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Abstract

Structural equation mixture modeling (SEMM) has become a standard procedure in
latent variable modeling over the last two decades (Jedidi, Jagpal, and DeSarbo 1997b;
Muthén and Shedden 1999; Muthén 2001, 2004; Muthén and Asparouhov 2009). SEMM
was proposed as a technique for the approximation of nonlinear latent variable relation-
ships by finite mixtures of linear relationships (Bauer 2005, 2007; Bauer, Baldasaro, and
Gottfredson 2012). In addition to this semiparametric approach to nonlinear latent vari-
able modeling, there are numerous parametric nonlinear approaches for normally dis-
tributed variables (e.g., LMS in Mplus; Klein and Moosbrugger 2000). Recently, an
additional semiparametric nonlinear structural equation mixture modeling (NSEMM) ap-
proach was proposed by Kelava, Nagengast, and Brandt (2014) that is capable of dealing
with nonnormal predictors. In the nlsem package presented here, the SEMM, two distri-
bution analytic (QML and LMS) and NSEMM approaches can be specified and estimated.
We provide examples of how to use the package in the context of nonlinear latent variable
modeling.

Keywords: interaction effect, quadratic effect, nonlinear effect, mixture model, nonnormality,
semiparametric, latent variables, R.

1. Introduction

The analysis of nonlinear relationships between latent variables in the structural equation
modeling (SEM) framework has been conducted primarily with two different classes of mod-
els. The first class of models consists of parametric SEMs that use latent product terms
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to analyze specific types of nonlinear relationships, such as interaction or quadratic effects
(for an overview, see Kelava, Werner, Schermelleh-Engel, Moosbrugger, Zapf, Ma, Cham,
Aiken, and West 2011; Marsh, Wen, and Hau 2004, 2006; Moulder and Algina 2002). For the
purpose of assessing these parametric nonlinear effects, a variety of approaches have been de-
veloped such as the product-indicator approaches (e.g., Bollen 1995; Jaccard and Wan 1995;
Jöreskog and Yang 1996; Kelava and Brandt 2009; Kenny and Judd 1984; Little, Bovaird,
and Widaman 2006; Marsh et al. 2004, 2006; Ping 1995, 1996; Wall and Amemiya 2001),
distribution-analytic approaches (Klein and Moosbrugger 2000; Klein and Muthén 2007),
moment-based approaches (Mooijaart and Bentler 2010; Wall and Amemiya 2000, 2003), and
Bayesian approaches (Arminger and Muthén 1998; Lee 2007). For these kinds of models,
the functional relationship (e.g., quadratic) needs to be specified a priori, and the size of the
nonlinear effects can be calculated (Wen, Marsh, and Hau 2010).
The second class of models consists of semiparametric structural equation mixture models
(SEMM; Arminger and Stein 1997; Arminger, Stein, and Wittenberg 1999; Bauer 2005; Bauer
and Curran 2004; Dolan and van der Maas 1998; Jedidi, Jagpal, and DeSarbo 1997a; Jedidi
et al. 1997b; Muthén 2001; Pek, Sterba, Kok, and Bauer 2009; Pek, Losardo, and Bauer 2011).
In this approach, finite mixtures of linear SEMs are used to approximate unknown nonlinear
relationships of the latent variables. Because the functional form of their relationship is
not specified a priori in this case, the SEMM approach does not require assumptions about
this functional form. The primary scope of these kinds of models is to identify curvilinear
relationships among latent variables. Due to the semiparametric approximation of nonlinear
relationships, no effect sizes can be calculated, nor is it possible to test specific hypotheses
concerning the functional form of the relationship at present (i.e., it is not possible to infer a
specific parametric model from the curvilinearity that is extracted, but see Bauer et al. 2012,
for two approaches how to evaluate nonlinearity in the data visually).
Recently, a method was proposed that combines parametric and semiparametric models to
estimate nonlinear effects (Kelava and Nagengast 2012; Kelava and Brandt 2014; Kelava
et al. 2014). These models allow for an analysis of specific functional forms of relationships
among latent variables in the mixture modeling framework while relaxing the distributional
assumptions that are needed for the parametric models. This approach is an extension of
the semiparametric approaches (e.g., Bauer 2005; Jedidi et al. 1997b) and can therefore not
only be used to model nonlinear data in a semiparametric way but also has the additional
capability to define the functional form of the nonlinear effect and estimate its effect size. In
the following, parametric and semiparametric approaches to dealing with nonlinearity in a
SEM framework will be introduced in more detail.

1.1. Parametric approach

A structural model that includes different parametric nonlinear effects is modeled by

η = α+Bη + Γ1ξ + Γ2h(ξ) + ζ, (1)

where α is the latent intercept vector, B is a matrix of coefficients for the dependent vari-
ables, Γ1 and Γ2 are coefficient matrices that include the linear and nonlinear effects of the
independent variables, respectively, ξ is a vector of latent predictor variables, η is a latent
outcome variable vector, and ζ is a latent residual vector. The function h(·) maps the vector
ξ to a vector of product terms; it includes, for example, ξ1ξ2 for an interaction effect or ξ2
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for a quadratic effect. The measurement model is defined as

x = νx + Λxξ + δ, (2)
y = νy + Λyη + ε, (3)

with intercepts νx and νy, factor loading matrices Λx and Λy, and measurement error variable
vectors δ and ε.
An efficient maximum-likelihood (ML) estimator that fits the model in Equation 1 is the
LMS approach (Klein and Moosbrugger 2000), and an alternative quasi-ML estimator is QML
(Klein and Muthén 2007). The advantage of LMS is that it is theoretically more efficient,
while QML is more robust to distributional assumptions (Kelava et al. 2011). Furthermore,
QML is considerably less computationally intensive than LMS. However, both approaches
assume that the latent variables ξ as well as the residual variables ζ, δ, ε are multivariate
normally distributed. If this is not the case, different approaches may be needed.

1.2. Semiparametric approach

The SEMM approach is defined as a traditional linear SEM with latent classes (indicated by
the subscript c)

ηc = αc +Bcηc + Γ1,cξc + ζc. (4)

The latent classes are modeled as normal mixtures with class-specific expected values (µc)
and covariance matrices (Σc) for the observed variable vector (x,y|c) within each class. The
SEMM approach does not require the assumption of normally distributed latent variables,
but allows for flexible approximations of nonnormal distributions. In a direct application of
the model, the latent classes are interpreted as subgroups with class-specific linear relation-
ships (Dolan and van der Maas 1998; Titterington, Smith, and Makov 1985). In an indirect
application, the model can be used to approximate curvilinear relationships by means of
a weighted average of the linear effects across classes (Bauer 2005; Bauer and Curran 2004;
Dolan and van der Maas 1998; Pek et al. 2011, 2009). Thus, the SEMM approach can be used
for predicting nonnormal latent dependent variables when obtaining an explicit parametric
formulation of the functional relationship is not of primary interest.
An integration of parametric and semiparametric approaches that allows for the explicit
formulation of nonlinear relations and simultaneously accounts for nonnormality of the data
with semiparametric mixture models is called NSEMM (nonlinear structural equation mixture
models; Kelava et al. 2014). It extends Equation 1 by adding a latent class framework
(indicated by the subscript c)

ηc = αc +Bcηc + Γ1,cξc + Γ2,chc(ξc) + ζc. (5)

The model can be applied in two different ways. First, it can be used to identify latent
classes within a heterogeneous population with class-specific nonlinear relationships. In
this kind of direct application, the mixture components are interpreted as representing dis-
tinct subpopulations. Second, when the regression models are constrained across classes
(αc = α,Bc = B,Γ1,c = Γ1,Γ2,c = Γ2, and hc(·) = h(·)), the model can be used to ap-
proximate nonnormal distributions per se, without assuming meaningful distinct subgroups
in a population (McLachlan and Peel 2000). This indirect application has the advantage of
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Software PI approaches QML LMS SEMM NSEMM 2SMM MM
AMOS X – – – – – –
EQS X – – – – – X
LISREL X – – – – – –
Mplus X – X X X – –
R: lavaan/OpenMx/sem X – – – – – –
R: nlsem X X X X X – –
SAS X – – – – X –
Experimental – – – – – X1 X2

Table 1: Overview of latent variable software capable of estimating nonlinear latent structural
relationships. Note: PI approaches = product-indicator approaches, ‘X’ = available, ‘–’ =
not available, 1 = experimental syntax in R, 2 = experimental syntax in MATLAB.

providing a semiparametric alternative to parametric nonlinear models when distributional
assumptions for traditional SEMs are violated and when a straightforward interpretation of
the nonlinear effects is still possible.
The remainder of this article is organized as follows: In the next section, we will give a brief
overview of current latent variable modeling software with a particular focus on its capability
to estimate nonlinear structural equation models. Then, we will introduce the R (R Core
Team 2017) package nlsem (Umbach, Naumann, Hoppe, and Brandt 2017) for fitting non-
linear structural equation (mixture) models. nlsem can model nonlinear structural equation
(mixture) models as depicted in Equations 1, 4, and 5 with the (current) limitation that η is
a scalar for Equations 1 and 5. The functionality of the package will then be demonstrated
using two empirical examples. Package nlsem is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=nlsem.

2. Other software packages for fitting nonlinear SEMs
As can be seen in Table 1, there are several software packages that are capable of estimat-
ing nonlinear structural equation models. Within the class of parametric nonlinear models,
traditional product-indicator approaches (Ping 1995; Marsh et al. 2004; Kelava and Brandt
2009) that rely on the inclusion of (manifest) product-indicator variables to identify the latent
product terms can be feasibly implemented in standard SEM software packages such as LIS-
REL (Jöreskog, Sörbom, Toit, and Toit 1999), EQS (Bentler 2000–2008), Mplus (Muthén and
Muthén 1998–2012), AMOS (Arbuckle 2011), and in the R packages lavaan (Rosseel 2012),
sem (Fox 2006), and OpenMx (Boker, Neale, Maes, Wilde, Spiegel, Brick, Spies, Estabrook,
Kenny, Bates, Mehta, and Fox 2011). When more than a single nonlinear effect is estimated
simultaneously or when variables are nonnormally distributed, a detailed specification of the
residual covariance matrix is necessary (see Kelava and Brandt 2009).
Distribution analytic approaches have been implemented for LMS (Klein and Moosbrugger
2000) in Mplus (using the XWITH command) and for QML (Klein and Muthén 2007) in a
standalone software package.
In the class of moment-based approaches, the method of moments approach (MM; Mooijaart
and Bentler 2010) has been implemented in EQS (Mooijaart and Bentler 2010) and MATLAB
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(MATLAB 2010; Brandt, Kelava, and Klein 2014). For the two-stage method of moments
(2SMM; Wall and Amemiya 2000, 2003), syntax is available for an interaction or a quadratic
model in SAS (SAS Institute Inc. 2003; Wall and Amemiya 2003) and for a model that includes
both interaction and quadratic effects in an experimental R syntax (Brandt et al. 2014).
Bayesian approaches (Arminger and Stein 1997; Feng, Wang, Wang, and Song 2015; Kelava
and Nagengast 2012; Kelava et al. 2014; Lee 2007; Song and Lu 2010) can be feasibly imple-
mented in Bayesian software packages like WinBUGS (Lunn, Thomas, Best, and Spiegelhalter
2000) or OpenBUGS (Lunn, Spiegelhalter, Thomas, and Best 2009).
Semiparametric SEMMs can be estimated within a ML framework in Mplus or within a
Bayesian framework in WinBUGS or OpenBUGS. The nonlinear extensions of the SEMM
framework (Kelava and Nagengast 2012; Kelava and Brandt 2014; Kelava et al. 2014) can
also be specified in these software packages.
As can be seen in the brief description above, there is a wide variety of other software packages
that can be used to estimate nonlinear SEMs. Although, the one with the most capabilities is
probably Mplus, R packages such as lavaan and OpenMx are growing rapidly. Not only can
R be regarded as state-of-the-art statistical software but it also has the additional features of
great data manipulation capabilities and graphical facilities. It is therefore desirable to make
the full functionality for fitting linear as well as nonlinear SEMs available in R. The R package
nlsem introduced in this paper provides a wide range of methods dealing with nonlinearity
and nonnormality in the SEM framework. It has an easy-to-use user interface and aims to
complement R packages with greater functionality such as lavaan.

3. Implementation in R
nlsem is a straightforward implementation of the equations provided in Klein and Moos-
brugger (2000, LMS), Klein and Muthén (2007, QML), Jedidi et al. (1997b, SEMM), and
Kelava et al. (2014, NSEMM). This section will describe these approaches for fitting non-
linear structural equation models in detail and demonstrate how LMS, QML, SEMM, and
NSEMM are implemented. In each of these papers – with the exception of the QML approach
– an expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) is used
for parameter estimation. The EM algorithm is a common tool to estimate parameters for
finite mixture models (McLachlan and Peel 2000). As a first step, posterior probabilities for
the rth iteration

P(r)(c = c|xi, yi) = wcfc(xi, yi|µc,Σc)
f(xi, yi)

(6)

are computed with a set of starting parameters. f(xi, yi) denotes the joint density of a mix-
ture distribution of multivariate normal distributions fc(xi, yi|µc,Σc) of the indicator vari-
ables x (for the exogenous latent variables) and y (for the endogenous latent variables), with
i = 1, . . . , N , where N is the number of observations and c = 1, . . . , C indexes the mixture
components. For SEMMs this is equivalent to the latent class. The weights of the normal
mixture components are denoted by wc. These posterior probabilities are understood as a
function of the latent class c, indicated by the notation c = c. Hence, posterior probabili-
ties for each observation and each mixing proportion are computed. As a second step, the
loglikelihood for N observations and C mixture components is maximized for the parameters
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provided in µc and Σc

θ(r) = arg max
θ

{
N∑
i=1

C∑
c=1

P(r)(c = c|xi, yi) log fc(xi, yi|µc,Σc)
}
, (7)

where fc are normal distributions with (xi, yi|c) ∼ N(µc,Σc).
In the next iteration of the EM algorithm, the parameters estimated in the second step are
used to compute new posterior probabilities P(r+1) (see Equation 6). This is repeated until
some criterion is reached. Usually, this means that either the loglikelihood or the parameters
do not change more than some defined ε. In the nlsem package, the convergence criterion is
based on the changes in the loglikelihood (and defaults to convergence = 0.01).

3.1. Model specification for LMS and QML

Klein and Moosbrugger’s LMS approach is a distribution analytic approach that approximates
the complex nonnormal multivariate density function f(xi, yi) of the indicator variables x and
y (see Equation 15 in Klein and Moosbrugger 2000) with the Gauss-Hermite quadrature

f(xi, yi) ≈
M∑
j=1

wjπ
−k/2ϕ

(
xi, yi|µ(21/2νj),Σ(21/2νj)

)
, (8)

where wjπ−k/2 are the weights and µ(21/2νj) and Σ(21/2νj) are the expected value and covari-
ance matrix for the mixture components (see Equation 29 in Klein and Moosbrugger 2000).
M is the number of node points used by the Gauss-Hermite quadrature.1 In this approach,
the mixture components are not interpreted as subgroups, and the mixture weights are not es-
timated but provided by the Gauss-Hermite quadrature. The parameters are then estimated
via an EM algorithm as described above.
The QML approach by Klein and Muthén (2007) can also be classified as a distribution
analytic approach. In contrast to the LMS approach, the nonnormal density function is
approximated by a product of a multivariate normal density function f2 and a univariate
conditionally normal density function f∗3 (see Equation 4 in Klein and Muthén 2007)

f(xi, yi) = f2(xi,Ryi)f3(y1i|xi,Ryi) ≈ f2(xi,Ryi)f∗3 (y1i|xi,Ryi) =: f∗(xi, yi), (9)

with conditional mean E[y1i|xi,Ryi] and variance VAR(y1i|xi,Ryi). Here, the nonnormal
function f3 is substituted by the normal density f∗3 which both have the same conditional ex-
pectation and variance. Parameters are now estimated by maximizing the quasi-loglikelihood
function for the density f∗(xi, yi) by means of standard numerical methods. For QML, the
nonnormality of the observed indicator vector y is transformed using the matrix R such that
only the first indicator (y1) remains nonnormally distributed and all other indicator variables
Ry are normally distributed (for details see the Appendix in Klein and Muthén 2007).
A model with interaction effects can be fitted in nlsem via the function specify_sem().

R> library("nlsem")

1The chosen value for M should depend on the number of nonlinear effects in the model. Klein and
Moosbrugger (2000) suggest M = 16 for one interaction effect, but M = 24 for two interaction effects.
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R> model1 <- specify_sem(num.x = 6, num.y = 3, num.xi = 2, num.eta = 1,
+ xi = "x1-x3, x4-x6", eta = "y1-y3", num.classes = 1,
+ interaction = "xi1:xi2")
R> class(model1)

[1] "singleClass"

Assignment of x’s to ξ’s is done with the argument xi. x’s specified in the first slot before
the comma measure ξ1, while x’s in the second slot measure ξ2 and so on. The same applies
to the assignment of y’s to η’s in the argument eta. The function specify_sem() returns
an object of class ‘singleClass’ when no latent classes are specified (meaning num.classes
= 1). Models of class ‘singleClass’ can be fitted by using either the EM algorithm as
introduced by Klein and Moosbrugger (2000, with function em()) or the QML method by
Klein and Muthén (2007, with function qml()).
It should be pointed out that Klein and Moosbrugger (2000) and Klein and Muthén (2007)
use a specific notation for the nonlinear effects with Γ2h(ξ) = ξ>Ωξ. Matrix Ω includes the
quadratic effects (e.g., ω11, ω22) on the diagonal and the interaction effects (e.g., ω12) above
the diagonal. This notation is used by specify_sem() and limits the number of dependent
latent variables to 1. This will be addressed in future releases. For more than one η, interac-
tions need to be specified as follows: interaction = "eta1~xi1:xi2, eta2~xi1:xi1" with
specify_sem() creating an array with a matrix Ω for each endogenous variable as a slice.

3.2. Model specification for SEMM

The semiparametric approach by Jedidi et al. (1997b) can also be fitted in nlsem. The class-
conditional multivariate density function of x and y is given by (cf. Equation 7 in Jedidi et al.
1997b)

fc(xi, yi) = (2π)−( p+q
2 )|Σc|−1/2 exp

{
−1

2
(
(xi, yi)> − µc

)>
Σ−1

(
(xi, yi)> − µc

)}
, (10)

with class-specific µc and Σc; p and q represent the number of indicators for the endogenous
and exogenous latent variables, respectively. Then, the unconditional distribution of x and y
is given by

f(xi, yi) =
C∑
c=1

wcfc(xi, yi), (11)

with class weights wc. As in Klein and Moosbrugger’s LMS approach, the parameters in
Jedidi et al.’s SEMM approach are estimated via an EM algorithm. Again, a model with two
latent classes can be specified with specify_sem(); by specifying interaction = "none" and
num.classes = 2 (or more than 2) a model of class ‘semm’ is created, which will be fitted
using the corresponding EM algorithm. Indirect and direct approaches as those mentioned
above can be specified by setting the argument constraints = c("indirect", "direct1",
"direct2"). For the indirect option, all parameters of Equations 2, 3, and 4 are constrained
to be equal except for the mean vector and covariance matrix of the predictor variables. For
direct1 the parameters of all latent classes are freely estimated, while for direct2 only the
parameters for Equations 2 and 3 are constrained to be equal, thus allowing one to assume
that the measurement model is identical for all classes (strict invariance; Meredith 1993).



8 nlsem: Fitting Nonlinear Structural Equation Models in R

R> model2 <- specify_sem(num.x = 3, num.y = 8, num.xi = 1, num.eta = 2,
+ xi = "x1-x3", eta = "y1-y4, y5-y8",
+ rel.lat = "eta1~xi1, eta2~xi1, eta2~eta1", num.classes = 2,
+ constraints = "direct1")
R> class(model2)

[1] "semm"

3.3. Model specification for NSEMM

The NSEMM approach introduced by Kelava et al. (2014) can be understood as a combina-
tion of the approaches introduced above. The joint density function for x and y is defined
identically to Equation 11, but fc(·) for each class corresponds to Equation 8 (or alternatively
to Equation 9). In our implementation the parameters are first estimated by applying the
LMS or the QML procedure within each latent class. These parameters are subsequently
entered into the E-step of the EM algorithm for the SEMM approach in order to obtain class
weights. Then, the M-step of the SEMM approach is applied and the likelihood is optimized.
The resulting parameters are entered in the fitting algorithm for LMS or QML, respectively,
for each latent class, and so on. A model with interaction effects and latent classes of class
‘nsemm’ can be specified as follows.

R> model3 <- specify_sem(num.x = 6, num.y = 3, num.xi = 2, num.eta = 1,
+ xi = "x1-x3, x4-x6", eta = "y1-y3", num.classes = 2,
+ interaction = "xi1:xi2", rel.lat = "eta1~xi1+xi2",
+ constraints = "indirect")
R> class(model3)

[1] "nsemm"

3.4. Fitting the models

specify_sem() sets default parameter constraints for model identification. For most models,
no additional constraints need to be considered. However, identifiability of a model is not
automatically checked. For complex models, this needs to be taken into consideration by the
user. The default constraints set by specify_sem() are:

• First factor loading for each ξ and η is fixed to 1.

• First intercept for each ξ and η is fixed to 0.

• Θδ and Θε are diagonal matrices.

Additionally, all constraints can be adjusted manually. The easiest way to do this is to use
functions as.data.frame() and create_sem(). The following shows an example of how to
manually constrain all factor loadings for the indicators of ξ1 and ξ2 to 1. First, the model
is specified and then transformed to a data frame with as.data.frame(), where the first
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column holds the parameter labels, the second column holds the values for class1 and so on.
NA denotes that the parameter will be freely estimated. Second, the values for the parameters
can be adjusted manually by changing the values in the respective column. Then, the function
create_sem() can be used to create a new model with custom constraints.

R> model <- specify_sem(num.x = 6, num.y = 3, num.xi = 2, num.eta = 1,
+ xi = "x1-x3, x4-x6", eta = "y1-y3", interaction = "xi1:xi2")
R> specs <- as.data.frame(model)
R> head(specs)

label class1
1 Lambda.x1 1
2 Lambda.x2 NA
3 Lambda.x3 NA
4 Lambda.x4 0
5 Lambda.x5 0
6 Lambda.x6 0

R> specs[specs$label %in% paste0("Lambda.x", c(2, 3, 11, 12)), "class1"] <- 1
R> model.custom <- create_sem(specs)

Each of the models specified above can be fitted with the function em(). Depending on the
model class, the EM algorithms as introduced in Klein and Moosbrugger (2000) and Jedidi
et al. (1997b) or a combination of both for the NSEMM model will be used. The single-class
model can additionally be fitted using the function qml(). Below, we will illustrate how the
em() function can be used with a standard example from the SEM literature (Bollen 1989).
The code fits the SEMM with two latent classes introduced above (model2).

R> data("PoliticalDemocracy", package = "lavaan")
R> dat <- as.matrix(PoliticalDemocracy[, c(9:11, 1:8)])
R> set.seed(911)
R> pars.start <- runif(count_free_parameters(model2))
R> res <- em(model2, dat, pars.start, convergence = 0.1, max.iter = 200)
R> summary(res)
R> plot(res)

The object created with em() gives back the parameter estimates, the number of iterations,
the final loglikelihood as well as the loglikelihoods obtained in each iteration step of the EM
algorithm. It contains an approximation of the observed information and some information
pertaining to the fitted model such as how many indicators and latent variables were specified.
On this object the usual extractor functions like summary(), coef(), AIC(), BIC(), and
logLik() can be used. For nested models of class ‘singleClass’ fitted with em(), the function
anova() performs a likelihood ratio test. There is also a plot method for objects of class
‘emEst’ that plots the loglikelihoods for each iteration of the EM algorithm. This allows
for a visual inspection of the convergence of the algorithm. In order to simulate data from
a certain model, one can use the function simulate(), which takes a model specified with
specify_sem() and an argument parameters with a vector of true parameter values.
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Iterations Time (sec)
Mean SD Mean SD Converged

QML 111.071 6.944 15.611 1.749 14
LMS 16.700 4.555 26.491 5.678 20
SEMM 33.214 11.450 22.170 6.092 14
NSEMM (LMS) 28.700 14.217 136.841 66.787 20
NSEMM (QML) 38.800 10.414 35.588 9.467 15

Table 2: Some information on computational resources needed to fit the models implemented
in nlsem. For each model, models were fitted 20 times with varying starting parameters.
Mean values are shown for number of iterations and running time.

4. Computational details
nlsem depends on the R packages gaussquad (Novomestky 2013) and mvtnorm (Genz and
Bretz 2009; Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn 2017). Both are needed for
parameter estimation within the EM algorithms. In order to obtain the observed information
necessary to estimate the standard errors for parameter estimates, the function fdHess() is
imported from nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team 2017).
Parameters in the M-step of the EM algorithm can be estimated with two different optimizers.
Estimation of variances is bound so that negative variances cannot occur. Therefore, the user
can choose between nlminb() and optim() (with method = "L-BFGS-B"), both of which
allow for lower (and upper) bounds during parameter estimation. Choosing the optimizer
can be done by setting the argument optimizer = c("nlminb", "optim").
As mentioned above, nlsem is a straightforward implementation of the equations provided in
Klein and Moosbrugger (2000), Klein and Muthén (2007), Jedidi et al. (1997b), and Kelava
et al. (2014) directly in R. These equations are given in matrix notation, which greatly facil-
itates implementation. However, SEMs generally come with a great number of parameters
that need to be estimated. When we apply an approach with two or three latent classes, the
number of parameters doubles and triples, which suggests that the estimation of parameters
in nlsem can be slow, especially for complex models.
Table 2 shows details on running times for what is sometimes referred to as the “elementary
interaction model” (Klein and Moosbrugger 2000)

η = α+ γ1ξ1 + γ2ξ2 + ω12ξ1ξ2 + ζ (12)

fitted with LMS and QML. The NSEMM (with LMS or QML within the latent classes and
indirect approach) was fitted to the following model

ηc = α+ γ1ξ1,c + γ2ξ2,c + ω12ξ1,cξ2,c + ζ, (13)

with c = 1, 2; for the SEMM the interaction term was omitted and parameters were fitted
with a direct approach

ηc = αc + γ1,cξ1,c + γ2,cξ2,c + ζc. (14)

The models were fitted 20 times to data simulated from the model presented in Equation 12
for 400 observations. The convergence criterion value was set to 1. The results show that
choosing the starting parameters influences not only how long the models need to converge but
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also whether they converge. This is a common problem for multidimensional optimization
(Jedidi et al. 1997b). The LMS approach is most robust to different starting parameters
and almost always converges. In our example, all NSEMM models with LMS converged as
well. The EM algorithm is known to converge slowly, so setting a laxer convergence criterion
greatly speeds up the model fitting. This particular approach could be appropriate when
several models are fitted and compared to each other. For a final parameter estimation for
the chosen model, convergence should be set to a smaller value (e.g., its default convergence
= 0.01).
For more complex models, running time increases considerably. The results in Table 2 show
that QML is indeed much faster than LMS. Since NSEMM uses finite mixtures of the dis-
tribution analytic approaches to calculate latent interaction effects, QML can also speed up
the estimation for these models considerably. The user can decide which approach to use by
setting qml = TRUE when using em() for fitting a model of class ‘nsemm’. The NSEMM model
with LMS takes the longest to converge. Setting qml = TRUE for the NSEMM yields faster
results but is more sensitive to the choice of starting parameters.
The next section demonstrates the functionality of nlsem using two data examples from
education research. Data analyses for the four possible approaches implemented in nlsem
(QML, LMS, SEMM, and NSEMM) were conducted.

5. Empirical examples with nlsem

5.1. Predictors of career aspirations in science

The data stem from the large-scale assessment study Program for International Student As-
sessment 2006 (PISA; Organisation for Economic Co-Operation and Development 2009) in
which 15-year-old students’ reading, mathematics and science literacy is assessed using na-
tionally representative samples in 3-year cycles. In this example, data from the student back-
ground questionnaire for PISA 2006 were used. In line with Nagengast, Marsh, Scalas, Xu,
Hau, and Trautwein (2011) and Kelava et al. (2014), we tested the relation between the fol-
lowing variables: career aspirations in science (η, 4 items), enjoyment of science (ξ1, 5 items),
and academic self-concept in science (ξ2, 6 items)2. The data stem from the Jordan sample of
PISA 2006. Responses to the questionnaire items used as indicators for academic self-concept
and enjoyment were nonnormally distributed. Only data of students with complete responses
to all 15 items (N = 6, 038) were considered. The analyses are not representative but instead
serve as an illustration of nonnormal latent predictor distributions on parameter estimates in
nonlinear SEMs.
First, a model with one interaction effect was fitted to the data applying the LMS approach

CAREER = α+ γ1ENJ + γ2SC + ω11ENJ 2 + ω12ENJ · SC + ω22SC 2 + ζ, (15)

with CAREER being career aspirations in science, ENJ enjoyment of science, and SC aca-
demic self-concept in science. As can be seen in Table 3 (first panel), enjoyment (γ1 =
.523, p < .001) and self-concept (γ2 = .456, p < .001) showed effects on career as well as small

2Career aspirations: items ST29Q01–ST29Q04; enjoyment of science: items ST16Q01–ST16Q05; self-
concept in science: items ST37Q01–ST37Q06.



12 nlsem: Fitting Nonlinear Structural Equation Models in R

Estimate Std. Error z value P(> |z|)
LMS α −0.009 0.011 −0.844 0.398

γ1 0.523 0.017 31.144 < 0.001
γ2 0.456 0.019 24.203 < 0.001
ω11 0.033 0.013 2.542 0.011
ω12 −0.062 0.023 −2.683 0.007
ω22 0.014 0.015 0.900 0.368

SEMM P(c = 1) 0.396
α1 −0.153 0.025 −6.049 < 0.001
γ1,1 0.399 0.029 13.889 < 0.001
γ2,1 0.335 0.029 11.607 < 0.001
P(c = 2) 0.604
α2 0.093 0.012 7.652 < 0.001
γ1,2 0.595 0.023 26.421 < 0.001
γ2,2 0.241 0.021 11.701 < 0.001

NSEMM α 0.000 0.003 0.133 0.894
γ1 0.521 0.003 195.710 < 0.001
γ2 0.442 0.003 143.159 < 0.001
ω11 0.014 0.003 4.793 < 0.001
ω12 −0.008 0.003 −2.774 0.006
ω22 −0.019 0.005 −3.702 < 0.001

Table 3: Parameter estimates for example analyses. Standard errors for the NSEMM model
were bootstrapped.

but significant interaction and quadratic effects (ω12 = −.062, p = .007, ω11 = .033, p = .011,
ω22 = .014, p = .368).
Since the indicators for the predictor variables were nonnormal, assumptions to apply LMS
were violated. Therefore, we fitted a SEMM with two latent classes (c = 1, 2) to the data

CAREERc = αc + γ1,cENJ c + γ2,cSC c + ζc. (16)

Results are shown in Table 3 (second panel). Again, we found that enjoyment and self-
concept both had an effect on career aspiration (see Figure 1). Additionally, the SEMM
approach revealed two groups with different sets of significant parameters, thus addressing
the nonnormality and nonlinearity in the data.
Finally, we fitted a model with two latent classes, one interaction effect, and two quadratic
effects to the data thus applying the NSEMM approach. We used the indirect approach,
meaning that parameteres are constrained to be equal across classes

CAREERc = α+ γ1ENJ c + γ2SC c + ω11ENJ 2
c + ω12ENJ c · SC c + ω22SC 2

c + ζ. (17)

Results in Table 3 (third panel) show significant main effects for the indirect NSEMM ap-
proach (γ1 = .521, p < .001, γ2 = .442, p < .001). Also the interaction and quadratic effects
are significant (ω12 = −.008, p = .006, ω11 = .014, p < .001, ω22 = −.019, p < .001). Due to
the manner in which the EM algorithm for NSEMM models is implemented, it is not possible
to approximate the observed information based on the likelihood function. Therefore, stan-
dard errors cannot be obtained by taking the inverse of the observed information. However,
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Figure 1: Scatterplots for latent predictors. Both self-concept (SC ) and enjoyment of science
(ENJ ) influence career aspirations in science (CAREER). Result patterns look different for
latent groups extracted by SEMM.

Estimate Std. Error z value P(> |z|)
α 0.305 0.145 2.094 0.036
γ1 −0.078 0.076 −1.020 0.308
γ2 0.238 0.076 3.147 0.002
ω11 0.023 0.015 1.580 0.114
ω12 0.041 0.023 1.788 0.074
ω22 −0.048 0.016 −3.090 0.002

Table 4: Parameter estimates for the second example analysis. Parameters were estimated
with QML.

standard errors can easily be bootstrapped with the functions provided in nlsem (Efron 1981);
see Table 3 for the standard errors obtained with nonparametric bootstrapping. Please note
that this, though simple, can be time-consuming.

5.2. Attitude towards reading, online activities, and reading skill

The second example is based on data from the Program for International Student Assess-
ment 2009 (PISA; Organisation for Economic Co-Operation and Development 2010), which
is publicly available under http://pisa2009.acer.edu.au/downloads.php. The sample is
a subsample of N = 1, 069 Australian students who took part in a reading test. Missing
values were excluded from the analysis. Students’ attitude towards reading (Att) and their
reported online activities (Online; i.e., read emails or chat online) were selected as predictors
of reading skill (Read).
Between 7 and 11 items were grouped together to make up three indicators for each latent
variable (i.e., item parcels), which resulted in three indicators for each latent variable.3 Again,
this example merely serves to illustrate the use of the package and was chosen for didactic

3Reading skill: average of items R06, R102, R219, R220, R414, R447, R452, and R458. Attitude towards
reading: average of items ST24Q01–ST24Q11. Online activities: average of items ST26Q01–ST26Q07.

http://pisa2009.acer.edu.au/downloads.php
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Figure 2: Predicted plane for estimated parameters shown in Table 4 showing how attitude
towards reading (Att) and online activities (Online) predict reading skill (Read).

purposes only. The structural model was specified as

Read = α+ γ1Att + γ2Online + ω11Att2 + ω12Att ·Online + ω22Online2 + ζ, (18)

with a normally distributed residual ζ ∼ N(0, ψ) and predictors (Att,Online)> ∼ N(τ ,Φ).
Parameters were estimated using QML. The results depicted in Table 4 show that read-
ing attitude and online activities influence reading skill nonlinearly (ω12 = .041, p = .074,
ω22 = −.048, p = .002). Figure 2 shows that reading skill is highest when online activities
are at a medium level. For high and low amounts of online activities reading skill is low
when attitude towards reading is also low. Additionally, how much attitude towards reading
increases reading skill seems to depend on the level of online activities: for higher online
activities reading attitude has a higher influence.

6. Conclusion and outlook
This paper introduces the R package nlsem which provides an open source implementation
to fit nonlinear SEMs and structural equation mixture models with an easy-to-use interface.
The availability of several kinds of nonlinear approaches, such as LMS, QML, SEMM and
NSEMM, to fit nonlinear SEMs in one package greatly facilitates data analysis for nonlinear
data within the SEM framework and allows for an easy comparison of results for different
approaches.
The user can choose between direct and indirect approaches for structural equation mixture
models, using these approaches to model nonlinearity, nonnormality, or both. Two direct
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approaches are implemented where separate sets of coefficients are estimated for the prespec-
ified latent classes. For the indirect approach, parameters are constrained to be equal for all
latent classes, thereby modeling nonnormality in the data without strong assumptions about
the interpretability of latent classes.
So far, LMS and QML have only been theoretically developed for one η (Klein and Moos-
brugger 2000; Klein and Muthén 2007). The equations and algorithms will be expanded in
future relaeses so that more than one endogenous variable can be included in the model. The
model specification can already handle the specification of interaction effects between latent
predictors that influence different endogenous variables, meaning that the changes will expand
the functionality of the package without changing the overall structure of the package.
Additionally, since standardized coefficients are often calculated in SEMs, a function (or argu-
ment) for parameter standardization will be added to nlsem in the future (Brandt, Umbach,
and Kelava 2015). This standardization will allow for the comparison of linear and nonlinear
effects across studies and thus facilitate meta studies.
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