm =

Arguments

object
data

pars

include

seed

= tempfile(fileext = '.csv'),
c("meanfield”, "fullrank"), ...)

An object of class stanmodel.

A named list or environment providing the data for the model or a character
vector for all the names of objects used as data. See the Note section in stan.

If not NA, then a character vector naming parameters, which are included in the
output if include = TRUE and excluded if include = FALSE. By default, all
parameters are included.

Logical scalar defaulting to TRUE indicating whether to include or exclude the
parameters given by the pars argument. If FALSE, only entire multidimensional
parameters can be excluded, rather than particular elements of them.

The seed for random number generation. The default is generated from 1 to the
maximum integer supported by R on the machine. Even if multiple chains are
used, only one seed is needed, with other chains having seeds derived from that
of the first chain to avoid dependent samples. When a seed is specified by a
number, as. integer will be applied to it. If as. integer produces NA, the seed
is generated randomly. The seed can also be specified as a character string of
digits, such as "12345", which is converted to integer.

vb

init

check_data

sample_file

algorithm

Value

63

Initial values specification. See the detailed documentation for the init argument
in stan.

Logical, defaulting to TRUE. If TRUE the data will be preprocessed; otherwise
not. See the Note section in stan.

A character string of file name for specifying where to write samples for all
parameters and other saved quantities. This defaults to a temporary file.

Either "meanfield” (the default) or "fullrank”, indicating which variational
inference algorithm is used. The "meanfield” option uses a fully factorized
Gaussian for the approximation whereas the fullrank option uses a Gaussian
with a full-rank covariance matrix for the approximation. Details and additional
references are available in the Stan manual.

Other optional parameters:
* iter (positive integer), the maximum number of iterations, defaulting to
10000.

* grad_samples (positive integer), the number of samples for Monte Carlo
estimate of gradients, defaulting to 1.

* elbo_samples (positive integer), the number of samples for Monte Carlo
estimate of ELBO (objective function), defaulting to 100. (ELBO stands
for "the evidence lower bound".)

* eta (double), positive stepsize weighting parameter for variational infer-
ence but is ignored if adaptation is engaged, which is the case by default.

* adapt_engaged (logical), a flag indicating whether to automatically adapt
the stepsize, defaulting to TRUE.

* tol_rel_obj (positive double), the convergence tolerance on the relative
norm of the objective, defaulting to 0.01.

* eval_elbo (positive integer), evaluate ELBO every Nth iteration, default-
ing to 100.

* output_samples (positive integer), number of posterior samples to draw
and save, defaults to 1000.

* adapt_iter (positive integer), the maximum number of iterations to adapt
the stepsize, defaulting to 50. Ignored if adapt_engaged = FALSE.

Refer to the manuals for both CmdStan and Stan for more details.

An object of stanfit-class.

Methods

vb signature(object = "stanmodel”)

Call Stan’s variational Bayes methods for the model defined by S4 class stanmodel given the
data, initial values, etc.

64 vb

References

The Stan Development Team Stan Modeling Language User’s Guide and Reference Manual. http:
//mc-stan.org.

The Stan Development Team CmdStan Interface User’s Guide. http://mc-stan.org.

See Also

stanmodel

The manuals of CmdStan and Stan.

Examples

Not run:
m <- stan_model(model_code = 'parameters {real y;} model {y ~ normal(@,1);}"')
f <- vb(m)

End(Not run)

http://mc-stan.org
http://mc-stan.org
http://mc-stan.org

Index

*Topic classes
stanfit-class, 48
stanmodel-class, 52

*Topic methods
extract, 10
plot-methods, 23
summary-methods, 59
traceplot, 60

xTopic package
rstan-package, 3

*Topic rstan
makeconf_path, 17
read_rdump, 29
rstan-package, 3
rstan_options, 32
stan, 38
stan_model, 54
stan_rdump, 56
stan_version, 58

.GlobalEnv, 9

arrangeGrob, 7

as.array, 5

as.array.stanfit, 11,44,49
as.data.frame.stanfit (as.array), 5
as.matrix.stanfit (as.array), 5
As.mcmc.list, 6, 49

cat, 50

connection, 57

constrain_pars, 50

constrain_pars (log_prob-methods), 14

constrain_pars,stanfit-method
(log_prob-methods), 14

data.frame, 17

Diagnostic plots, 7
dim.stanfit (as.array), 5
dimnames.stanfit (as.array), 5
dirname, 55

65

double, 9
dump, 29, 57

expose_stan_functions, 9
extract, 5, 6, 10, 22, 23, 44, 49
extract,stanfit-method (extract), 10
extract_sparse_parts, 13

facet_wrap, 25, 60
formals, 9

geom_path, 25, 60
get_adaptation_info (stanfit-class), 48
get_adaptation_info,stanfit-method
(stanfit-class), 48
get_cppcode (stanmodel-class), 52
get_cppcode, stanmodel-method
(stanmodel-class), 52
get_cppo_mode (stanfit-class), 48
get_cppo_mode, stanfit-method
(stanfit-class), 48
get_cxxflags (stanmodel-class), 52
get_cxxflags, stanmodel-method
(stanmodel-class), 52
get_elapsed_time (stanfit-class), 48
get_elapsed_time,stanfit-method
(stanfit-class), 48
get_inits (stanfit-class), 48
get_inits,stanfit-method
(stanfit-class), 48
get_logposterior, 22, 23
get_logposterior (stanfit-class), 48
get_logposterior,stanfit-method
(stanfit-class), 48
get_num_upars (log_prob-methods), 14
get_num_upars, stanfit-method
(log_prob-methods), 14
get_posterior_mean (stanfit-class), 48
get_posterior_mean,stanfit-method
(stanfit-class), 48

66

get_sampler_params, 22, 23
get_sampler_params (stanfit-class), 48
get_sampler_params,stanfit,logical-method
(stanfit-class), 48
get_seed (stanfit-class), 48
get_seed, stanfit-method
(stanfit-class), 48
get_seeds (stanfit-class), 48
get_seeds,stanfit-method
(stanfit-class), 48
get_stancode, 46
get_stancode (stanfit-class), 48
get_stancode, stanfit-method
(stanfit-class), 48
get_stanmodel (stanfit-class), 48
get_stanmodel, stanfit-method
(stanfit-class), 48
ggplot, 24, 26, 60
grad_log_prob, 49
grad_log_prob (log_prob-methods), 14
grad_log_prob, stanfit-method
(log_prob-methods), 14

is.array.stanfit (as.array), 5

Im, 43

log_prob, 49

log_prob (log_prob-methods), 14

log_prob,stanfit-method
(log_prob-methods), 14

log_prob-methods, 14

loo-package, 4

lookup, 16

makeconf_path, 17
Matrix, 13
matrix, /3
mcme. list, 6, 7, 49
monitor, /1, 18, 59

names.stanfit (as.array), 5
names<-.stanfit (as.array), 5

optimizing, 19, 52-54, 56
optimizing,stanmodel-method
(optimizing), 19

package.skeleton, 31
pairs, 22, 23
pairs.default, 22

INDEX

pairs.stanfit, 22

plot,stanfit,missing-method
(plot-methods), 23

plot,stanfit-method (plot-methods), 23

plot-methods, 23

Plots, 25

points, 23

print, 19, 28

print.stanfit, 48

quantile, 59
quietgg (Plots), 25

read_rdump, 29
read_stan_csv, 29
regexp, 17
rstan (rstan-package), 3
rstan-package, 3
rstan-plotting-functions, 30
rstan.package.skeleton, 31
rstan_gg_options, 32
rstan_ggtheme_options
(rstan_gg_options), 32
rstan_options, 32

sampling, 33, 37, 44, 48, 52-54, 56, 62

sampling, stanmodel-method (sampling), 33

saveRDS, 55

set_cppo, 36

sflist2stanfit, 36

shinystan-package, 4

show, stanfit-method (stanfit-class), 48

show, stanmodel-method
(stanmodel-class), 52

smoothScatter, 23

source, 56

sourceCpp, 9, 10

stan, 4, 18, 20, 34-37, 38, 47, 48, 50, 57, 58,
62, 63

stan_ac, 31

stan_ac (Plots), 25

stan_demo, 53

stan_dens, 30

stan_dens (Plots), 25

stan_diag, 30

stan_diag (Diagnostic plots), 7

stan_ess, 3/

stan_ess (Diagnostic plots), 7

stan_hist, 30

INDEX

stan_hist (Plots), 25

stan_mcse, 31

stan_mcse (Diagnostic plots), 7

stan_model, 47, 53, 54, 58

stan_par (Diagnostic plots), 7

stan_plot, 24, 30

stan_plot (Plots), 25

stan_rdump, 29, 56

stan_rhat, 30

stan_rhat (Diagnostic plots), 7

stan_scat, 30

stan_scat (Plots), 25

stan_trace, 30

stan_trace (Plots), 25

stan_version, 58

stanc, 9, 44, 45, 53, 55

stanc_builder (stanc), 45

stanfit, 4-6, 9-11, 15, 16, 19, 23, 24, 28, 30,
33, 36, 43, 44, 59, 60

stanfit (stanfit-class), 48

stanfit-class, 48

stanmodel, 9, 20, 21, 34, 36, 48, 50, 56, 62, 64

stanmodel-class, 52

stat_bin, 7

summary, 28

summary, stanfit-method
(summary-methods), 59

summary-methods, 59

tempdir, 55

theme, 32

traceplot, 25, 60
traceplot,stanfit-method (traceplot), 60

unconstrain_pars, 49

unconstrain_pars (log_prob-methods), 14

unconstrain_pars,stanfit-method
(log_prob-methods), 14

vb, 48, 53, 56, 62
vb, stanmodel-method (vb), 62
View, 17

67

	rstan-package
	as.array
	As.mcmc.list
	Diagnostic plots
	expose_stan_functions
	extract
	extract_sparse_parts
	log_prob-methods
	lookup
	makeconf_path
	monitor
	optimizing
	pairs.stanfit
	plot-methods
	Plots
	print
	read_rdump
	read_stan_csv
	rstan-plotting-functions
	rstan.package.skeleton
	rstan_gg_options
	rstan_options
	sampling
	set_cppo
	sflist2stanfit
	stan
	stanc
	stanfit-class
	stanmodel-class
	stan_demo
	stan_model
	stan_rdump
	stan_version
	summary-methods
	traceplot
	vb
	Index

