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The desire to fit structural equation models containing an interaction term 'has recaived, 1
much methodological attention in the social sclence !icemcure This paper presentsa
technique for the cross-product structural model that utllizes factor score estimates
and results in closed-form moménts~type estimators. The technique, which does not
require normality for the underlying factors, was originally introduced in a very general
form by Wall and Amemiya (2000) for any polynomtal structural model. In this paper,

the practical implementation of this method, including standard error estimation, Is
presented specifically for the cross<product model. The procedure is applied to an-
example from soclal/behavioural epidemiology where the flexibility of the cross-
product model provides a useful description of the underlying theory: A simulation
study is also presented comparing the method of moments for the cross-product
model with three other procedures.

I. Introduction

Structural equation modellmg (SBM) is a common tool'in the social and behavie‘)ut'ﬂ
sciences for estitating and testing linear relationships among linear latent variables, But
in many cases the restriction to liﬂearity is not aclequate or flexible enough to explain
the phenomena of interest. For exampm, if the slope betweén two continuous latent
variables is directly affected or ‘moderated’ by a third continuous latent variable, this
relationship cannot be estimated via the traditional SEM. A natural way to model this
type of relationship is to include a cmsso-product of the ‘inf:éracting Iatent variables into
the structural model. Thus, the st:ructural fn@del |

ﬁ~%+%ﬁ+%ﬁ+%ﬂﬁ+f W
is considered where f S ( fl, fz, fg)‘ ‘I8 a vector of’ mnt“mtrs latentﬁv%tﬁsfblés,
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o = (g, g, 0z, 0i3) is a vector of fixed unknown parameters, and { is random error, A
structural model (1) is referred to as nonlinear since it is nonlinear in the factors—the
[>f5 term makes it nonlinear. Nonlinear structural models are not straightforward to fit
using the usual SEM software packages (LISREL, EQS, PROC CALIS, AMOS, Mplus) since
these packages are designed for models containing only linear latent variable terms.

Interaction effects in structural equation models such as (1) have recently received a
large amount of methodological attention. For a collection of papers on such models,
see Schumacker and Marcoulides (1998). One of the first methods for fitting an
interaction effect in a structural model was proposed by Kenny and Judd (1984
Their method uses products of observed indicators as indicators of the cross-prod
latent term while imposing appropriate nonlinear constraints on the associated
meters. Although this technique attracted methodological discussions and altera
a number of papers, including Hayduk (1987), Ping (1995, 1996), Jaccard and W’
(1995, 1996), and Joreskog and Yang (1996, 1997), it produces inconsistent estima
when the observed indicators are not normally distributed. B

Also relying on the multivariate normality assumption of the observed indicato:
the exogenous variables, Arminger and Muthén (1998) proposed a fully Bayes
approach and Klein and Moosbrugger (2000) proposed fitting models like (1) by tlae
EM algorithm. Apart from the computational burden of these techniques, it is not clear
how robust they are when the normality assumption is violated.

An adaptation of the Kenny-Judd technique that does not rely on the normality of
the observed indicators was introduced by Wall and Amemiya (2001). Their genemlizczd E;
appended product indicator (GAPD procedure produces consistent estimators for
virtually any distribution of the observed indicator variables. Likewise, a method
introduced by Bollen (1995) and then presented specifically for the cross(—product
structural model by Bollen and Paxton (1998) produces consistent estimators for non-
normal data as well. Bollen’s procedure uses the instrumental variables technique where
instruments are formed by taking products of the observed indicators. Although this
technique has simple closed-form solutions for the estimators, it has been shc;wn to hiwe
lower efficiency:.

Wall and Amemiya (2000) mtroduced a two-stage method of moments CZSMDVD
procedure for fitting the general polynomial structural equation model. Like the GAPI
procedure and Bollen’s instrumental variable technique, the 2SMM procedure produces
consistent and asymptotically normal estimators for the structural model parameters for
virtually any distribution of the observed indicator variables. The procedure uses factor
score estimates in a form of nonlinear errors-in-variables regression and produces
closed-form method of moments type estimators as well as asymptotically c
standard errors. Its ability to generalize to any type of polynﬂmial gives it a cle
advantage over the GAPI procedure (which can only be used for low—degre _pol
nomials) and in snnulauon studies it has perfonned better in efﬁc:iency and ¢
probability than both the GAPI and the Bollen instrumental varjable techniqu

The emphasis on theoretical development in Wall and Amemiya (2000) of th
procedure for the most general-case polynomial may not lend itself t ]
implementation for users. Thus, the purpose of this paper is to outline the 2SMM
procedure straightforwardly and specifically for the c¢ross-product structural modcl a.
In Section 2 we give step-by-step instructions for calculating the 2SMM estim: i
the coefficients in (1). Section 3 gives the formulation for the standard errors of &
confidence intervals can be formed. In Section 4 we. apply the 2SMM proce
example from behawoural ep1dcm1010gy where the. cross-produ
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useful match to the theory. Finally, Section 5 presents a simulation study comparing the
2SMM procedure to other procedures described above. Additional details for standard
error estimation are given in the Appendix.

2. The two-stage method of moments estimator

Consider the cross-product structural model (1) with a linear measurement model that
has a general form. Thus, for independent individuals 7 = 1,...,7 we model the p x 1
observed vector z, as . N 2 ; o o -

fu==G’lo+0?1f21+azf3f+0€3f21ﬁ3¢+§'t- - @)

The factors £, = ( f1;, fas» f3:) can be treated as fixed or random, and if treated as
random their distribution is left unspecified. The measurement errors €, are assumed to
be independent and identically distributed, with F{e ;} = 0and Var{e,} = ¥, and to be
independent of £,. Although the 2SMM method and theory can be extended to include
non-diagonal ¥, we assume for simplicity that the p elements of €, are independent and
thus ¥ is diagonal. The equation errors {; are assumed to be independent and identically
distributed with mean zero and variance op and independent of £, and €, The
(p—3)x1 vector Bo and (p — 3) X3 matrix B; contain coefficients which may be
fixed or free. The notation 0,y, represents a matrix of zeros with dimension @ X b
and I, represents an identity matrix of dimension k2. Depending on the dimension p,
some restriction may need to be placed on the elements of B, and B, to ensure that
Bo, By and ¥ can be meaningfully estimated. That is, we make the assumption that
the measurement model, when taken on its own, is identified irrespective of the
structural model,

The 2SMM procedure for esthnaticm ancl inference of the model given by (2) and (3)
is considered. The first stage of the procedure uses the measurement model (2) alone to
estimate the underlying factor scores as well as their variability. The second stage uses
these factor score estimates as ‘observations’ of the factors, and, while incorporating the
estimated measurement error, performs an errors-in-variables regression for the struc-
tural model (3). An advantage of this two-stage procedure is its natural relation to the
way many researchers attack SEM model building and checking —first get the measure-
ment model to fit and then explore the direct relationship among the underlying factors.
Below we give a detailed outline of the 2SMM technique for model (2)-(3) under the
very general case where the measurement model does not have simple structure, and no
distributional form is assumed for the factors or the measurement errors. We also
provide a simpler form of the estimator under scenarios where normality is assumed for
the measurement errors or the measurement model has simple structure.

Stage 1. Consider the measurement model alone,
@ Obtain B, B, and ¥ using a standard SEM software package.
() Calculate the Bartlett factor score estimatcs for each incuvidua,l ie.,

% @[%i,m; S R B R A 2 7 @
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Stage 2. Using estimates from stage 1, fit the structural model.

@

€y

'This form, which incorporates the I notation, was used originally bec

‘Estimate the necessary higher-order moments of € = (ey, €, €3) under one
- following three scenarios. For the cross-product modcl the higher' mot
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Wall and Amemlya (2000) use an alternative form of (4) which does not explie’v y
contain ¥1: |

= [T, @5 + TPz, — Bo. 01x3)'],

b

L A I -1
-(03x(p 3)» Is)‘l"( @ 5)) {(I(p 5, —B1 )‘I'( e ?)\)] .
, —B1 —B1 ,

where

provided a convenient expression for deriving theoretical properties. ‘Whe
variables are measured without error and (X, _ 3), —Bl)\IF(I( p—3) —Bl) is s
a similar expression holds which incorporates a generalized inverse.
Estimate the variance of the estimation error for the factor score estimates, tha
estimate Var{ef} = Y. Where e; = f ; — £,. The familiar form of this variance is
[(Bl, 13)‘1' (Bl, I3) ‘171, Wall and Amemiya use the I' matrix and equivalently :
form

: 811 012 013 o T
S - AB R —3)%3 \ .
Lee= | 812 822 8235 | =[-T, 3+ FBI)]‘I'( (j)ISJX ) :

013 023 833

which are needed in stage 2(11) are E(e;e,e3) = ui, E(es e3) = u3, E(ege f
and E(e3e3) = . : :
Scenario 1. Distnbution of € is unspec1ﬁcd ‘ T
- Wall and Amermya (2000) provide a general method for estlmating the hi;
order moments, A3, p3, 12,3 and pcl by taking moments of residuals from
measurement model. i
Scenario 2. €is normally distributed: :
This implies the odd moments of e are Zero and the fourth moment is as
- function of sccond moments, ie., le =0, ﬂ»z =0, ;1,3 = (), ,u,l == 022 Oaz +
‘Thus, use p7 = 0, f3 = 0, p3 = 0, p = 8, 033 + 202.
Scenario 3. Measurement model (2) has simple structure: /
This implies elements of e are mdependent and 50 ui =0, u3 = 0
pi = 033 033. Thus, use p3 = 0, p3 = 0, p§ = 0, p = 02, 033,

Rewrite model (2)-(3) as an errors-in-variables model

. Jiu=ootanfo, o fitas o fat G
Frii =i+ e | |
fzx —;—'ffzf—f-ez,ts,

Fai=fa+ ez
Let X,;—(I fZi?f?;i’fZifSi) The key to th1$ Step iS tO ﬁn
such that EM X, ... X)) = (lln)E,_l(X,X,;) and E(m|X1 X

(1/n)C7._ (X, fl ;) so that o can be cstnnated ‘without blas frorn
equation Mot = m. APpro
formed by rcgardmg fi as observauons of f { and uttlizmg Eee as an cs ]
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measurement €rror variance in the errors-in-variables model. An algorithm for
deriving M and m is described in Wall and Amemiya (2000) for the general
polynomial structural model. Here we give M and th for the cross-product model:

1 Fai Fai Faifai = 023
=_{i Jj% =00 fafsi— 02 a4 ©)
7= VEY fafsi— 8 f — 03 ag }
2if3i 323 A4y Agz - A4
a4z = aif3 ”Zﬁzﬁfzz 322)"3: 113 R
a3 =f21f31 - zazsf?,/ 035fz,: ﬂs, | |
ags =F3151 — 035 %0 — 02 f3 — 4323f2ff3»z + 2622 a33
+ 4033 — 203 oy — Zﬂzf 30— A1, ‘,
“ o fu
m;_%i: - f}ﬁ]ﬁzt"’a’Q : ; | 1. (iO)
11 S1if31— 013

10S20S30 = 81231 — B13f20 — O3 fro— D3

To understand the form of (9) and (10), consider, for example, the specific element
a 42. It is derived so that E(ay, | fay, fg,,) f2, Ja1 (when the measurement model
parameters are known). Verifying this, we see

Eag | fair [30) = E(f3ifs1— 2823 f2; — 022 f3 — B3 | f2¢7: S31)
= E((ﬁzf + ezz) (far+e3) — Zﬁzaffzz + ez;)
| "‘322(f35+est)"3'2 | fain f30)
=[5 S5+ 2 2B ez,03) + f3,E(e3,) + B(e3,e3,)
| .%20'23]“21 " ‘722f§‘i -
»xfgifﬁt-
(i) Put M and rh together to obtain the 2SMM estimator &’ = (&g, &y, &,, &3), that is,
6 =M. (11)

This procedure does not require the factors f; to be normally distributed, which is
very useful since obviously f1,, fs; and f3; cannot all be normal if (3) is the correct
model. It also does not require the measurement errors €, to be normally distributed.
Wall and Amemiya (2000) show that & is consistent and asymptotically normally
distributed without assuming normality for the factors or the measurement errors.

3. The ZSMM standard errors

In Section 2 we outlined the 2SMM procedure for obtaining the consistent estimator
& Although normality was not nceded in the derivan on ef &, normahty of thé
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measurement errors (but not the factors) is needed in the following derivation of its
asymptotic standard errors. That is, we consider standard errors for & formed under
scenario 2. The asymptotic standard errors are obtained from the following estimator of
the asymptotic covariance matrix given by Wall and Amemiya (2000),

V{a) =;1;mﬂlﬁﬁ—l' (12) ‘

If the f; in (8) were actually observed and Eee was known, then {2 in (12) would have
form (1/n)E7_1€,(6)€,(&), where €,(&) = — M, & and M, and i, are the Zth tes
in the sums (9) and (10), respectively. But, sincc f: and E .. appearing in M, an
have been estimated instead of being known quantities, we need to incorpos
additional variability into €. £
To do this, the asymptotic covariance matrix for the vector of all measurement
model estimators which were used in forming th and M must be evaluated, Let
0 = B, (vecB,), (vecT', (vech £..)) where vec stacks the columns of any matrix
and vech stacks the non-duplicated elements of a symmetric matrix. The estimator of
the asymptotic covariance matrix of 0 is denoted by T. The part of y' directly related to
BO and Bl, can be obtained from the output in standard SEM software packages, while
the part related to T' and £ .. can be obtained using the delta method, shown in the
Appendix. Actually, the part of 'y corresponding to I' does not need to be est:mated
since it is eventually multiplied by a vector of zeros.
since f;, and £ are functions of 8, the following estimator {} which px:op ¢
incorporates variability due to 8 is used: s

0= Z €,(6)€,(6) +CTe, (13)

i—. 1 s

where €;(o0) = —M,a, M, and th, are the 7th terms in the sums (9) and (1_{ "
respectively, and C is derived from the first-order Taylor series expansions €;(a) with
respect to ®. In order to define ¢ the following notation for derivatives is needed. Let
a=(a,,d,,...,a;) beanIx1vectorandb = (b, b,, ... ,bj) be aJ x 1 vector. Define

04, day - 04
ob, 0b, db,
da, 9da da
da —=2 =z ., =2
T S
b, da, | da
| 0b; 0b; b |

Notice that f,(a) is a direct function of = (fisr faur 5 and vechﬂ‘w 8
(011, 61%, 013, 02y, &23, 033 ) . Moreover, f; is a direct function of the first three parts o
8, ie. By, (vec By, vec I‘)) Recognizing this, we can use the chain rule to Write
98, (e) _ [ae,(a) of, 0¢€,(@) of, 9¢,(a) Of, e, |
of; ofy of; o(vecP,)’ of! J(vecly d[vech ﬁw:r
&)

; »&P(xi ®X(p-3)), Osx3(p—3)s
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where x; = [(03x(5-3), I3)Z;], that is, x, is the last three elements of z, in the
measurement model (2) identified to equal f; plus measurement error. The part of ¢
corresponding to (0€,;(a)/ 8f, Yo f,/9 (vec I')) is fixed to zero in (14). This is so because
of ;19 (vec I‘) is a matrix containing only zeros and residual like terms that have
asymptotically zero means. Since the residual-like terms are also approximately inde-
pendent of the terms appearing in (9€,(o)/ of; )19, 4> the expected value of their product
is approximated by zero.

Notice that each column of € in (14) corresponds to an element in 6 and they are in
the same order. Thus When &1¢’ is formed in (13) there will be no contribution from
the covariance of vec I' in T since it corresponds to the columns of zeros in (14). Hence
the derivation of T is simplified because there -is no need to estimate the asymptotic
covariances corresponding to vec I'. For this reason, we only' show the delta method for
the covariances of vech ﬁee in the Appendix.

To specify € in (14) completely, we express 34, (a.)/ afi and 0¢; (a)/ d [vech).?ee] for
the cross-product model (2)~(3). Recall that €,(a) = — M, «, where M, and t, are
the 7th terms in the sums (9) and (10), respectively. Sok _Wc have

€, _ [960) 3¢ A
of; i fir afzf g afw
i 1
aé‘g(a) | fzf
afll’ ﬁ%i ‘ ’
| Faifsi— 823 ‘
[ 0 T [o 1 , o Far ]
3@ _ |  fu R 2/ B 2 ks 20 .
oz 0 0 S 0 Shi= 633 I
fufsi=0u]  fsr 2Ffafs 200 Fi— 03 zleféi — 2833 far — 4023 /a1 |
T o 1 [o o B | o fa ]
€, (av) 0 RY 0 Fas N T
e Sii R Far 2y N 2 2150~ 2055 &
Fifar—=8a] o Fl~0n 2fufsi— 200 2f3fai— 20075 - 40212, ]
0 0 0 0 a, | 0
04€, (o) 0 -1 0 oy + o fa ot + 203 f @y ko fay
mz 0O o -1 0 oy - 203, 0 ,
[0 Ay ~far o +as(ff 333) as oy +oa(fF o)

a45-‘”"fu*i"ao+2a1f2£+Zazfﬁz“**‘iaa(fszw“&za) ~
Now with all the pieces of (14) and the necessary terms in T, we can form € in (13). The
standard errors of & = (&, &;, &;, &) under scenario 2 are calculated as the square
root of the diagonal of (12). We will label the resulting standard errors as sy, $a,; Sa,; and
Sa,. Wall and Amemiya (2000) show that the limiting distribution of & is normal so that
these standard errors can be used to for: : c)lOO% conﬁdénce intervals by t: king

e normal djst:ribution Thesc conﬁdence

‘where 2z, is -the 1 — ¢/2 quantile- from
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intervals can also be used to examine if the parameters «, o, oy and oy differ fro

by chance or not.
 We recognize that the construction of the standard errors given in this section' may
seem a bit tedious. This is undoubtedly due to the second term in (13) mvoivingé and Y.

If the measurement model parameters were known, the second term in (13) would
disappear, leaving t

= ——}: &(a)ei(a)

Tlns Q* undcresttmates Var(&) Nevertheless to those interested in testing ‘W‘he g
coefficient o3 of the cross-product term is different from zero, we reconu | fi
using " in place of ¢ in forming the standard errors. If the confidence interval form
using these smaller standard errors surrounds zero, there is no need to comy
correct standard error using the more complicated @ since it will just yield'a
confidence interval which will still surround zero. On the other hand, if the confi _
interval using {* does not surround zero, then the correct (and consequently» g"; )
standard errors detailed in this section should be used. o

The normality assumption of the measurement errors required throughout thi
derivation of the standard errors was used only at two points.

(1) Because of normality, it was not necessary to estimate the asymptotic C()va.riance
matrix for the higher-order moments of e since under scenario 2 the high”" r
moments are just O or a function of the second-order moments. &

(2) Because of normality, the components in the first and second terms of the Tflylor
series expansion of £ are independent, and thus (13) only involves estimates of the
variances and not the covariances of the elements in the Taylor series.

Notice under scenario 3, when the distribution of the measurement errors is unspeci-
fied but the measurement model has simple structure, that the standard error derivation
above only breaks down with respect to point 2. That is, we cannot be sure the
covariance of the elements in the Taylor series is zero, and hence (13) should
theoretically contain an extra termy estimating this covariance. It is our recommendation
that under scenario 3, standard errors can be reasonably estimated using (13) because
this omitted covariance is expected to be quite small (albeit difficult to estimate).

4. An illustrative application

As an example of how an interaction effect between latent variables can be modelled
and tested, we consider a problem that comes from a large study designed to. examine
socio-environmental, personal and behavioural factors associated with nutritional intake
and weight status among adolescents. The study, entitled Project EAT (Ne: a
Sztainer, Wall, Story, & Perry, 2000), examines the relationships among factor:
social cognitive theory framework (Bandura, 1986) with the intention of d
more effective-interventions aimed at improved eating behaviours among yout

Here we focus on just one of the many eating behaviours of interest in
fruit and vegetable intake. The study population included a self-report Su !
. adolescents’ from 31 public middle schools and high schools in urban
'school districts in the St. Paul/Minneapolis area of Minnesota. As in studies.
populations, Pro;ect EAT found that the two main correlates of fruit and vegeta
in adolescents are the personal factor, taste preference; and the socio-ens
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factor, availability. Nevertheless the traditional linear model is clearly limited here since
it requires the effect that availability has on fruit and vegetable intake to be the same for
all levels of taste preference and vice versa. The cross-product model allows the
appropriate flexibility. For example, the cross-product model allows students with
low taste preference to have minimal increase in fruit and vegetable intake when
availability is increased, whereas students with higher taste preference can realize much
larger gains in fruit and vegetable intake when availability increases. Treating the two
factors, taste preference (ZASTE) and availability (4VAIL), as latent, underlying five self-
reported questionnaire responses Zi, ..., Zs, we fitted the cross-product model (2)~(3)
with a single observed indicator for fruit and vegctable intake (FRVEG) as the ‘outcome

variable:
/Z”\ (}3()1\ (ﬁll 612\ ; /61;\
Zay 602 621 622 €21

7 8 g 8 AVAIL, |
= + | €34
3 03 a1 32 TASTE, : 3

Z4t 0 1 0 €4y

\Z;,J \o/) \o 1) | K“iﬁt/

The Z,,,...,2Z5,; represent the answers by individual 7 to the following five ques-
tionnaire items: Z; = ‘Fruits and vegetables are available in - my home’, and
Z 4 = ‘Vegetables are served at dinper in my home’; both with responses 1 == Never,
2 = Sometimes, 3 = Usually, 4 = Always; £, = ‘Most vegetables taste bad', Z3 = ‘Most
healthy foods just don’t taste that great’ and Zs = ‘Most unhealthy foods taste better
than healthy foods’, all three with responses 4 = Strongly Disagree, 3 == Disagree,
2 = Agree, 1 = Strongly Agree (note the reversed direction of scoring). The outcome
variable fruit and vegetable intake (FRVEG) is a standard scale, computed directly via
the Youth and Adolescent Questions (Rockett, Wolf, & Colditz, 1995), which is a
weighted sum of reported standard serving sizes from a comprehensw:., list of fruits
and vegetables.

Following the steps outlined in Section 2, we first obtain the parameter estimates
associated with the measurement model. The exploratory measurement model suggests
the possibility of simple structure, thus a confirmatory model is subsequently fitted with
B21 = B3 = B2 = 0. The confirmatory model yields a chi-square value of 31.76 on
4 degrees of freedom, an RMSEA of 0.0426 with a 90% confidence interval
[0.0296, 0.0569] and an NFI of 0.999. Because the sample. size is large, we ignore the
significant chi-square test and rely on the other goodness-of-fit statistics to conclude that
the confirmatory model gives a reasonable ﬁt to the data. The estimated parameters for
the measurement model are ,

1.02 075 0
Bo=1]057], B,=| 0o 084, T =diag(0.34,041,057,032,0.24). (16)
0.64 0 059) |

The factor score estimates for AVAIL and TASTE are obtainecl using (5). Since FRVEG, the
dependent variable in the structural i s 4 dir served. variable, it is not
necessary to create its factor score est b m:fris(, the factor score estimate fot FRVEG
is simply taken to be the observed value for FRVEG. Thus, letting FRVEG = fy,
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AVAIL = f,, and TASTE = f3 and following the notation in (7), we have

0o 0 O 0 o 0 N
fee=|0 6, 0 |=]0 021 o |. an
0O O 033 \ O 0 0.15 :

Because of the simple structure of the measurement model, this cxamplc falls undcr
scenano 3 and thus the higher-order moments are estimated simply as ﬂl =0, p
p3 = 0, and p] = 8,833,

To begm Stage 2 of the ZSMM procedure we rewrite the problem as

FRVE'G,; = Qg -+ OKIAVAIL;; -+ (s3] TASTE{ -+ aaAVAILi %k TASTE{ -+ g-i: :

2‘,

FRVEG, = FRVEG,,
AVAIL, = AVAIL, + e,;,
TASTE, = TASTE, + es;,

where Var((ez, e3)) is found in (17) and no measurement error is associated with
FRVEG. Substituting FRVEG, AVAIL TASTE and Eee into (9) and (10) and combining as
in (11), we obtain & = (0.80,0.0002, —0.07, 0.09). Standard errors are obtained using
(12). We first calculate standard errors using 0* in (15) and obtain seq, = 0.231,

seq, = 0.080, se,y, = 0.095, sey, = 0.027. As mentioned in Section 3, these values do
not contain the inﬂuencc of havmg estimated the parameters in the first stage of: the
procedure and are therefore too small. But, as this additional component is usually {
small they give a good first glance at the magnitude of each parameter. Now we calculate
€ in (13) and obtain the standard errors se, = 0.260, se,, = 0.082, se,, = 0.099 and
seq, = 0.029. We see that the a 95% confidence interval for the cross-product tcrn ‘3 s
(0. 033 0.147); thus we conclude that it is significant in the model. P

Q | : o |
(<] . ] (-] .
. ¥
. |
2 E 1
0 . ! 0
ol ) H o !
Q4 oc.A
o o
& &
=i 3 0 |
o o ~—
(T o
< Q|
~ -—
w2 w0
o =3
< <
= <]

1 2 a 4
; estimated AVAIL : estimated TASTE .
Figure I. Scatter plot'of FRVEG against factor score estimates of (a) AVAIL and (b) TAS

product model everla;d for four dlfferent levels of (a) TASTE and (b) AVAIL ranging from low to
to ‘thick lines). § s A
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Figure 1 presents the resulting cross-product model relating these three variables.
The scatter plot in Fig. 1(a) shows the relationship between number of fruit and
vegetable servings (FRVEG) and the factor score estimate of availability (A VAZIL) by four
different levels of taste preference ranging from low preference for vegetables (thin line)
to high preference to vegetables (thick line). Likewise, the scatter plot in Fig. 1(b) shows
the relationship between FRVEG and TASTE at different levels of AVAIL ranging from
low to high (thin to thick lines, respectively). Note how the interaction term in the
model is realized by the non-parallel lines drawn in each plot. For example, students
with low fruit and vegetable availability have hardly any gains in fruit and vegetable
intake despite their low or high taste preference for 'vegetables. This relatxonshlp would
80 unnoticed using a strictly linear model and shows the, usefulness of mcorporatmg a
cross-product into structural equation models in general, -

5. Simulation study

In this section we demonstrate the performance of the ZSMM procedure compared to
three existing methods briefly described in the introduction: the generalized appended
product indicator (GAPI) procedure introduced by Wa.ll and Amemiya (2001), the
instrumental variable (B-IV) method of Bollen (1995), and the Kenny-Judd (KJ)
approach proposed by Kenny and Judd (1984).

We consider model (2)-(3) for a nine-dimensional vector of observations z where the
measurement model has a simple structure. Although the 2SMM procedure can be
applied to a general measurement model without simple structure, we consider the
simple block-diagonal measurement model here because the other existing _procedures
have only been defined for measurement models of this type. Consider the model

Jii =g+ ay for+anfa o for fzs+$

(Zu\ (301\ (1311 0 0 (611\

Z3q Boz Ba1 O 0 o) oeay
Z3; | Bos 0 B3 O | I Y
Z4s 0 B4 O 17 \ €,

41 504; 2 | S | 4 (18)
Zs; | = | Bos | + o 0 Bsa Jai + €54 :
Z64 Bos | -0 0 565‘ J3i) €64
Zgy 0 0 1 0 - : €gy

\Zw/ \ 0/ \ 0 o 1 ) New/

For simulation, we use the model (18) with ag = 2, oy = 1 o, =1, and og = 2. The
true measurement model parameters were 8o; = f,/ = 1, 2,...,6, 811 = 0.5, B3 = 0.4,
532 = 0.7, 642 = 0.3, ,353 = 0.4, and 563 == OA‘S. We generatf:d fzg -and fs{ as
Cov( f24, f3:) = 0.5. The error terms {; and €;;, 7/ = 1,...,9, were independent normal
random variables with Var{{,} = 0.3 and Var{e;;} chosen so that the reliability for each
observed z;, was a constant 0.75. In Fig..2 we present an example of the generated data
which contains the observed outcome variables z;;.. ., 2y from a sample of size 200.
Since f; is a nonlinear function of f, and f3, we can see in the scatter-plot. matrix that the
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Flgure 2. Scatterplot matrix of one realization of size n = 200.

indicators of 1, that is, 21, %2, and z-, appear to have nonlinear relationships Wi the
other indicators. ‘

For compating the different procedures, we considered three sample sizes, n
500 and 1000. For each sample size, we generated 1000 samples and applied all
estimation procedures. While, the 2SMM procedure is described uniquely, the oth
estimators, GAPI, B-IV and KJ, involve some choices. For the KJ and GAPI methods, we
used the normal likelihood as the discrepancy function, and included all available
product indicators, 23, 2s;, 231261, Z31%94> Z4i%54, Z41 261> Z41%91, Z81 %54, X8 %6 and
Zg; 294, based on the general recommendation made by Wall and Amemiya (2001). For
the B-IV procedure, following the rules described in Bollen and Paxton (1998), we used
Zg;, Z9; and Zg; Zo, as the explanatory variables measured with error, and 2z3,, 24/, 254,
Zei, 234251, Z3,%61, T4: %5 and 24,2, as instruments. The observed variable z,, was
used as the dependent variable in place of f;,. The asymptotic standard errors of these
three estimators were as suggested in Wall and Amemiya (2001) for the GAPI estimator,
Bollen (1995) for the B-IV, and Jaccard and Wan (1995) for the KJ.

The general pattern of the estimator comparison is depicted in Fig. 3, which presents
boxplots of the four estimators of the cross-product coefficient a3 for n = 1000. Table 1
gives the empirical bias and root mean squared error (RMSE) of the estimators for all four
estimation procedures. The inconsistency of the KJ estimator for non-normally dis-
tributed factors, as pointed out by Wall and Amemiya (2001), can be seen in Fig. 2 and
Table 1. Note that Jéreskog and Yang (1996) proposed a slightly different form of the KJ ‘
estimator than the one used here, but their form shares the inconsistency property:
the original KJ estimator for non-normal data. The empirical distribution of the

~estimator is ‘more tightly concentrated around the true value than that for t
procedure. The empirical distributions for the 28MM and GAPI procedures loc
snnila:r although as can be'seen in Table 1, the empirical RMSE is alwaysf ma
: han " is*observed, albeit slight, improvement in RMSE foun

'API procedure is consistent with results fo;z, ‘
- polynomial structural models.
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Table 1. Empirical bias and root mean squared error for four estimators of &' (1000 samples). Note

that values equal to 0.000 in table represent empirical results with absolute value less than 0.0005

2SMM

GAPI

B-lv

K

Ll

200

500

1000

Bias

RMSE

Bias

RMSE

Bias
RMSE

' 0.002

0.193

0.002

0.127
0.001 -

-0.089

0.003
0217

0.004
0.138
0,002 ¢
0.098 :

0.013
0.293
0.012
0.185

~ 0.005

0.130

0.166
0.252

0.163

-0.205

0.163

0.184

oy

200

500

1000

Bias

RMSE

Bias

RMSE
" Bias

RMSE -

0.000

0.191

0-004 v R

0117
-0.002
0.082

0192
~ 0.006
o olis
© 0 —0.004

- 0.083

o008

 —0017

0.283

~0.004

0.178

- 0.004

- 0.125

~0.032
0.183
YT

0.124
—0.,036

0.093

5]

200

500

- 1000

Bias
RMSE
Bias

RMSE
CBias
~ RMSE’

0007
0.184

- 0.003

0113

10.000

0,001

© 0.000

0114
0083 0

oi8s

. 0.007
0269
0.004

0.168

—0.001

- 0.051
0.192
0.049
0.125
0.047
0.097

Q3

200
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o ‘1’000

1 VBias: ,. 1
RMSE ¥

Bias

RMSE ~ O.
. % Bias S .\ . o :J' \,
©URMSE 10,08

—-0.121.

0.225
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The apparent improvement of the 2SMM over the others is also seen in the coverage
probabilities. Table 2 presents the empirical coverage probabilities of the nominal 95%
confidence intervals for the cross-product coefficient o3 using the four methods. For
each method, the interval was obtained by taking an estimate plus or minus 1.96 times
the corresponding estimated standard error. In Table 2 we see that for all sample sizes,
the 2SMM interval gives the empirical coverage closest to the nominal level. In fact, its
coverage is not just closest to nominal, it is within simulation error from the nominal
even for the small sample size of 200. The GAPI procedure is within simulation error
from nominal when the sample size is 500 and 1000. On the other hand, the B-IV
procedure does notyield proper coverage even with a sample size of 1000. Likewise, the
coverage probability for the KJ procedure is very poor due to the inconsistency of the
estimator.

Table 2. Empirical coverage probabilities of four nominal 95% confidence intervals for a3

n 2SMM GAPI B-IvV KJ

200 94.7% 91.9% 89.7% 73.4%
500 95.1% 93.8% 91.9% 64.2%

1000 94.8% 94.2% 92.2% 50.6%

6. Conclusion

In this paper, we have presented the 28MM procedure as it applies to the special case of
the cross-product structural model. Unlike its competitors, it can in general be applied
to any polynomial structural model. The 2SMM has consistently better RMSE than the
others. In addition, the accuracy of confidence intervals formed using the 2SMM
procedure, even with samples of size 200, is very good. The complexity of the
computation of the standard errors that go into these confidence intervals is probably
the main drawback of the 2SMM procedure. Because of this, we have tried in Section 3
and in the Appendix to give all the details of how to calculate the standard errors with all
the intermediate steps. The standard errors in the GAPI procedure are also very tedious
to calculate as they come from a sandwich formula estimator with comparably tedious
parts. Although the standard errors using the B-IV procedure are relatively easy to
calculate, they do not perform very well even with sample size 1000.

A problem associated with any of the product indicator procedures, GAPI, B-IV and
KJ, is the arbitrariness of which products of observed indicators to use. These and
related (model selection) issues have been discussed by virtually all of the papers that
describe these procedures, but they provide no ready solution. An advantage of the
2SMM procedure, and perhaps an explanation of its apparent improved efficiency in
simulation studies, is that it uses the factor score estimates rather than arbitrary
combinations of products of indicators to fit the nonlinear structural model, 'Wall and
Amemiya (2000) show that these factor score estimates are statistically sufficient for the
structural model parameters and thus incorporate all the appropriate information in t
data for estimating the coefficients of the nonlinear structural model.

We hope that this paper has provided enough computational detail an
tion for researchers to implement the 2SMM method so that they will b
include cross-product terms into their structural equation models. The SAS p:
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implementing the 2SMM method used in this paper’s simulation study can be obtained
from the authors.

References

Arminger, G., & Muthén, B. (1998). A Bayesian approach to nonlinear latent variable models
using the Gibbs sampler and the Metropolis-Hastings algorithm, Psychometrika, 63,
271-300.

Bandura, A. (1 986). Soctal foundatz‘am of tbaugbt and action: A soczfal cognm!ve tbeory
Englewood Cliffs, NJ: Prentice Hall.

Bollen, K. A. (1995). Structural equation models th1t are nonlinear in Iatent variables A least
squares estimator. Sociological Methodology, 25, 223-251.

Bollen, K. A., & Paxton, P. (1998). Interactions of latent variables in structural equation models.
Structural Equation Modeling, 5, 266~293. :

Hayduk, L. A. (1987). Structural equation modeling with LISREL: Essentials and advances,
Baltimore, MD: Johns Hopkins University Press.

Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects between
continuous predictors using multiple regression: Multiple indicator and structural equation
approaches. Psychological Bulletin, 117, 348-357,

Jaccard, J., & Wan, C. K. (1996). LISREL approaches to interaction effects in multiple regresston
Thousand Qaks, CA: Sage.

Joéreskog, K. G., & Yang, E (1996). Non-linear structaral equation models: The Kenny-Judd model
with interaction effects. In G, A. Marcoulides and R. E. Schumacker (Eds.), ddvanced
structural equation modeling: Issues and techniques (pp. 57-88). Mahway, NJ: Lawrence
Erlbaum Associates.

Joreskog, K. G., & Yang, E (1997). Estimation of interaction models using the augmented
moment matrix: Comparison of asymptotic standard errors. In W, Bandilla and E Faulbaum
(Eds.), SoftStat '97 Advances in Statistical Software 6 (pp.467-478). Stuttgart: Lucius &
Lucius.

Kenny, D., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables.
Psychological Bulletin, 96, 201~210.

Klein, A. & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects
with the LMS method. Psychometrika, 65, 457-474.

Neumark-Sztainer, D., Wall, M. M., Story, M., & Perry, C. 2000). Correlates of “fruit and vegetable
intake among adolescents: Findmgs Jrom the Project EAT. Manusc.rnpt: submitted for
publication.

Rockett, H., Wolf, A. M., & Colditz, G. A (1995). Development and reproducibﬂity of a food
frequency questionnaire to assess diets of older children and adolescents. Journal of the
American Dietary Association, 95, 336 -340.

Ping, R. A. (1995). A parsimonious estimating technique for interaction and quadratic latent
variables. Journal of Marketing Research, 32, 336-347.

Ping, R. A. (1996). Latent variable interaction and quadratic effect estimation: A two-step
technique using structural equation analysis. Psychological Bulletin, 119, 166-175.

Schumacker, R., & Marcoulides, G. (Bds.) (1998). Interaction and nonlinear gffects in structural
equation modeling. Mahwah, NJ; Lawrence Erlbaum Associates.

Wall, M. M., & Amemiya, Y. (2000). Estimation for polync)mial structural cquat:ions Journal of tl::e
American Statistical Association, 95, 929 -940.

Wall, M. M., & Amemiya, Y. (2001). Generalized appendéd product indicator procedure for
nonlmear structural equation analysis. Journal of Educational and Bebavioral Statistics, 26,
1- 29

Received-10 _Iuly 2000; revised version receiVed 18 December 20@!



62 Melanie M. Wall and Yasuo Amemiya

Appendix 1
In this appendlx we give the formulae needed to construct the asymptotic covariance
estimator T. Recall that T is the estimator of the asymptotic covarjance of
8 = B}, (vecf,), (vecT, (vech £..)') that will be used in (13). Explicitly T has the
form

Va\r(é{)) " . U4 "
Eézr(vec Bl ) BO} Val‘(VCC B 1) " ]1»‘ |
Cov(vecT, Bo) Cov(vecT, Bl) Var(vecI') "

”cOv(vechzee,Bo) Cov(vech £oc, B,) Cov(vech £, vecl) Vax(ve&ch*‘

Recall from the argument given in Section 3 that the parts of T containing vec f‘ can be
ignored since they will be multiplied by zero in (13). Thus we fix Cov(vccl‘ [?.xg,)f
Cov(vec I, BI), Var(vec M, and Cov(vech ﬁee, vec I‘) to zero. Recall that BO, B, and ¥
are estimators obtained in the first stage of the 2SMM procedure when the measurement
model is fitted. Standard SEM software packages will output the estimate for the
asymptotic covariance matrix of these measurement model estimators (e.g., the
OUTEST data set in SAS CALIS). This output is very useful since it will immediately
give us the upper 2 X 2 block of T. Note also that £ ... can be written as a function of [30,
B, and ¥, thus we can obtain the covariances involving fce by incorporating the delta
method. We will use the following as the estimator T

1 0 o (1 o o avec:hﬁw\
0 1 0 By W |
t=| o o 0 Var| vec; |[0 1 0 ,aw'f:hg@
- dvech ﬁce dvech ﬁ‘ee dvech f:ce diag ¥
I d(vec,y d(diag ¥)’

Now we are left with determining the derivatives of £ ., with respect to Bo, \féc f:I1 and
diag ¥. The formula for ﬁee given in (7) can be rewritten as
Pee= ¥, — Vi, + Bl‘i’zzﬂl)m B, ¥,

where ‘1'22 is the & x % block of ¥ corresponding to the last & observations z dt‘:ﬁned in
(2 and ¥y, is the (p —k)x(p — k) block of ¥ corresponding to the first p — k
observations z defined in (2). First we note that % ee dOEs not depend on 90, 80

dvech P e

IBs

Define £} = (‘if“ + Bl\i'zzﬂl)”l and label the columns of [31 by B, = (ﬁ
Note that the derivauves of )3 involve the derivative& of ﬁ "I‘he d&rivf

= Ok + 1/21%(p ~ k)

com:amlng aIl zeros exccpt for the Ccz b)th element Which is set equal to'1
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be the (7, j)th element of ¥, ¥,,, be the (¢, €)th element of ¥, and B, ¢, be the
(f,€)th element of B;, wherej=1,...,p—kand £ = 1,...,k. Then we have

af: = E (p—-RYX(p - é)
8‘1’11_, 4
oLy
=b,b;,
¥y "
oLy = (B, EIXP-® (P-RxX1g §
— = (b¢Ey; +Ej; ) ¥az¢,
IBiyey
and thus,
0L .. -
< = ¥y B ER B TYXPRES 1131‘1’22’
a‘i'
af: ""‘Ek ___E/aka l‘i, “"i’ Blﬁ IB Ekxk
g, = Eee e By 22 22 1
22¢
+ Bl En bebi Ly By ¥,
oL -
e T 7Y% Ekxm Df e By — FuB B IE(‘B Riod 7%%:
MBigse)

A o L 1% o s Jo' Oy o] B K
-+ ‘i'ng{EvJ(ﬁeEf}‘”’ k)"*“E}f s (IR 990 juiy: JE S0

Taking the vech of each of these matrices of derivatives, we can then plug them into the
formula for T given in (19), and we are done.



