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In the last decades there has been an increasing interest in nonlinear latent variable models. Since

the seminal paper of Kenny and Judd, several methods have been proposed for dealing with

these kinds of models. This article introduces an alternative approach. The methodology involves

fitting some third-order moments in addition to the means and covariances. This article discusses

how the model equations can be formulated and how several standard tests, like the model fit

and Lagrange multiplier tests, can be performed. The new method compares favorably with the

maximum likelihood method in several studies and can provide evidence of interaction that earlier

approaches might ignore.

In this article we deal with nonnormally distributed observed variables in latent variable

structural equation models. As reviewed by Schumacker and Marcoulides (1998) and more

recently by Dimitruk, Schermelleh-Engel, Kelava, and Moosbrugger (2007) and Coenders,

Batista-Foguet, and Saris (2008), it can be hypothesized that this nonnormality arises from a

nonlinear relationship between the latent variables. In particular, such a nonlinear relationship

might reflect the existence of interaction or quadratic factors, as proposed in the seminal

paper of Kenny and Judd (1984). Kenny and Judd pioneered the use of product indicators to

identify the model and estimate its parameters. An extension of this approach was developed by

Jöreskog and Yang (1996) and others. A key issue is the choice of the product indicators. Marsh,

Wen, and Hau (2004) studied this issue via Monte Carlo and made some recommendations.

These methods assume that the observed indicators, except the product indicators, are normally

distributed. The currently more widely accepted maximum likelihood (ML) method involves
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9555, 2300 RB Leiden, The Netherlands. E-mail: Mooijaart@fsw.leidenuniv.nl
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358 MOOIJAART AND BENTLER

the same assumption. Although not all observed variables are normally distributed, a proper

likelihood function can be defined when the nonnormality arises as a function of normal

factor(s). The unattractive part of this approach is that the likelihood function involves a

multivariate integral that does not have an explicit form. There are several ways to tackle

this problem (see Cudeck, Harring, & du Toit, 2009; Klein, 2007; Klein & Moosbrugger,

2000; Lee & Zhu, 2002; as well as quasi-likelihood methods making fewer assumptions, Klein

& Muthén, 2007). Further approaches that have been developed include Bayesian methods

(Arminger & Muthén, 1998; Lee, 2007; Lee, Song, & Tang, 2007) and two-stage instrumental

variables as borrowed from econometrics (Bollen & Paxton, 1998a, 1998b). Still other methods

involve the use of sequential estimation (Ping, 1996), factor scores (Wall & Amemiya, 2003),

and mixture models applied to obtain approximations to nonlinear models (Bauer, 2005).

Many of these methods require nonstandard and sometimes difficult ways of thinking about

and implementing the model, for example, in requiring the use of nonlinear constraints on

parameters. Although setups can be simplified to minimize such constraints (Coenders et al.,

2008), the procedures are still highly specialized and technical. Such difficulties might explain

the absence of discussions on nonlinear terms in introductory structural equation modeling

(SEM) literature (e.g., Mulaik, 2009; Raykov & Marcoulides, 2006). In this article, we propose

a method that is a minor extension of standard mean and covariance structure analysis.1 Because

the methodology involves standard SEM estimation procedures, little specialized knowledge is

needed to use the method, and as usual, consistent estimates of the parameters are available

and a goodness-of-fit test is an automatic by-product. As noted earlier, the crucial point of our

method is that we fit, in addition to the usual means and covariances, a selection of third-order

moments. See also Mooijaart (1985, 2008). The goodness-of-fit test is based on the residuals

between the observed moments and the estimated moments. In addition to this overall fit test,

we develop a test that gives an indication whether postulating one or more interactions between

the latent variables might result in a significantly better fit of the model. As in standard SEM,

this test is based on the Lagrange multiplier principle. This test is important because ML can

yield incorrect conclusions on the necessity of an interaction term (Mooijaart & Satorra, 2009a,

2009b).

The first section of this article provides a formulation of the model equations. The second

section discusses estimation of the model parameters and model tests. The subsequent sections

discuss several examples for evaluating our method. This includes a study of the bias and

standard errors of the estimates. We then show how the goodness-of-fit chi-square test statistic

behaves. When a model is misspecified, we show that our new Lagrange multiplier test can

indicate which parameter has to be added to the model to result in an improved model fit.

We also evaluate the power of the test. Finally, we study our method when the indicators are

nonnormally distributed. Because in the case of normally distributed indicators the ML method

will yield the “best” estimates, we compare our results with those from the ML method as

given by Mplus (L. K. Muthén & Muthén, 1998–2007).

In this article we do not go into detail on the interpretation of interaction and quadratic

terms in latent variable SEM models. There is a lot of literature on this subject. Although most

of this literature deals with interaction models for observed variables, and in our models we

1The proposed method is implemented in an experimental version of EQS (Bentler, 2000–2008) and will be

generally available in EQS 7.
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NONLINEAR LATENT VARIABLE MODELS 359

deal with interactions of latent variables, the principles and problems involved (e.g., centering

predictors, multicollinearity, and presentation and interpretation of results) are the same, and

we refer the reader to the excellent book of Aiken and West (1991; see also Jaccard & Wan,

1996). Interpreting such effects causally, however, is a more difficult task (Hargens, 2009).

FORMULATION OF THE MODEL AND MODEL EQUATIONS

The structural equation models will be defined as in Bentler and Weeks (1980). In this approach,

the model equations can be written as

˜ D “0˜ C ”Ÿ;

where Ÿ and ˜ are the independent and dependent variables of the model and “0 and ”

are coefficient matrices. Both the independent and dependent variables can be either latent

or observed variables. The measured variables are related to the dependent and independent

variables via y D Gy˜ and x D GxŸ, where the G matrices are known selection matrices with

0 or 1 elements to select the observed from all the variables. Define now z0 D .y0 x0/, G as

a block-diagonal matrix with diagonal blocks Gy and Gx , and ¤0 D .˜0 Ÿ0/. Then we can

write

¤ D B0¤ C �Ÿ

z D G¤;

where � 0 D .”0 I/, and B0 has rows .“0 0/ and .0 0/. As a result, the measured variables

are a linear combination of independent variables

z D GB�1�Ÿ D AŸ;

where, assuming that .I � B0/ is invertible, B�1 D .I � B0/
�1. Thus the observed variables are

a linear combination of the independent variables. We deal only with latent variable models,

so the number of variables and dimensionality of z is less than that of Ÿ (see Bollen, 2002).

Interaction and quadratic factors are specified by defining some elements of vector Ÿ as

products of other elements in Ÿ. For instance, a quadratic factor could be Ÿ2
1, and an interaction

factor Ÿ1Ÿ2. In general, with any number of such factors, the vector Ÿ can be written as

Ÿ D

0

B

B

@

1

ŸM

ŸINT

ŸQUAD

1

C

C

A

; (1)

where ŸM denotes the “main” factors, ŸINT as the interaction factors, and ŸQUAD as the quadratic

factors. The element 1 in vector Ÿ is a constant, thus providing a convenient way to deal with

the means of the variables and with intercepts in regression equations. An important assumption

we make in our model formulation is that the vectors in ŸM are normally distributed with mean

zero; in the Discussion we note how this assumption can be relaxed. A consequence of this
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360 MOOIJAART AND BENTLER

assumption is that the covariances and third-order moments of the interaction and quadratic

factors can be written in terms of the covariances of the main factors.

Now, as in Bentler (1983) and Mooijaart (1985), we obtain the first-, second-, and third-order

moments

¢1 � DC

p EŒz� D AEŒŸ� D A®
1

¢2 � DC

p EŒ.z � ¢1/ ˝ .z � ¢1/� D DC

p .A ˝ A/Dr ®2

¢3 � TC

p EŒ..z � ¢1/ ˝ .z � ¢1/ ˝ .z � ¢1//� D TC

p .A ˝ A ˝ A/Tr®3:

(2)

In Equation 2, ¢1 defines the model equation for the means of the observed variables, and ¢2

and ¢3 define the model equations of the covariances and third-order moments of the observed

variables. These population moments are all expressed as a weighted combination of the means

®1, covariances ®2, and third moments ®3 of the independent variables Ÿ, for both the main

factors as well as the quadratic and interaction factors. In the preceding definitions, the vectors

¢2, ¢3, ®2, ®3 are in reduced form; that is, vectors without the duplicated and triplicated

elements. For properties of the duplication matrix Dp see Magnus and Neudecker (1988), and

for the triplication matrix Tp see Meijer (2005).

In our model setup, any type of SEM can be accommodated, not only a specialized model

form such as is required by Cudeck et al. (2009). Our only requirement is that some elements

in ®2 and ®3 are taken as functions of the covariances of the main factors that are normally

distributed. The Appendix gives some basic equations by which these functions are defined,

and provides components needed to compute asymptotic distributions.

ESTIMATION AND TESTING

In this section, we first describe the statistical methodology, and then discuss the proposed

methodology in relation to the ML method. For estimating the model parameters, we use the

well-known SEM quadratic discrepancy function

fH D f .s; ¢jH/ D .s � ¢.™//0W.s � ¢.™//; (3)

where s is the vector of means, sample covariances, and selected third-order sample moments;2

¢.™/ is the corresponding vector of model moments as a function of all free parameters on the

right side of Equation 2 placed in the vector ™, W is some weight matrix, and H is some special

model, which might be the true model or not. We make the typical large sample distributional

assumption

p
n.s � ¢/

L�! N.0; �/: (4)

2A sample third-order moment can be computed as averages of triple products of deviation scores sijk D

N �1†N
1 .zi t � zi /.zjt � zj /.zkt � zk /, where indexes i , j , and k can be the same or different. In EQS, such a

moment is designated as .Vi ; Vj ; Vk/.
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NONLINEAR LATENT VARIABLE MODELS 361

It can be shown that the covariance matrix of the estimator is given by

avar. O™/ D n�1. P¢ 0W P¢/�1 P¢ 0W�W P¢. P¢ 0W P¢/�1; (5)

where P¢ is the matrix of derivatives of ¢ with respect to the vector of parameters ™. Because

we are dealing with third-order moments as well, matrix � will contain some elements of

order 6. These elements can be quite unstable, in particular in small samples, and therefore we

proceed in practice by specifying matrix W as the identity matrix. This means that we utilize

the least squares discrepancy function. The corresponding test statistic can be written as

TLS D n.s � O¢/0. O��1 � O� �1 OP¢. OP¢ 0 O��1 OP¢/�1 OP¢ 0 O��1/.s � O¢/; (6)

where O� is a consistent estimator of � and OP¢ is the Jacobian matrix evaluated at the estimator
O™. If the model is correctly specified, TLS is central chi-square distributed, otherwise TLS

is noncentral chi-square distributed. In both cases the degrees of freedom is equal to the

total number of means, second- and third-order moments minus the number of independent

parameters. EQS also has implemented an appropriate Satorra–Bentler (1994) scaling correction

to Equation 6 and the Yuan–Bentler (1998) residual-based F test. If the model is misspecified,

and model H0 is nested within model H , the noncentrality parameter of Equation 6 is equal

to

œ.TLS jH; H0/ D n.¢H � O¢H0
/0.� �1 � ��1 OP¢H0

. OP¢ 0

H
00

��1 OP¢H0
/�1 OP¢H0

��1/.¢H � O¢H0
/; (7)

where ¢H is the vector of moments in the population, that is, under the correct model H ,

and O¢H0
the estimate of ¢H under the misspecified model. For a more detailed development,

regularity conditions, and proofs on the statistical theory underlying Equations 4 through 7,

see Browne (1984), Bentler and Dijkstra (1985), and Satorra (1989).

Suppose a model H0 has been fitted but it is unclear whether this model is a correct model or

a misspecified model. Because H0 is nested within model H , model H0 must have restrictions

on the parameter vector ™ that can be released. A test for checking whether a restriction has

to be released is the so-called Lagrange multiplier test. In particular, we are interested in

checking whether the model fit can be improved by adding an interaction or quadratic term to

the model.

If Equation 3 is minimized under some restrictions that can be written as ci.™/ D 0, for

i D 1; : : : ; r , using Lagrange multipliers it is known that first derivatives of the constrained

function imply

g C Pc0œ D 0; (8)

where vector œ is a .r � 1/ vector with Lagrange multipliers, g is the gradient of Equation 3

with respect to the parameters ™, and Pc.™/ D @c=@™0. For a more detailed discussion, Bentler

and Dijkstra (1985) and Satorra (1989). As shown in Bentler (2000–08), it follows that

Oœ D D0 P¢ 0.s � ¢. O™//; (9)
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362 MOOIJAART AND BENTLER

where D0 D .Pc�Pc0/�1 Pc� with � D . P¢ 0 P¢/�1, and the Lagrange multiplier test can be written

as

LM D n Oœ0.D0 P¢ 0� P¢D/�1 Oœ: (10)

Under the assumption that the restrictions ci .™/ D 0 are correctly specified, the Lagrange

multiplier statistic (Equation 10) is central chi-square distributed with r degrees of freedom.

This test is used primarily to test whether a set of restrictions is correctly specified or not.

A few words are in order on our methodology as compared to potential alternatives that

exist in the SEM literature. First, although we proposed using the Lagrange multiplier test

(Equation 10), another standard approach in SEM, especially with ML, is to implement a

model difference test when comparing two nested models. With our method, such a test is

immediately available by standard moment structure theory (Satorra, 1989). However, when

the variables are not normally distributed, it is unclear whether the ML difference test gives

a statistic that is chi-square distributed. Under some regularity conditions for nonnormally

distributed variables the likelihood ratio test gives a statistic that is asymptotically chi-square

distributed. However, when two models are compared where one model contains interaction

parameters and the other does not, the situation becomes more complex. The reason is that in

this latter case one of the likelihood functions is related to the normal distribution and the other

likelihood function to a nonnormal distribution. Theoretically in such a case it is unclear what

the distribution of the likelihood ratio is, in particular for nonlarge samples. Evidently this is a

topic for further research, as Cudeck et al. (2009) computed such a chi-square difference test

based on their marginal ML method.

Next consider testing the goodness-of-fit of the model. With normally distributed variables,

the sufficient statistics of the multivariate distribution are the means and the covariances.

Assuming that there always is a saturated model that fits the data perfectly (in particular a

model that has the same vector of means and covariance matrix as in the sample), a difference

test between the hypothesized and this saturated model is in fact a test whether the model fits

the data or not. However, this reasoning does not work in the case of non-normally distributed

variables, because in general then there might be no model that fits the data perfectly and so

testing against such a saturated model is impossible. As a consequence, the ML method that

could be used for the models discussed in this article will not give a statistical test to evaluate

whether a model fits the data. Cudeck et al. (2009) did not provide such a model fit test. This

limitation does not exist in our proposed method. We fit a set of moments (of the first, second,

third order) for which there always is a saturated model. Hence our model test is in fact a test

of whether the model fits the chosen moments perfectly or not. Next we turn to some studies

of the proposed methodology.

STUDY 1

In this example we reanalyze a model given by Sun and Willson (2009) and Muthén and

Asparouhov (2003). The model is a four-time point latent growth model with interaction

between “initial status” and a covariate. In this model it is assumed that the “slope” of the

growth model is determined by the initial status, the covariate, and the interaction between the

initial status and the covariate.
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NONLINEAR LATENT VARIABLE MODELS 363

The model equations are

V1 D 1F1 C 0F2 C E1

V2 D 1F1 C 1F2 C E2

V3 D 1F1 C 2F2 C E3

V4 D 1F1 C 3F2 C E4

F2 D “0 C “1F1 C “3F3 C “13F1F3 C D2

In this model variable F3 is an observed covariate, however, we treat it as a latent variable

that is equal to an observed variable (i.e., V5 D F3). As usual, the factor loadings of the V

variables on the growth curve factors F are fixed values, either 0, 1, 2, or 3.

Data are generated according to the preceding model, which is exactly equal to the one

given by Sun and Willson (2009), who give, in an appendix, the Mplus code for generating

the data. We do make a minor adjustment to the Sun and Willson setup. In their study, the

mean of their covariate, our factor F3, is not equal to zero. This means that in the interaction

term one of the factors has mean unequal to zero, which is not acceptable in our approach.

As is well known (Aiken & West, 1991, ch. 3), changing the mean of a variable involved in

an interaction changes the coefficients for the other noninteracting variables. Here, when the

mean of F3 is shifted by a certain amount, say ’, the equation for F2 is modified as

F2 D “0 C “1F1 C “3F3 C “13F1F3 C D2

D “0 C “1F1 C “3.’ C F3/ C “13F1.’ C F3/ C D2

D .“0 C ’“3/ C .“1 C ’“13/F1 C “3F3 C “13F1F3 C D2

Although the interaction coefficient is not affected, the intercept and the regression weight of

F1 are modified; that is, they are not free of the intercept of F3. In our study we shifted the

covariate such that the mean is equal to zero. The interaction effect for a covariance of .5

between the factors F1 and F3 is 4.97%.

We first analyze the data without an interaction factor by the ML method; that is, we estimate

a misspecified model. Then, because some of the variables are nonnormally distributed, we

analyze data with a third-order moment and apply the Lagrange multiplier test to get an

indication of whether there is an interaction factor or not. Finally, we add an interaction factor

to the model and estimate all the model parameters.

The estimated structural part of the misspecified model is:

F2 D :500 � :004 F1 C :049 F3 C D2

.:013/ .:026/ .:020/
;

where the estimated standard errors are given in parentheses. The model chi-square statistic

is 9.384 with 8 df. This indicates (as do all the other fit indexes) that the model without

the interaction term fits the data very well. This result seems to be remarkable, because the

ML method suggests that the model fits a linear model, where it is known that the model is
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364 MOOIJAART AND BENTLER

nonlinear. The explanation is that the ML method and the corresponding likelihood ratio test

is, under some conditions that are satisfied here, not sensitive to detect nonlinear terms (see

Mooijaart & Satorra, 2009a).

Variables V2, V3, and V4 are not normally distributed, and the skewness of these variables

around �.30. Hence we now analyze the data with the same misspecified model, but add

factor F4 D F1F3 with coefficient zero; we also add one third-order moment to the data to be

modeled. This gives Lagrange multiplier D 12.232 for the coefficient of F4, which is significant

when referred to ¦2
1. Thus the Lagrange multiplier test indicates that there is an interaction

factor that explains the nonnormality significantly. Estimating the model with the coefficient

of this interaction factor as a free parameter yields

F2 D :538 C :006 F1 C :054 F3 � :088 F4 C D2

.:012/ .:026/ .:021/ .:022/

The goodness-of-fit test yields a value of 9.396, evaluated with ¦2
8. This also indicates that the

model fits the data, but the difference here is that not only the means and the covariances are

fitted, but also the third-order moment V4, V4, V5. Furthermore, as expected, the interaction

effect is significant, because the estimate of the regression weight of F4 has a standard error

of .022.

The corresponding model with ML, as obtained from Mplus, gives

F2 D :533 C :003 F1 C :047 F3 � :072 F4 C D2

.:014/ .:024/ .:021/ .:016/

It is interesting to note that both ML and our method find that the coefficient of F2 on F1 is

very small and not statistically significant.

Conclusion

The Lagrange multiplier test indicates that there is a significant interaction effect that was

unnoticed by the standard ML method. Fitting the model with one higher order moment verifies

that a significant interaction exists. The final model parameters are comparable to those of the

ML method with interaction effects.

STUDY 2

In this study we reanalyze the same model as in Study 1, however, now we set up a small

simulation study with 200 replications. Some key results are given in Tables 1 and 2.

Table 1 shows that the estimation algorithm converged without any problem in all 200

replications. The two methods hardly differ in terms of the bias of the estimates; it is clear that

they are unbiased. Except for the regression weight of the interaction factor, the standard errors

of the parameters are in both methods about equal. The main difference between the methods

is the size of the interaction standard error. In general, the ML standard errors are smaller, as

would be expected from large sample theory.
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NONLINEAR LATENT VARIABLE MODELS 365

TABLE 1

Results of Simulation: Bias, Standard Deviation, and Standard Error

Generalized Least Squares Mplus

Parameters True Bias SD SE Bias SD SE

Covariate mean

’ 2.300 �.003 .033 .033 �.003 .033 .034
Factor variances

F1 .850 .000 .067 .063 .009 .066 .064

F3 .820 .005 .051 .051 �.001 .049 .052
Factor covariances

F1, F3 .500 .003 .049 .045 .007 .048 .046

Error variances
E1 .200 �.002 .026 .025 .002 .024 .026
E2 .200 .000 .018 .017 �.001 .018 .017

E3 .200 �.001 .018 .018 .001 .017 .018
E4 .200 �.001 .032 .028 .002 .032 .028

Disturbance variance

D2 .040 �.001 .006 .006 �.001 .006 .006
Intercept

“0 .524 .000 .016 .012 .001 .014 .014
Regression weights, main

“1 �.023 �.002 .021 .022 .000 .019 .022

“3 .045 .001 .019 .019 .000 .018 .019
Regression weight, interaction

“13 �.048 .001 .022 .021 �.002 .013 .013

Note. The execution time for 200 replications was 19 sec for EQS and 30 sec for Mplus.

An important difference between ML and our method is that our method gives a goodness-

of-fit test for the model. Table 2 shows that the mean of the model chi-square test and the

corrected chi-square statistic are in the 95% confidence interval, and shows that the proportion

of rejections is also in the 95% confidence interval. These are promising results and provide

useful information beyond that given by Mplus, which is still missing a test statistic. Of course,

Mplus gives the likelihood function values and some information criteria, like the Akiake’s

Information Criterion (AIC), Bayesian Information Criterion (BIC) and adjusted BIC criteria

that can be used to choose among a set of potential models.

TABLE 2

Some Information on Goodness-of-Fit

Degrees of freedom 8
Chi-square statistic 8.47
Number of rejections, ’ D 5% 13 (6.5%)

Corrected chi-square statistic 8.29
Number of rejections, ’ D 5% 10 (5.0%)

F statistic 1.04
Number of rejections, ’ D 5% 10 (5.0%)

Note. 95% confidence interval: around mean chi-square
distribution df D 8: 7.45–8.55; around ’ D 5%: 1.98–8.02%.
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Conclusion

The estimates of the parameters seem to be unbiased for our method. Compared to the ML

estimates, the estimated standard errors are larger, in particular for the interaction parameter.

With respect to the mean of the chi-square test and the proportion of rejections, the model

chi-square test behaves as theoretically expected.

STUDY 3

Next we study the power of the proposed goodness-of-fit model test, by evaluating the behavior

of empirical power. Power is important for model selection and therefore it is important to

investigate whether our proposed test discriminates between alternative models. In our study

we reanalyze data that follow the so-called Kenny and Judd (1984) model, which was also

analyzed by others (e.g., Klein & Moosbrugger, 2000). In our simulation study, we use the

same setup as they did for their study of the Latent Moderated Structural Equations (LMS)

method.

The model contains two latent variables that predict an observed variable where, besides

the main effects of the predictors, there is also an interaction effect. The two latent predictors

each have two observed indicators. The parameter that plays a key role is the “interaction”

parameter. In our study this parameter will vary from .0 to .7. The sample size is 400 and there

are 200 replications. In one study the third-order moment V5, V5, V5 is analyzed; in another

study two third-order moments V5, V5, V5 and V1, V3, V5 are analyzed.

For each different value of the interaction parameter, the behavior of the X2 statistic is

presented by the mean of X2 over the 200 replications and the proportion of rejections based on

a nominal ’-level of 5%. Obviously, if there is no misspecification of the model, the proportion

of rejections of the model is the empirical ’-level, otherwise it is the empirical power.

Because 200 replications are used, the means and the proportions will vary around some

unknown value. Therefore, the 95% confidence intervals of the estimates are given. The 95%

confidence intervals are: for ’ D 5%: 1.98–8.02%. The 95% confidence interval around the

mean of some chi-square distributions are: for df D 7: 6.48–7.52, for df D 8: 7.45–8.55, and

for df D 9: 8.41–9.59.

Tables 3, 4, and 5 show five main results. First, with standard ML, the empirical ’ is

not significant from the nominal ’, see Table 3, column “%rej.” So even if the model is

TABLE 3

Results of Simulation: Maximum Likelihood Estimation

“12 X2

7
% rej.

.0 6.90 4.6 (2)

.1 6.61 3.1 (2)

.2 6.59 2.5 (3)

.4 6.54 2.6 (4)

.7 6.50 2.6 (4)

Note. Numbers in parentheses are the number of data

sets that resulted in nonconvergence of the algorithm.
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TABLE 4

Results of Simulation with Third-Order Moment V5, V5, V5

“12 Free “12 D 0

“12 X2

7
% rej. Bias SD SE X2

8
% rej.

.0 6.74 3.6 (3) .00 .10 .10 7.80 6.1 (2)

.1 6.72 3.1 (3) .00 .10 .10 8.28 6.6 (3)

.2 6.70 3.1 (3) �.01 .10 .11 9.70 11.7 (4)

.4 6.66 4.1 (3) �.01 .12 .12 12.12 22.0 (9)

.7 6.54 4.1 (6) �.03 .16 .15 13.47 28.5 (14)

Note. Numbers in parentheses are the number of data sets that resulted in nonconvergence of the algorithm.

a nonlinear model (i.e., the interaction parameter is unequal to 0) and some variable is not

normally distributed, the standard ML method indicates that a linear model fits the data. This

is known from Mooijaart and Satorra (2009a) but is verified in this study. Although all means

of the test statistics are smaller than the theoretical mean of their distributions, none of them is

outside the range of the 95% confidence interval. Second, Tables 4 and 5 compare the results

of our two studies with different third-order moments. Both tables show that some (in total 5)

of the parameters are outside the 95% confidence interval. All other estimates are within the

proper 95% interval. This falling outside the confidence interval is caused by the small sample

size. For N D 500, all estimates were inside the 95% interval.

The left side of Tables 4 and 5 (columns 2–6) refers to correctly specified models, whereas

the right side (columns 7–8) refers to the model in which the interaction parameter was set

to zero. Thus column 3 refers to the empirical ’, and column 8 to the empirical power. All

empirical ’s are fine, and the bias of the estimates is also small. However, Tables 4 and 5 differ

with respect to empirical power. For instance, in Table 4 for “12 D :7 the empirical power is

28.5%, whereas in Table 5 the corresponding power is 87.4%. It might also be the case that

another difference between the two tables is that standard errors of the estimate are smaller in

Table 5.

TABLE 5

Results Simulation with Third-Order Moments V1, V3, V5 and V5, V5, V5

“12 Free “12 D 0

“12 X2

8
% rej. Bias SD SE X2

9
% rej.

.0 7.43a 3.1 (4) .00 .08 .08 9.22 6.6 (2)

.1 7.41a 3.1 (4) �.01 .09 .08 10.03 8.6 (3)

.2 7.39a 3.6 (3) �.01 .09 .09 12.56 20.4 (4)

.4 7.45a 4.0 (2) �.02 .12 .10 18.60 53.1 (8)

.7 7.41a 4.1 (3) �.04 .16 .14 26.26 87.4 (9)

Note. Numbers in parentheses are the number of data sets that resulted in nonconver-
gence of the algorithm.

aThe corresponding estimate is outside the 95% confidence interval.
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Conclusion

With respect to the Type I level, the goodness-of-fit model test behaves as theoretically expected.

The choice of the third-order moments might have an influence on the power of the test.

However, this is not completely clear, so more study on the effect of choice and number of

third-order moments is needed in the future.

STUDY 4

In this study, we evaluate the effect of nonnormality of the indicators. We study a factor

analysis model with three factors and three indicators for each factor. Some of the indicators

might not be normally distributed. These nonnormally distributed indicators load on one of the

main factors and on one of the interaction factors. Again we make a comparison of the results

for our method and those of the ML method.

For identification, Variables 1, 4, and 7 have factor loadings fixed equal to 1. We take the

sample size at 500, and the number of replications at 100. In our method, we use three third-

order moments for fitting the model, namely those of the following triples of variables: (V1,

V3, V4), (V4, V6, V7), and (V4, V7, V9). Tables 6 and 7 present the results.

The results show that the estimation algorithm converged without any problem in all 100

replications with both methods, although the execution time (over 100 replications) is much

longer with Mplus. The two methods hardly differ in terms of the parameter estimate bias; it

is clear that both are unbiased. The mean of the standard deviations and the standard errors are

also almost equal in both methods, indicating that the estimated standard errors can be trusted

in both methods.

The main difference between the methods is in the size of the standard errors of the factor

loadings on the interaction factors. In general, the estimated standard errors by ML are smaller

than those obtained by our method. As might be expected, the model chi-square test seems

to reject the model too often. This is a commonly known effect with this test, in particular

with small samples and large models. However, the corrected chi-square and the F test seem

to behave nicely.

Conclusion

Nonnormality of the indicators can be specified in different ways. In this example, the non-

normality of the indicators is determined by the interaction factors. It is clear that this type

of model can be analyzed easily with our method and that the results do not differ from the

results in the previous simulation studies.

DISCUSSION

For practitioners, an important feature of the proposed methodology is its continuity with

existing SEM methods. This continuity includes development of an explicit structural model

for moments of the observed variables, measuring model fit as a weighted residual between
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TABLE 6

Results of Simulation

Generalized Least Squares Mplus

Parameters True Estimate SD SE Estimate SD SE

Intercepts

V1 1.0 1.01 .05 .04 1.01 .05 .05
V2 1.0 1.01 .05 .04 1.01 .04 .04
V3 1.0 1.01 .05 .04 1.01 .04 .04

V4 1.0 1.01 .06 .04 1.00 .05 .05
V5 1.0 1.01 .05 .04 1.01 .04 .04
V6 1.0 1.01 .05 .04 1.00 .04 .04

V7 1.0 1.01 .06 .04 1.00 .05 .05
V8 1.0 1.00 .05 .04 1.00 .04 .04
V9 1.0 1.01 .06 .04 1.00 .05 .04

Factor variances
F1 1.0 .98 .09 .08 1.01 .09 .09
F2 1.0 .99 .08 .08 1.01 .07 .08

F3 1.0 .99 .08 .08 1.01 .08 .08
Factor covariances

F1, F2 .5 .50 .05 .05 .51 .05 .06
F1, F3 .5 .49 .06 .05 .50 .06 .06
F2, F3 .5 .50 .06 .05 .51 .06 .06

Error variances
E1 .3 .30 .04 .04 .30 .04 .03
E2 .3 .29 .03 .03 .30 .03 .03

E3 .3 .29 .04 .04 .30 .02 .03
E4 .3 .29 .03 .03 .29 .03 .03
E5 .3 .29 .03 .03 .30 .02 .03

E6 .3 .30 .03 .03 .30 .03 .03
E7 .3 .29 .04 .03 .30 .04 .03

E8 .3 .30 .03 .03 .30 .03 .03
E9 .3 .29 .04 .03 .30 .03 .03

Factor loadings, main

V2, F1 .8 .80 .04 .04 .80 .03 .04
V3, F1 .8 .80 .05 .04 .80 .05 .04
V5, F2 .8 .80 .03 .04 .80 .03 .04

V6, F2 .8 .80 .05 .04 .80 .04 .04
V8, F3 .8 .80 .04 .04 .80 .03 .04
V9, F3 .8 .80 .05 .04 .80 .04 .04

Factor loadings, interaction
V3, F1�F2 .3 .30 .06 .06 .30 .03 .03
V6, F2�F3 .3 .29 .05 .04 .30 .03 .03

V9, F2�F3 .3 .30 .05 .04 .30 .03 .03

Note. The execution time for 100 replications was 59 sec for EQS and 10,049 sec for Mplus.

sample moments and a model-implied moment structure, and the availability of standard

statistical methods for model evaluation and modification. We illustrated this by developing

a fairly standard SEM model goodness-of-fit test and a Lagrange multiplier test to evaluate

the necessity of nonlinear terms in an equation. These tests were shown to have sufficient

power to pick up nonlinear effects. In fact, because our methodology is just an application of

moment structure analysis, an ordinary SEM user does not need much specialized knowledge

to use the methodology. Further, our approach makes it possible to extend most useful existing
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TABLE 7

Some Information on Goodness-of-Fit

Degrees of freedom 24
Chi-square statistic 25.35a

Number of rejections, ’ D 5% 11b

Corrected chi-square statistic 24.02

Number of rejections, ’ D 5% 5
F statistic 1.007

Number of rejections, ’ D 5% 6

aThe corresponding estimate is outside the 90% confi-

dence interval, inside the 95% confidence interval.
bThe corresponding estimate is outside the 95% confi-

dence interval.

SEM methodology for estimation, testing, sample-size free-fit evaluation, and so on, to models

with quadratic and interaction latent variables. To illustrate, once the theory for the residual-

based test (see Equation 6) was developed and implemented in EQS, the program more or less

automatically also produced the Satorra–Bentler correction and Yuan–Bentler residual-based

F statistic that behaved quite well under violation of distributional assumptions, as well as a

variety of typical fit indexes (not reported) that are a standard part of SEM.

The tests proposed and studied in this article seem to perform well in practice, although, of

course, further research with a wider range of conditions is needed to determine their boundary

conditions. One of these conditions will no doubt be sample size, because the asymptotic

distribution of third-order moments is unstable at smaller sample sizes. Of course, if sample

size is not large enough to trust a third-order moment to reflect nonlinearity, it might not

make sense to consider modeling such nonlinearity with latent variables in the first place—

the model structure we developed in Equation 2 will hold in any case, even if the estimation

method is not a standard moment structure method. Another boundary condition no doubt will

involve the optimal selection of third-order moments to model, as well as the number of such

moments. Because the chosen moments must reflect the nonnormality of the indicators of the

quadratic and interaction factors, moments should be chosen to reflect the degree of skewness

of those variables. Although our simulations did not yield definitive conclusions, it seems that

using more than one third-order moment yields greater power. We suspect that modeling two

or three marginal or joint moments will usually be sufficient, with more being appropriate

when several variables are quite skewed. Additional recommendations for choice of moments

are to involve those variables that have the most reliable indicators (Saris, Batista-Foguet,

& Coenders, 2007) and to choose those moments that yield maximum power (Mooijaart &

Satorra, 2009b). Further research will be needed to give definitive recommendations, but in any

case, the selection of such moments can and should be done based on current knowledge and

implemented automatically by the computer program used to fit the model. Of course, there

should be an option for the user to override any default, as is done in EQS.

We do not claim that our methodology always will give the “best” results—we mainly want

to emphasize that we have provided a new and promising approach to nonlinear models. In small

samples, methods that incorporate additional information, especially Bayesian methods (e.g.,

Lee et al., 2007), are liable to have more stable estimates and power to detect nonlinearities.
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These advantages, of course, have to be traded off against increased difficulty in implementation

and in current limitations that only allow a single dependent nonlinear factor. The advantages

of the Bayesian methods also will disappear in large samples, because the influence of prior

distributions vanishes asymptotically. ML (Klein & Moosbrugger, 2000) certainly is valuable

for its asymptotic optimality. In our simulations, ML standard errors were consistently smaller

by a small amount as compared to our method. Although ML computations can be difficult

when there are several nonlinear factors, the recently developed marginal ML methodology

of Cudeck et al. (2009) promises to be computationally more feasible in certain situations.

Another useful general alternative is quasi-ML (Klein & Muthén, 2007) because it, like the

ML methods, provides difference tests. However, standard SEM statistics such as overall model

goodness-of-fit chi-square statistics and Lagrange multiplier tests are not currently available in

these methods.

All issues in nonlinear SEM models certainly have not been settled. A standard assumption

of quadratic and interaction models, including ours, is that nonnormality in all variables stems

from the underlying latent nonlinear factors. Although we found that our method possesses

some robustness to violation of this assumption, and appropriate robust model tests performed

well, all existing methods need extension to situations where some main factors, errors of

measurement, and variables in the model might be nonnormal over and above any nonnormality

that is due to quadratic or interaction factors. One source of such excess nonnormality might

be a nonnormally distributed covariate. Although we have preliminary results showing that

such an approach can give acceptable results by our method, detailed study of this and other

approaches remains a challenge for the future.
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APPENDIX

Let the Ÿ’s be normally distributed with means zero. Then the second-order mixed moment

(covariance) is ¥ij D EŒŸi Ÿj �, and the fourth- and sixth-order mixed moments are defined

as ¥ijkl D EŒŸi Ÿj ŸkŸl � and ¥ijklmn D EŒŸi Ÿj ŸkŸl ŸmŸn�. In view of normality, the third- and

fifth-order mixed moments are zero. Then it holds

¥ijkl D ¥ij ¥kl C ¥ik¥jl C ¥i l ¥jk

¥ijklmn D ¥ij ¥klmn C ¥ik¥jlmn C ¥i l ¥jkmn C ¥im¥jkln C ¥in¥jklm

These equations are used to compute the elements of the vectors with second- and third-order

moments, ®2 and ®3. For instance, cov.Ÿ1Ÿ1; Ÿ2Ÿ2/ D ¥1122 � ¥11¥22 D ¥11¥22 C 2¥2
12 �

¥11¥22 D 2¥2
12. Similarly, cov.Ÿ1Ÿ1Ÿ1; Ÿ2Ÿ2Ÿ2/ D ¥111222 � ¥111¥222.
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