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The desire to 11t structural eq!"ul~IQn rr)oc;l~lscon~lningan Inte'l~t1on!term. has received 
much methodologl.cal attention In the $,o~lal science Iiterature'",Thls paper preSt9nts a 
technique for the crosswproduct; structural model' that utm'esfactor score estimates 
and results In closed-form moments-eypee$tlmators. The, tec:hnlqu~, whtch does not 
require normality for the underlying factors, was originally Introduced In a very general' 
form by Wall and Amemlya (2000) for any polynomial strueeural model. In thts paper. 
the practical tmplementatlonof this method,lncludlng standard error estimation I Is 
presented speclflcally for' the cro$$ .. product model. The procedure Is applied to an 
example from social/behavioural epidemiology where the flexibility of the cross .. 
product model provides a useful desQrlptkm of the underlying theory; A siMulation 
study is also presente9 comparll'lg the method of moment3 for the c;ross .. prodltct 
model with three other procedures. 

I. Introduction 
Structural equation modelling (S13M) is ac.oilll11on to()l'hl the social and behavioutru 
sciences for estimatiog ancltesting linear relatiooshipsarnOl1slinearlaterit variabfes.B~t 
in many cases the restriction to linearity i$ . not adeqttate Or flexible e~ough. to explain 
the phenomena of blterest. FOi' ~l'le" it the slope betwe~n two continuouslateht 
variables is directly affected or .'llloae,tate?,;~ra tltird co0tinuot1s1ate~t ~ble, .. >~iS 
relationship cannot be estin1~ted Via the tta~itionalSEM. Aru\tu~l,WllY to.mo~ef tftis 
type of relationship is to include a cr6~~"l'rO.dl.lctof the 'iriteractltli'latent variables into 
the strucnl1-al model. Thus, the structural model 

11··:::; .. 0:<>+ Qll/~·+ ~~I'~i+~~/"t,+t (1) 

is conSidered, where f == (:If; f~,/sJ(iis!a'veetor of l.aOnti!ntl0tfS latent~ia:ble$, 
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Minnesota, 420 Delaware StreetSS,MlnneapoIJs)' :MN:S$'4S$.U$A(emdll;vmelffflle'@bliJsta~ul'l1medu);; 



48 Melanie M. Wall and Yasuo Amemiya 

(X = (ao, at> a2, a3) is a vector of fixed unknown parameters, and r is random error~.A 
structural model (1) is referred to as nonlinear since it is nonlinear in the factors-· the 
f2f3 term makes it nonlinear. Nonlinear structural models are not straightforward tont 
using the usual SEM software packages (LISREL, EQS, PROC CAllS, AMOS, Mplus) since 
these packages are designed for models containing only linear latent variable tenus., 

Interaction effects in structural equation models such as (1) have recently received a 
large amount of methodological attention. For a collection of papers on such m()d~lsj 
see Schumacker and MarcouIides (1998). One of the first methods for fitting ~ 
interaction effect in a structural model was proposed by Kenny and Judd (l~~~, 
Their method uses products of observed indicators as indicators of the cross-prodtict 
latent term while imposing appropriate nonlinear constraints on the assQciated;p,.:.
meters. Although this technique attracted methodological c:Uscussions an<ialtera~9P . 
a number of papers, including Hayduk (1987), Ping (1995, 1996), Jaccard and . 
(1995, 1996), and Joreskog arid Yang (1996, 1997), it produces in:coilsistente~iIltfom 
when the observed indicators are not normally distributed. 

Also relying on the multivariate normality assumption of the observec;l. indi~at<>;~,'~~f 
the exogenous variables, Armioger and Muthen (1998) proposed a fully 'Bayeslafi 
approach and Klein and Moosbrugger (2000) proposed fitting models fike (1)b'11:&e 
EM algorithm. Apart from the computational burden of these techniques, it is not/(;\l~ 
how robust they are when the normality assumption is violated. 

An adaptation of the Kenny-Judd technique that does not rely on the normalityQi 
the observed indicators was introduced by Wall and Amemiya (2001). Their gell,eraltzea 
appended product indicator (GAP!) procedure produces consistent estirilatoX's tor 
virtually any distribution of the observed indicator variables. Likewise, a method 
introduced by Bollen (1995) and then presented specifically for the cross-product 
structural1l).odel by Bollen and Paxton (1998) produces consistent estimatorS.t'ot non .. 
normal data as well. Bollen's procedure uses the instrumental variables technique where 
instruments are formed by taking products of the observed indicators. Alth(1)l.gh· this 
technique has simple closed-form solutions for the estitnators, it has been shown,tohave 
lower efficiency. 

Wall and Amemiya (2000) introduced a two-stage method of mOluents (2SMM) 
procedure for fitting the general polynomial structural equation model. Like the GAPI 
procedure and Bollen's instrumental variable technique, the 2SMM procedure ptodl.l~es 
consistent and asymptotically normal estimators for the structural model parameters for 
virtually any distribution of the observed indicator variables. The procedtJ;re us.es;ll~t~t 
score estimates in a form of nonlinear errors-in-variables regreSSion and prod1.l~~s 
closed-form method of moments type estimators as well as asymptotically ~ c9tte~ 
standard errors. Its ability to generalize to any type of polynomial. gives It~l cJ~~ 
advantage over the GAPI procedure (which .can only be tlsed fot 10w-desree,l)9~lW 
nomiaIs) and in smlllation studies it has performed better in effidency atld C(:Y\tf;~g~ 
probability than both the GAPI and the Bollen instnunentalvariable tedtni~rUf;'F":;;:' 

The emphasis on t;heoretical development in Wall and Amemiya (2000) Qf tb~.f;~ 
procedure for the most general-case polmomial Alay n.9t lell;<t itselt.(O;l~t : 
implementation for users. Thus, the purpose of this paper is to outline the 2$ 
procedure straightforwardly and speCifically for the cross-product structural model (1). 
In Section 2 we give step-by-step illstnlCtions for calculating th~;2S¥M .¢sti:J;nat.9t~;~.Qf 
the coefficients in (1). Section 3 gives the formulation for the standard errors of &: so that 
c~1lfidence intervals can be fOn;l,leq. In ~ection 4,¥e ~l,?p~y tll~ :.?SM,l\1: Ptq~~~:lJl,i~~c;~~;P 
example from behavioural epidemiology wheFe thecross"pifQQ.U<zt. model,pEqn~"$;'%~ta 
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useful match to the theory. Finally; Section 5 presents a simulation study comparing the 
2SMM procedure to other procedures described above. Additional details for standard 
error estimation are given in the Appendix. 

2. The two-stage method of moments estimator 
Consider the cross-product stnlctural model (1) with a linear measurement model that 
has a general form. Thus, for independent individualsi = 1, ... , nwe model the p x 1 
observed vt!:ctQr ZJ a,.,> 

, . Iii 

Z, = (~:J + eJ b, +E,. 
f?Ji 

(2) 

III = ~o + Cl.l/u + Cl.2f:'i + 0l3/2if.~1 + rio (3) 

The factors f, = (11 i' 121. 13i)' can be treated as fixed or random, and if treated as 
random their distribution is left unspecified. The measurement errors Ej are assumed to 
be indepetldent and identically distributed, with E{ Ei} = 0 and Var{ Et} = '1', and to be 
independent of f ,. Although the 2SMM method and theory can be extended to include 
non-diagonal '1', we assume for Simplicity that the p elements of Ei are independent and 
thus i'is diagonal. The equation ett()(s ri are assumed to be independent and identically 
distributed with mean zero and variance O'r and independent of f, anelE;,_ The 
(p - 3) x 1 vector ~o and (p - 3) X 3 matrix ~ 1 contain coef:fj.cientswh,iQh may be 
fixed or free. The notation 0axl> repteSentsa matriX of zeros with dimension a x b 
and Ik represents an identity matrix of ditnension k. Depending Oll thedirnension p, 
some restriction may need to be piacedon the elements of Po atld 131 to ensure that 
POI ~ 1 and it' can be meaningfully estimated. That is, we tnake the assumption that 
the measurement model, when taken on its oW;n,is identified irrespective of the 
structural model. 

TIle 2SMM procedure for estimation and inference of themodeJ. given by (2) and (3) 
is considered. TIle first stage of the procedmc uses themeasurelnent model (2) alone to 
estimate the underlying factor scores as well as their variability. The. second stage uses 
these factor score estimates as cobse:rvations'ofthJ~ factors,and, while incorporating the 
estimated measurement error, performs anerrOJ;s .. in-vatiables regression for the struc
tural model (3). An advantage of this two--stage procedure is its natural relation to the 
way many researchers attackSEM model h\ltUding ~d checking-fitst get the meast1.re~ 
ment model to fit and then explore the direct relationship among the underlying factors. 
Below we give a detailed outline of the 2SMM technique for model (2)-(3) under the 
very general case where the measurement model does not have simple structure, and no 
distributional form is assumed for the factors or the measurement errors. We also 
provide a Simpler form 01 the estimator under scenarios where· normality is assumed for 
the measurement errors or the measurement model has simple structure. 

Stage 1. Consider the measurement model ~one. 
(i) Obtain Po, 131 and ., using a standatd·SEM software package. 
(ii) ·Calculate the.Bartlett factor scoreestftllates for eachlndivldual, i.e., 

I [ I'; I.~~ il(.~f\171~i .. 1 [... ·(·Po '··)·1 (4) 
. i:;::: (P~,X~). '4' ~ . 13 /J ,(fJl"J3)- Z;i - . 03x i . J 
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(ill) 

Wall and Amemiya (2000) use an alternative form of (4) which does not expld:e~1!4y 
contain +-1: I 

A A ; AA "', / 

fi = [-r, (13 + r~I)][Zi - «(30. 0IX3)]' 

where 
1 

" " (I(p \" 3)) [ A" (I(p _ 3) ) ] -1 ., 
r = (03X(P-3)' 13) 'I' -t3~ (I(P-3)' -(31)'1' -t3~ (8) 

This form, which incorporates the r notation, was used originallybecal;l~~1s1tf 
provided a convenient expression for deriving theoretical properties.When,~(:)~~ 

.....,.. 1'\ I '., .. ~ 

variables are measured without error and (ICP - 3)' -(31)'I'(I(p-3), -(31) is singul,fJrj 
a similar expression holds which incorporates a generalized inverse. 
Estimate the variance of the estimation error for the factor score estimates, ~t\~, 
estimate Var{ei } = Eee where ei = it - f i - The familiar form of this varian,C~'~ 
[(t3~, 13)+-l(ll~. 13)'] -I, Wall and Ameroiya use the r matrix and equivalently 
form 

~m 
',,'Set 

(iv) Estimate the necessary higher-order moments of e = (e1o e2, e 3)' under o:Lle,bt'1ib,,~ 
follOwing three scenarios. For the cross-product model, the higher lROiUe.J!,l;~S 

which are needed in stage 2eU) are E(et e2 e3) = pi, E(e~ e3) = tA-~, B(e2 ~gr::i;~5i! 
and B(e~e;) = pi. " 
Sc'enarlo 1. Distribution of E is unspecified: 

Wall' and Amemiya (2000) provide a general method for estimating the bigJr~jf .. 
order moments, p.t p.~, p.~ and P,t by taking moments of reSiduals frotn"tI\e 
measurement model. 

Scenario 2. E is normally distributed: 
This implies the odd moments of e are zero and the fourth moment is'3; simple 
function of second moments, i.e., PI = 0, p~ = 0, J.L~ = 0, J.Lt = <1220'33 +2!Q-23' 
Thus, use p.~ = 0, p,~ = o,p,~ = 0, Jlt = 8"22 lt33 + 2lt23 • 

Scenario 3. Measurement model (2) has simple structure: 
This implies elements of e are independent and so J.LI = 0, J.L~= 0, ".~~;;':":';:;"Qj 
tA-t == C122 <133 - Thus, use p.f = 0, p.~ = 0, p.~ = 0, p.i = 8"228"33' 

Stage 2. Using estimates from stage 1, fit the structural model. 
(i) Rewrite model (2)-(3) as an errors-in-variables model 

fu = <Xo + <Xlf2i + <X2f3i + <X3f2if.~i + rio 
iIi =/li +elij 

" 121 =121 + e'2,t. 

i3t =13/+ e3i' 

(ll) Let Xi = (1,/21,13" 121131)' The key to this step is to firt.4: M 
such that E(~ IXl .· .Xn) . (lln)Ei:;:t(X~Xi) andE(m LXI" :"'}(~,(rl'!d(/(;"4:«,k!1 
(lIn)Ef::;:ICX:ftt) so that a can be estimated without bias from tlle e~~~1?':> 
equation M~= lD.Appro~~telyunbiased mon;en~ estipators for M~~J~,('i:L((" 
formed by regarding f las I observations 'of f t and utilizing E ee as an est:iJtl~t,~Q( 

,~ cfo7L~, "[, 
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measurement error variance in the errors-ill-variables model. An algorithm for 
deriving M and ttl is desCribed in Wall and Amemlya (2000) for the general 
polynomial stnlctural model. Here we give M and & for the cross-product model: 

1 12i 131 12iJ3i .....:. (]23 

1 n 1\):=-2: 
n'=1 

"2 
12i - 0-22 

i2 i13 i ~ (]23 
(9) 

,.. ... 

2i13i - 0-23 tl42 

.... 2 A . " " 3 
44z = 11,il~t - 2ftZ3f2i: - o-Z2/3t- liz. 

A 

IIi 

11 tiu - (J12 

" " 
luf3i - (]13 

(10) 

" " " ""_ A " , 
lifuf3i -ftI2 f3£ - fJ13fu -(J23/11 ..,... Al 

To understand the form of (9) and (10), consider, for example, the specific element 
a 4..2' It is derived so that E(a42 I lu, 13i) =1i:£f3f (when the measurement model 
paratneters are known), Verifying this, we see 

"2 " " A 3 
E(a42 1/21,/3£) --- E(f2i/3~ -2&23/21 - (J22f~d - III I 12(, 13/) 

== E(Cfu + 821/(131+ e3t) - 2fJ23{f2i + eu) 

- &22(/31 + 63i) ."....p.~ I 12t, fM) 

=1i.lf3t + 2f2tE (e2i 6 3t) + f3iE(e~i) + E(e~ie3i) 
- 20"23121 - 0"22/3i - I.t~ 

=fti/3i' 
(ill) Put 1\1 and 1h together to obtain the 2SMM estimator & I = (&0, &1. &2' & 3), that is, 

& =1\1-1&. (11) 

This procedure does not require the factors f i to be normally distributed, which is 
very useful since obviously fl;, fu andf3;cannot all be normal if (3) is the correct 
model. It also does not require the measurement errorSEt to be normally distributed. 
Wall and Amemiya C2(00) show that &1s Consistent and asymptotically normally 
distributed without assuming normaUty for the fact.~ts. or the measurement errors. 

3. The2SMM standat"de:rt'ors 
In Section 2 We, .Qutlined the 2SMM.J?roced~e.for obt~g th~ cons'istttnt esWJtato~ 
a. Although nottnality. was not· needed ;bl' the dep.vatjp~ of (X, no~a1ity' qf the' 

, - • ">' ., - ; 



52 Melanie M. Wall and Yasuo Amemiya 

measurement errors (but not the factors) is needed in the following derivationofit:s 
asymptotic standard errors. That is, we consider standard errors for & formed under 
scenario 2. The asymptotic standard errors are obtained from the following estimator of 
the asymptotic covariance matrix given by Wall and Amemiya (2000), 

V{&} = ~~-ln~-l. (12) 
n 

If the it in (8) were actually observed and :E ee was known, then fi in (12) would have the 
form (lIn)E7=1{:i«k).f',(&)', where .fi (&) = ro{ - ~,(& and,,~i and roi are the tth'te~s~ 
in the sums (9) and (10), respectively. But, since fi and :E ee appearing in Mi and:;dti 
have been estimated instead of being known quantities, we need to incorpo~tl~ 
additional Variability into {}. 

To do this, the asymptotic covariance matrix for the vector of all measurement 
model estimators which were used in forming m and M must be evaluated. Let, 
6 = (~~, (vee (31)" (vee r)" (vech tee)')' where vec stacks the columns of any matJtiX 
and vech stacks the non-duplicated elements of a symmetric matrix. The estimator of 
the asymptotic covariance matrix of 0 is denoted by T. The part of T directly related to 
~o and ~I' can be obtained from the output in standard SEM software packages, wbUe 
the part related to r and tee can be obtained using tlle delta method, shown in the 
Appendix. Actually, the part of T corresponding to r does not need to be estimated 
since it is eventually multiplied by a vector of zeros. 

Since Ii and tee are functions of 0, the following estimator n which prop~lt:~Y 
incorporates variability due to O. is used: 

n =..!. t .f'i(&).f t (&)' + eTC', (13) 
n 1=1 

where .fi(a) = lilt - ~i a, ~i and til i are the tth terms in the sums (9) and (lOl, 
respectively, and C is derived from the first-order Taylor series expansions .fi(a) with 
respect to O. In order to define C the following notation for derivatives is needed. Let 
a = (al> a2,". ~aI)' be anlx 1 vector and b = (bb b 2 , ••. , b])' be aJ x 1 vector. Define 

dal dal dal 
db l db2 db] 

da da2 da2 da2 
--- db} db2 db] db' 

daI daf daf 
db l db2 db] 

Notice that ~i(a) is a direct function of li = (iIi, J2t, J3i)' and vecl1f;ee;'~ 
(crIl> <Tl~' <T13' fTZk , fT23 • fT3~)' . Moreover, ii is a direct function of the first three pan$;tt, 
0, i.e. (p~, (vec PI)', vec r)'). Recognizing this, we can use the chain rule to write 

d.fi(a.) = [d.eiCa.) alt d.f/(a) dli d.f,(a.) aft a.f/ca.)]· 
dO' ali apb' dl; d(vec(31)" dl; a(vecr),' a[vech:Eeel' . 

Thus C is constructed as a consistent estimator for the expected value 

c.- 1·~ [iJ.ftCQ.;iA d.ft(a)" .. a.e,(a) ·l"(: 
- nf;;;raft 10,4 r, ali G,4 r(Xi ®1(p.-3»' O~X3(P-3)' a [vech feeJ'O:&Jtt;t:"i}\i?~~Il!§~ 
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where Xi = [(03X(P-3)' I 3)zi], that is, Xi is the last three elements of z, in the 
measurement model (2) identified to equal f, plus measurement error. The part of C 
corresponding to (at,(o.)ldr;)(df,ld(vec r)') is fixed to zero in (14). This is so because 
df,ld(vec r), is a matrix containing only zeros and residual like terms that have 
asymptotically zero means. Since the residual-like terms are also approximately inde
pendent of the terms appearing in (ati(o.)/af:)I~,&, the expected value oftbeir product 
is approximated by zero. 

Notice that each column of C in (14) corresponds to an element in t) and they are in 
the same order. Thus when CTC' is formed in (13) there will be no contribution fro:tn 
the covariance of vee r in T since it corresponds to the coll.Ull.11S of zeros in (14).B¢nce 
the derivation of T is Simplified because thoreis no neeq to estinlate the asytnptotlc 
covariances corresponding to vec r. For this reaSOD, we only show the delta method fQr 
the covariances of vech tee in the Appendix.. ' 

To specify C in (14) completely, we erpress a.fj(o.)ldfI and al{(o.)Jo[vec;:hE ee ]' for 
the cross-product model (2)-(3). Recall that .fi(o.) = lilt ....... Mia' where M; and lili are 
the i th terms in the sums (9) and (10), respectively. So we have 

al,(a) _ [ael,,<a), ael,5o.), (U1,,(a)]. 
ati - dill a/21 d/3t 

1 

alJ(a) _ itt 
ail I - i31 

;,i3( - (;23 

o 

ill 
o 

"IIJ31 - (;13 

o 
o 

JlI 
"1Ii21 _. iT 12 

000 

a.e,(a) _ 0 -1 0 

21 [vechieey - 0 0 -1 

o 
1 

o 

o 0 

o 0 

1 

2i21 

i31 

1 121 
A "2 
2i /2t -&22 

o 

at + cx,BJ.~1 
o 

1 

Ju 

o 
iH 
o 

" 2/;'1 

"2 AI - iT33 

""2·" " 2hlhl-2~3hl-4~3AI 

/1.1 
"2 

fi.i - (;22 

2J21l,J - 2(;23 

" " "2 " A ,.. 

2/2t/ 31 - 2&23 2/U/3f - 2(;Z2f..H - 4&23f)'1 

O!& 0 

a2 + 2a3ill 

il!l + 2a3j3t 

,.. Jo. A A. A 

a45 = -/.1I + aO + 2al!').t + 2a2t3l + 4: a 3 (fU/3 ( - (;23)' 

Now with all the pieces of(14) and the necessary terms in r, we can form Q in (13). The 
standard errors of (i :=: (&0' &10 &2'&'3)'unaer scenario 2 are Calctllated as the square 
root of the diagonal of(12). Wewilllat>elthe resulting standard errors as $&0' Stx

l
, $&2' and 

$&;3' Wall and Ame.tniya (2000) show· thattlie1.im1tifig distribution of dis normal·· so that 
these standru:d errors cart be lilsodtro forn1'/('1'· -'"" c) 1 OO%cohftdence intervals bytakmg 

~/c;+~(:I'l-;~~t,., J .. . 0':1,21 3 (15) 

wherez el2 is the 1;-- c!2 . quantileftolj)1liitkeOQrmaldistribution. These confidence 
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intervals can also be used to examine if the parameters ao, aI, a2 and a3 differrtol1l:21dv,o 
by chance or not. 

We recognize that the construction of the standard errors given in this secti()lll1l~Y 
seem a bit tedious. This is undoubtedly due to the second term in (13) involvingC and~i\ 
If the measurement model parameters were known, the second term in (13)W<iluld 
disappear, leaving 

0* :;:: 2.. t !'(&)!i(&)'. 
, n 1=1 

ThiS '0* underestimates var(&) .. Nevertheless to those interested in testing W~~blf~t'¥~~ 
coefficient a3 of the cross-product term is different from zero, we reeon'l:ttte~.:,~ts; 
uSing 0* in place' of {) in fOrming'the standard errors. If the confidence intenralf~;t~~~ 
using these smaller standard errors surrounds zero, there is no need to cOmptlte'.t: 
correct standard error using the more complicated 0 since it will just yield[aWiij~ 
confidence interval which will still surround zero. On the other hand, if the¢ontirlettde 
interval using 0* does not surround zero, then the correct (and consequently Uttg~) 
standard errors detailed in this section should be used. 

The normality assumption of the measurement errors required througno1.lttltis 
derivation of the standard errors was used only at two points. . 

(1) Because of normality, it was not necessary to estimate the asymptotic covariance 
matrix for the higher-order mome,nts of e since under scenario 2 the high~t1)~d..er 
moments are just 0 or a function of the second-order moments. 

(2) Because of normality, the components in the first and second terms of the Taytor 
series expansion of! are independent, and thus (13) only involves estimates o{t,be 
variances and not the covariances of the elements in the Taylor series. 

Notice under scenario 3, when the distribution of the measurement ertors is 'litlsp~ci" 
fied but the measurement model has simple structure, that the standard error df$tiv:ati~n 
above only breaks down with respect to point 2. That is, we cannot be sW'e:$e 
covariance of the elements in the Taylor series is zero, and hence (1 B) shQ:uld 
theoretically contain an extra term: estimating this covariance. It is our recommendation 
that under scenario 3, standard errors can be reasonably estimated using (1~) because 
this omitted covariance is expected to be quite small (albeit difficult to estimtlt~). 

4. An illustrative application 
As an example of how an interaction effect between latent variables can be n:rod(!tll~d 
and tested, we consider a problem that comes from a large study designed to· ~a;ttliQe 
socio-environmentai, personal and behavioural factors associated with nutritional intake 
and weight status' among adolescents. The study, entitled Project :EAT (Neup:l~" 
Sztainer, Wall, Story, & Perry, 2000), examiries the relationships among factors psi1lS' a 
social cognitive theory framework (Bandura,· 1986) with the intention of.4~v~1~1?i~'g 
more effective interventions aimed at improved eating behaviours among YQutl14t' . 

Here we focus on JUSt one of the l'Jl:any eatiag behaviours of interestitl,r~~jeut ~; 
fruit and, vegetable· intake. The studypopulartion included a self .. report, .$ur:ve'iftir .. 
adolescents' from 31 public middle scho¢)l~, 31id high schoOls in' utb~31'lldii'§: 
school districts in the St. Paul/Minneapolis area of Minnesota. As in studies gl.,!~ttl~ 
populations, Project EAT found that the two main correlates of fruit and ve8eta~le~,~~[, 
in adolescents are the personal factor, taSte p:t:eferenee"and the;soci0-enVirf~tnlJ~1I;aJ;; '. 
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factor, availability. Nevertheless the traditional linear model is clearly limited here since 
it requires the effect that availability has on fruit and vegetable intake to be the same for 
all levels of taste preference and vice versa, The cross~product model allows the 
appropriate flexibility. For example, the cross-product model allows students with 
low taste preference to have minimal increase in fruit and vegetable intake when 
availability is increased, whereas students with higher taste preference can realize much 
larger gains in fruit and vegetable intake when availability increa~es, Treating the two 
factors, taste preference (TASTE) and availability (A VAIL), as latent, underlying five self~ 
reported questionnaire responses Zl' ... ,Z5, we fitted the cross-product model (2)-(3) 
with a single observed indicator for fruit and vegetable intake (FRVEG) as the outcome 
variable: 

ZIt (j01 {311 (312 Ell 

Z2/ (j02 (321 (322 €u 

(j03 (331 (332 
(AVAIL, ) 

ZSi - + 
TASTEJ + E3f 

Z41 ° 1 0 €4i 

ZSi ° ° 1 eSt 

FRVEGI = CXo + a1AVAlL, + ~2TASTEi + cx3AVAILi * TASTE, + 5'/.' 

The Z Ii' ' •. ,Z 5 i represent the answers by individual i to the following five ques-
tionnaire items: Zl =: 'Fruits and vegetables are available in my home" and 
Z4 ::;::: 'Vegetables are served at ditmer in my. home', both widt responses 1 =: Neve», 
2 ::;:;1 Sometimes, 3 == Usually, "' ~ AlwaYis;, Zz = .. 'Most vegetables taste bac;P; Z 3 ;:;:; 'Most 
healthy foods just don't taste that great' and Z, = 'Most. Wlheruthyfoods taste bettet 
than healthy foods', all three with responses 4 =: Strongly Disagree 1 3 == Disagree, 
2 = Agree, 1 := Strongly Agree (note the.tevetsed direction of scoring), The outcome 
variable inlit and vegetable intake (FRVEG) is a standard scale, computed directly via 
the Youth and Adolescent Questions (Rockett, Wolfl & Colditz, 1995), which is a 
weighted sum of reported standard serving sizes from a comprehensive list of ft"1.lits 
and vegetables. 

Following the steps outlined in Section 2, we first obtain tlle parameter estimates 
associated with the measurement model. The exploratory measurement model suggests 
the possibility of simple structure, thus a confirmatory model is subsequently fitted with 
(321 = {331 ::;::: {312 = O. The confirmatory model yields a Chi-square value of 31.76 on 
4 degrees of freedom, an RMSEA of 0.0426 with a 90% confidence interval 
[0.0296,0.0569] and all. NFl of 0.999. Because the sample. size is large, we ignore the 
significant chi-square test and rely on the other goodness-of-tit statistics to conclude that 
the confirmatory model gives a reasonable fit to the data. The estintated parameters for 
the measurement model are 

(

1.02 ) 
~o == 0.5.7 t 

0.64 
(

0.75 0) 
~l == 0 0.84., i == diag(0.54, 0.41, 0.57,0.32,0.24). 

00.59 . . 
(16) 

The factor score estimates fotAVAll and TASTBare oJ)taJtledusitlg (5). Since FRVEG, the 
dependent: variable it'). the· stnlct\Wal:;m~4:el,:i8 Ilqlc.ect1y ob$~edvariablet it is 11,ot 
necessary to create its ft.t¢t~r $CQ~e: ~$ti1i.n.at~·tfllatis,·. tb¢,factor score. es'ti:tllttte for FRV1!G: 
is simply taken to be the observed value for FRVEG. Thus, lettingFR¥BG -In 
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AVAIL =f2' and TASTE =f3 and following the notation in (7), we have 

tee = (~ ~~2 ~) - (~0~1 ~). ° 0 lT33 0 0 0.15 

(17) 

Because of the simple structure of the measurement model, this example falls Under 
scenario 3 and thus the higher-order moments are estimated simply as Ili = 0, Af O~ 
,,3 4 . . ....) 
P-3 = 0, and III = lT22 lT33 • 

To begin Stage 2 of the 2SMM procedure, we rewrite the problem as 

FRVEG{ = O!o + (XIAVAILt + 0!2TASTEi + 0!3AVAILt * TASTEt + Sil 

FiiVEG, = FRVEGi , 

AW"Li = AVAIL t + e2i, 

TAsTE, = TASTEi + e3h 

where V3r«(e2, e3)/) is found in (17) and no measurement error is associated with 
FRVEG. SubstitutingFRVEG, A'W'L, TAsTE, and tee into (9) and (10) and combining as 
in (11), we obtain d = (0.80,0.0002, -0.07,0.09). Standard errors are obtained using 
(12). We first calculate standard errors using fi* in (15) and obtain se(Xo = 0.231, 
se&l = 0.080, se&2 = 0.095, se(X3 = 0.027. As mentioned in Section 3, these values:do 
nbt contain the influence of having estimated the parameters in the first stagdoithe 
procedure and are therefore too small. But, as this additional component is usually quite 
small they give a good first glance at the magnitude of each parameter. Now wecalcl.llate 
fi in (13) and obtain the standard errors se&o = 0.260, seerl = 0.082, se&2 = 0.099 and 
se&3 = 0.029. We see that the a 95% confidence interval for the cross-product tetmc¥3iis 
(0.033,0.147); thus we conclude that it is significant in the model. 
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Figure I. Scatt~r plot of FRVEG against factor score estimates of (a) AVAIL and (b)TASTe;wit!ll'l;?~tf~s:s~ 
product model averlaid for four different levels of (a) TASTE and (b) AVAIL rangingfrorrj'lowtdq:1lg~rt~f,)tFl 
to thick lines). > ·».~i~;i~?i)!:~£r 



A method of moments technique for fitting interaction effects in structural equation models 57 

Figure 1 presents the resulting cross-product model relating these three variables. 
The scatter plot in Fig. 1 (a) shows the relationship between number of fruit and 
vegetable servings (FRVEG) and the factor score estimate of availability Vi V AIL) by four 
different levels of taste preference ranging from low preference for vegetables (thin line) 
to high preference to vegetables (thick line). Likewise, the scatter plot in Fig. 1(b) shows 
the relationship between FRVEG and TASTE at different levels of A V AIL ranging from 
low to high (thin to thick lines, respectively). Note how the interaction term in the 
model is realiZed by the non,.paralle1 lines drawn in eachplot.l?Qr example, students 
with low fruit and vegetable availability have hardly any gains ~ fruit and vegetable 
intake despite thejr low or high tastc'preference for vegetables. Thisrelaijonship would 
go unnoticed l,lsing .~. strictly linear model~d shows the use:fu1ness of incorporating a 
cross-product into structural equation models 'in general. 

5. Simulation study 
In this section we demonstrate the performance of the 2sMM procedure. compared to 
three existing methods briefly described in the introduction: the generalized appended 
product indicator (GAP!) procedure introduced by Wall and Amemiya (2001), the 
instrumental variable (B-IV) method of Bollen (1995),' and the Kenny-judd (IQ) 
approach proposed by Kenny and Judd (1984). 

We consider model (2)-(3) for a nine-dimepsional vector of observations z where the 
measurement model has a simple structure. Although the 2SMM procedure can be 
applied to a general measurement model without Simple stn"lcture, we consider the 
simple block-diagonal measurement model here because the other existing procedures 
have only been defined for measurement models of this type. Consider the model 

fli = ao + Oil fu + 0i2f3i + 0l3/2i lSi +Si, 

Zu {301 {311 0 0 Eli 

Z2i {302 {321 0 0 E2i 

Z3i {303 0 {332 0 E3i 

Z4i {304 0 (342 0 

C') 
E4i 

(18) 
ZSi - {3os + 0 0 {:J53 12i·. + ESf 

z6i {306 0 0 {363 13i E6i 

z7i 0 1 0 0 €7i 

ZSi 0 0 1 0 €St 

Z9i 0 0 0 1 €9i 

For simulation, we use th.e model (18)withao == 2, al = 1, 012 = 1, and Q!3 = 2. The 
true measurementmodel parameters were {30j;r;:::; },i = 1. 2, . , . ,.6, {311 = OS, {321 = 0.4, 
{332 = 0.7, {342:::::; 0.3, (3s3 = 0.4, and {363:::;:; 0.8; We generated 121 and lot as 
uniform random variables with /-Lf2 = ;:-0.5, I-tf3== 0.5, Var(f2i) = Var(/3/.) = 1, and 
Cov(f2i. 13i) = 0.5. The error ter:(IlS k"t and €pt,}:::::; 1, ... ,9, were independent normal 
random variables with Var { ti} = 0.3· and Vat {Eji } chosen so that the reliability for each 
observed Zjt was a constant O. 75+10 l1ig.:2wepl,".es~nt an example of the ,generated data 
whichcontams the observeq o:utco~e v~iables$'b'!' . ,:+9 from a sample of size· 200. 
Since 11 is a nonlinear function Of,f2 atld!?,.·, w¢r,}an/seefn the scatter~plot matr.i:g: that the 
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Figure 2. Scatterplot matrix of one realization of size n = 200. 

indicators off 1 l that is, Z 1, Z 2, and Z 7 l appear to have nonlinear relationshipSWitB.the 
other indicators. 

For comparing the different procedures, we considered three sample sizes, n~'2~; 
500 and 1000. For each sample siZe, we generated 1000 samples artd apptledaIi1f6t1t 
estimation procedures. While, the 2SMM procedure is described uniquely, the ~ ott1et 
estimators, GAPI, B-IV and KJ, involve some choices. For the KJ and GAPI methOds, we 
used the normal likelihood as the discrepancy function, and included all available 
product indicators, ZjiZSi, Z3iZ6il z3i Z 9i, Z4,ZSi' Z4t Z 6t, Z4t Z 9il ZSiZSi, ZSiZ6i and 
ZStZ9t, based on the general recommendation made by Wall and Aroemiya (2001). For 
the B-IV procedure, following the rules described in Bollen and Paxton (1998), we used 
ZSt, Z9t and ZStZ9i as the explanatory variables measured with error, and Zjil Z4il ZSt, 

Z6t, z3i Z Si, Z3iZ6tl z4i Z Si and Z4tZ6t as instruments. The observed variable Z7i was 
used as the dependent variable in place of fl i' The asymptotic standard errors of these 
three estimators were as suggested in Wall and Amemiya (2001) for the GAPI estimator, 
Bollen (1995) for the B-IV; and Jaccard and Wan (1995) for the KJ. 

The general pattern of the estimator comparison is depicted in Fig. 3, which presents 
boxplots of the four estimators of the cross-product coefficient ot 3 for n == 1000. Table 1 
gives the empirical bias and root mean squared error (RMSE) of the estimators for all four 
estimation procedmes. The inconsistency of the KJ estimator for non-normally clis
tributed factors, a~ pointed out by Wall and Amemiya (2001), can be seen in Fig. 2 and 
Table 1. Note thatJoreskog and Yang (1996) proposed a slightly different form oft!te K) 
estimator than the one used here, btlt their form shares the inconsistencypropettyWli~ 
the origfual KJ estimator for non-normal data. The empirical distribution of the" 2$~ . 

. estimator is ···more tigb:t1yconcentrated around the true value than tha:t···fbr theJ}t.W . 
procedure .. The empirical distributions for the 2SMM and GAPI procedures lQ.()k '''Y:~ 
similar, "although, aSCMl be seen in Table 1, the empirical RMSE is alwaysstnd~'i',f,q,~ 
2SMMthan,ftlltG,'A}>l.)·l'his' o~served, albeit.slight, improvement in RMSE .. f~tUa~?$4lf~~ 
2SMM pr09(\d~¢;(i)v~r t1!),eG:4PI procedUre is consistent with results fOUA<t~ 
AnielDiya(2000)'fQTotaer p'olynomial structural models. 
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Figure 3. Boxplots for four estimators of 0( 3 = 2 (n = 1000). 

Table I. Empirical bias and root mean squared error for four estimators of (Xi (1000 samples). Note 
that values equal to 0.000 in table represent empirical results with absolute value less than 0.0005 

n 2SMM GAPI B-IV KJ 

0(0 200 Bias 0.002 0.003 0.013 0.166 
RMSE 0.193 0.217 0.293 0.252 

500 Bias 0.002 0.004 0.012 0.163 
RMSE 0.127 0.138 0.185 '0.205 

1000 Bias 0.001 0.002 0.005 0.163 
RMSE 0.089 0.098 0.130 0.184 

0(1 200 Bias 0.000 0.008 -0.017 -0.032 
RMSE 0.191 0.192, 0.283 0.183 

500 Bias 0.004 0.006 -0.004 -0.031 
RMSE . 0.117 0.118 0.178 0.124 

1000 Bias -0.002 ~0.004 0.004 -0.036 
RMSE 0.082 0.083 0.125 0.093 

0(2 200 Bias 0.007 0.001 0.007 0.051 
RMSE 0.184 0.185 0.269 0.192 

500 Bias 0.003 0.000 0.004 0.049 
RMSE 00113 0.11'4 0.16'8 0.125 

1000 Bias 0.000 -'0.002 -0.001 0.047 
RMSE 0.08'1 0.083 0.122 0.097 

<;.Y3. 200 Bias a.Qol -Q.QP+ 7":'0.040 -0.1.21 
RMSl: 0.20S 0.206 0.268 0.225 

!)OO Bias 0.004 0 .. 000 ':"'"0.020 -0.116 
RMSE 0.'127. 0,'128 'oJ 62 0.167 

1000 'Bias ·o.ooer ~O:6(2) ::":0.612 LO.n7 
RMSE o.o~b '0.09'1 O.lf4 'tE'I'4S 

;; '-'~&",L~: o~· " " ·;f·~ .. ~;\! ' :,'-.li':-
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The apparent improvement of the 2SMM over the others is also seen in the coverage 
probabilities. Table 2 presents the empirical coverage probabilities of the nominal 95% 
confidence intervals for the cross-product coefficient Q!3 using the four methods. For 
each method, the interval was obtained by taking an estimate plus or minus 1.96 times 
the corresponding estimated standard error. In Table 2 we see that for all sample sizes, 
the 2SMM interval gives the empirical coverage closest to the nominal level. In fact, its 
coverage is not just closest to nominal, it is within simulation error from the nominal 
even for the small sample size of 200. The GAP! procedure is within simulation error 
from nominal when the sample size is 500 and 1000. On the other hand, the B-JV 
procedure does not yield proper coverage even with a sample size of 1000. Likewise, the 
coverage probability for the KJ procedure is very poor due to the inconSistency of the 
estimator. 

Table 2. Empirical coverage probabilities of four nominal 95% confidence intervals for a3 

n 2SMM GAPI B-IV KJ 

200 94.7% 91.9% 89.7% 73.4% 
500 95.1% 93.8% 91.9% 64.2% 

1000 94.8% 94.2% 92.2% 50.6% 

" :, 

6. Conclusion 
In this paper, we have presented the 2SMM procedure as it applies to the special case of 
the cross-product structural model. Unlike its competitors, it can in general be applied 
to any polynomial structural model. The 2SMM has consistently better RMSE than the 
others. In addition, the accuracy of confidence intervals formed using the 2SMM 
procedure, even with samples of size 200, is very good. The complexity of the 
computation of the standard errors that go into these confidence intervals is probably 
the main drawback of the 2SMM procedure. Because of thiS, we have tried in Sectiol1 3 
and in the Appendix to give all the details of how to calculate the standard errors with all 
the intermediate steps. The standard errors in the GAPI procedure are also very tedious 
to calculate as they come from a sandwich formula estimator with comparably tedious 
parts. Although the standard errors using the B-JV procedure are relatively easy to 
calculate, they do not perform very well even with sample size 1000. 

A problem associated with any of the product indicator procedures, GAPI, B-IV and 
K], is the arbitrariness of which products of observed indicators to use. The~eaJld 
related (model selection) issues have been discussed by virtually all of the papers that 
describe these procedures, but they provide no ready solution. An advantage of the 
2SMM procedure, and perhaps an explanation of its apparent improved efficiency: in 
simulation studies, is that it uses the factor score estimates rather than ~bi'ttarY 
combinations of products of indicators to fit the nonlinear structural model. Wa1l';;:tfld 
Amemiya (2000) show that these factor score estimates are statistically suffiden:tr<F1r·tb,e 
structural model parameters and thus incorporate aU the appropriate information in,:tlte 
data for estimating the coefficients of the nonlinear structural model. 

We hope that this. paper has provided eaough computational detail and f~p~~~ 
tion for researchers .to implement the 2SMMrnethod so that they wUl b¢'r~b'l~,,~o 
include cross-product terms into their structural equation models. The SASptQgJ%!:W 
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implementing the 2SMM method used in tIus paper's simulation study can be obtained 
from the authors. 
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Appendix 
In this appendix we give the formulae needed to construct the asymptotic covariance 
estimator 1'. Recall that T is the estimator of the asymptotic covariance of 

A .1'\ A ,.. I I ~ 

t) = (~~, (vee ~I)" (vee r)', (vech :E ee» that will be used in (13). Explicitly T has the 
form 

fI /I II 

COV(vec PI' Po) Var(vec ~ 1) II /I 

COV(vecr, Po) CoV(vec 1', PI) v;tr(vec r) /I 

COV(vechI;ee, ~o) CoV(vech tee, ~I) COV(vech tee' vee r) var(vecllt~l;' 

Recall from the argument given in Section 3 that the parts of T cont~ec t~aq, be 
ignored since they will be mul!~lied by zero in (13). Thus we fix Cov(vecI\(3tr).';I 
CoV(vecr, ~1)' Var(~ecr), and Cov(vech:E ee • veer) to zero. Recall that ~o, Pland 4-
are estimators obtained in the first stage of the 2SMM procedure when themeasuretneat 
model is fitted. Standard SEM software packages will output the esthnate for' the 
asymptotic covariance matrix of these measurement model estiJ:nators (e.g., me 
OUTEST data set in SAS CALIS). This output is very useful since it will itrunediately 

.1'\ ~ A 

~ve us the upper 2 x 2 block ofT. Note also that Eee can be written as a furtctloh bfJlq~. 
131 and +, thus we can obtain the covariances involv}ng :E ee by inCOrpOt"dting the. delta 
method. We will use the following as the estimator T: 

1 0 0 1 0 0 
()'vecbf~e 
"**" - _~,- C' ":-,J&7, 

0 1 0 
( ~o ) 

apo . 
A 

Va;: vecPl 
d vech·t;e~, T.= 0 0 0 0 1 0 
a(vec~l)T 

. 
dvech:E ee avech:Eee dvech:E ee diag+ 

" " a (diag +)' dvechtee ap~ a (vee ~1)1 0 0 0 a(di;gw· 
(1)>1 

Now we are left with determining the derivatives of tee with respect to ~o, vectilatld 
diag ~. The formula for :E ee given in (7) can be rewritten as 

tee = +22 - +22P~(+11 + ~1 +22i3;r~lpl +22 
where +22 is the k X k block of '" corresponding to the last k observations z detitled it1 
(2) and +11 is the (p - k) x (p - k) block of .. c()rresponding to the &6t;P. ~- k 

A A 

observations z defineq. in (2), First we note that Eee does not depel1d on Po,80; ., 

dvech·Eee apo = O[le(k+l)/2]X(j) k)-

Define' t;,; == (+11 +P1 +22~~)-1 and label the columns of '~l by PI = (~i~:i.;;:,>~i~~ 
Note that the derivatives of :tee involve the derivatives ()f t;i. The detlVl~tfV'e·qt1~! 
inverse of a non~smgular matrix is "Ic,';:' 

" 1 .A 
aE;\i = -t -1 a iJvv t 1. 

Thus, we first consider the de::vattves o~ to:. Le~ E:;~d represent a CX4~~ 
containing all zeros except for the (a, b) th element which is set equal to;'l~i';~iil.1:it,!, . 
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be the (j, j)th elem~nt of +"111 +"22e be the (f, f)th element of +22 and ~l(je) be the 
(), f)th element of PI' wherej = 1, ... ,p - k and f = 1, ... ,k. Then we have 

and thus, 

atvv _ E(P-k)X(p.-k) 

ai'llj - Jj , 

atvv "-I" 
a .. T, = D t' De. 

".r22f 

atvv _ (0 E 1X (P-k) + E CP-k) X16')+" " ...... e I} 'j 1 e 22 e, 
al3l(}C) 

a fee __ +- Ii I t -1 E{P ""·k) xCP-k) t Iii +-a.. - 221-'1 vv '}} vv 1-'1 22, 
11} 

dtee kxk kxkii'" l_~_ ~o_ Ct.,.A 1" kxk .. = Eee - Eee 1-'1 Evv "22 - "22t'1l.tvv PlEtt, a 22E 

+ +22i3~f;~t)ebef;~i31+-22' 
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Taking the vech of each of these matrices of derivatives, we can then plug them into the 
formula for T given in (19), and we are done. 


