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In this article, a nonlinear structural equation model is introduced and a quasi-
maximum likelihood method for simultaneous estimation and testing of multiple
nonlinear effects is developed. The focus of the new methodology lies on effi-
ciency, robustness, and computational practicability. Monte-Carlo studies indicate
that the method is highly efficient and that the likelihood ratio test of nonlinear
effects is robust and outperforms alternative testing procedures. The new method
is applied to empirical data of middle-aged men, where a latent interaction be-
tween physical fitness and flexibility in goal adjustment on complaint level is
hypothesized. A model with 5 simultaneous nonlinear effects is analyzed, and
the hypothesized interaction is quantified and tested positively against an additive
model with quadratic and linear effects.

Over the last 2 decades, structural equation modeling (SEM) has become a
common statistical tool for modeling relationships between variables that cannot
be observed directly, but only with measurement error. The relationships between
these unobservable, latent variables are formulated in structural equations, and
they are measured with errors by indicator variables in a measurement model.
By the development of software packages for covariance structure analysis such
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as Amos (Arbuckle, 1997), EQS (Bentler, 1995; Bentler & Wu, 1993), LISREL
(Jöreskog & Sörbom, 1993, 1996), or Mplus (Muthén & Muthén, 2004), SEM
has become available to a large community of researchers.

Although ordinary SEM incorporates linear relationships among latent vari-
ables, applied researchers sometimes wish to estimate an SEM with quadratic
forms in the latent variables, for example, models with latent interaction or
quadratic effects. Several researchers have called for estimation methods for
nonlinear latent variable models, and numerous substantive theories in educa-
tion and psychology call for analysis of nonlinear models (Ajzen, 1987; Ajzen
& Fishbein, 1980; Ajzen & Madden, 1986; Cronbach, 1975; Cronbach & Snow,
1977; Fishbein & Ajzen, 1975; Karasek, 1979; Lusch & Brown, 1996; Snyder
& Tanke, 1976). Also, a need for nonlinear extensions of ordinary SEM has
been expressed from a methodological perspective (Aiken & West, 1991; Buse-
meyer & Jones, 1983; Cohen & Cohen, 1975; Jaccard, Turrisi, & Wan, 1990),
and different ad-hoc estimation approaches have been developed. Models with
nonlinear latent variable structures are special because products of normal vari-
ates are no longer normally distributed; the model lies outside the framework of
covariance structure analysis or the general linear model; and product indicators
for latent variable products often lead to a low communality, a large sampling
fluctuation, multicollinearity problems, and nonnormal error terms (Jöreskog &
Yang, 1996; Klein, 2000; Moosbrugger, Schermelleh-Engel, & Klein, 1997).

Therefore, methodological difficulties arise in estimating these models be-
cause the known methods for ordinary linear SEM either have to be modi-
fied or extended when using product indicators, or other approaches that do
not need product indicators had to be newly developed. There have been dif-
ferent estimation approaches. Hayduk (1987) established the estimation of an
elementary interaction model with one latent product term proposed by Kenny
and Judd (1984). Using LISREL 7 (Jöreskog & Sörbom, 1989), they formed
products of indicators for measuring the latent product term. Two-step LISREL
approaches for this elementary model were proposed by Moosbrugger, Frank,
and Schermelleh-Engel (1991) and Ping (1995, 1996a, 1996b, 1998), who im-
plemented a stepwise LISREL procedure by estimating the measurement model
in a first step and the parameters of the structural equation in a second step.

Other approaches aimed at estimating the nonlinear model within the frame-
work of covariance structure analysis. The technique of forming products of
indicators was improved by Jaccard and Wan (1995), Jöreskog and Yang (1996,
1997), and Yang Jonsson (1997), who used nonlinear parameter constraints for
estimation of the elementary interaction model under LISREL 8 (Jöreskog &
Sörbom, 1996). Simulation studies showed that the LISREL-ML (maximum
likelihood) estimation procedure could be used for parameter estimation of the
elementary interaction model (Yang Jonsson, 1997), but applicability seemed to
be limited to elementary quadratic or cross-product models because of unstable
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sampling characteristics of the covariance matrices, which include covariances
of products of indicators. Also, the distributional assumptions of LISREL-ML
are violated for a nonlinear structural equation model, and standard errors and
¦2-statistics can be erroneous and require an adjustment for bias (Yang-Wallentin
& Jöreskog, 2001). Moreover, simulation studies for the elementary interaction
model indicated that the LISREL parameter estimators did not have optimal
efficiency (Klein & Moosbrugger, 2000; Schermelleh-Engel, Klein, & Moos-
brugger, 1998).

As an alternative to covariance structure analysis, a two-stage least squares
(2SLS) estimation technique was developed by Bollen (1995, 1996) and Bollen
and Paxton (1998) using instrumental variables for estimating an elementary
quadratic or interaction model. But although no distributional assumptions were
violated for this method, simulation studies showed that 2SLS estimators were
substantially less efficient when compared to alternative estimation techniques
(Klein & Moosbrugger, 2000; Schermelleh-Engel et al., 1998). Using Bayesian
estimation techniques, Arminger and Muthén (1998) proposed a computation-
ally intensive method and demonstrated it for elementary models with one latent
product term. Blom and Christoffersson (2001) developed an estimation method
based on the empirical characteristic function of the distribution of the indica-
tor variables. But both approaches seemed to be limited to elementary models
because of their computational burden.

More recently, the LISREL approach of Jöreskog and Yang, which involves
a set of specific, nonlinear constraints on the model parameters and carries out
estimation in LISREL-ML, has been modified and improved. A constrained
approach has been developed and tested by Algina and Moulder (2001) and
Marsh, Wen, and Hau (2004), who modified the constraints for the mean struc-
ture. Wall and Amemiya (2000, 2001, 2003) proposed a generalized appended
product indicator (GAPI) approach where some of the constraints related to
the covariance matrix of the latent predictor variables were removed from the
constraint list. It is a method of moments approach to estimate latent interac-
tions. In particular under conditions where the predictors were nonnormal, their
partially constrained approach yielded improved parameter estimates. Technical
details about the difference between the Quasi-ML approach used here and their
method of moments technique are given in the section “Quasi-ML Estimation
Procedure.” This technique was further modified and an unconstrained approach
was derived where the complicated nonlinear parameter constraints present in
the earlier approaches could be removed (Marsh et al.).

With the latent moderated structural equations (LMS) method, Klein and
Moosbrugger (2000) first introduced a maximum likelihood estimation tech-
nique for latent interaction models with multiple latent product terms. In the
LMS method, the latent independent variables and the error variables were as-
sumed to be normally distributed, and in LMS the nonnormality caused by the



650 KLEIN AND MUTHÉN

latent product terms was now explicitly taken into account. The LMS method
has been adopted in Mplus 3.0 (Muthén & Muthén, 2004). In contrast to the
LISREL type approaches, no product indicators were needed. Going beyond
the product indicator approaches, LMS also allowed for likelihood ratio tests,
which can test for the significance of one or several nonlinear effects simulta-
neously. Simulation studies for the elementary interaction model indicated that
LMS provides efficient parameter estimators and a fairly reliable likelihood ra-
tio test, and standard errors were unbiased (Klein, 2000; Klein & Moosbrugger,
2000; Schermelleh-Engel et al., 1998). But, although models with several latent
product terms could be analyzed with the LMS method, the method could be-
come computationally extremely intensive for models with three or more product
terms involved in the structural equation. Also, LMS turned out to be not yet
robust enough when its distributional assumptions were violated.

In this article, a Quasi-ML estimation method for structural equation mod-
els with quadratic forms is proposed. Quasi-ML has been developed to aim
for an efficient, computationally feasible, and more robust estimation technique
for nonlinear structural equation models with quadratic forms of predictor vari-
ables, which cannot be analyzed optimally under LMS or the product indicator
approaches mentioned earlier.

The new approach was applied to an empirical study taken from psychol-
ogy of aging on the relationship between coping style, subjective and objective
fitness, and complaints about one’s physical or psychological situation. A data
set of 304 middle-aged men was examined, and the variables, except for ob-
jective fitness, were measured using inventories and questionnaires previously
developed in the research literature. Two hypothesized interaction effects with
the two fitness variables interacting with coping style on the complaint level as
dependent variable were tested against an additive model structure with possible
quadratic and linear effects. A model with five nonlinear effects was analyzed
with Quasi-ML for this purpose. Using the likelihood ratio test under Quasi-ML,
the interaction effect between subjective fitness and coping style was found to
be significant beyond the quadratic and linear effects of these predictors.

For the Quasi-ML method proposed in this article, an appropriate transfor-
mation of the indicator variables is carried out, which reduces the number of
nonnormally distributed components of the original indicator vector to one non-
normally distributed component of the transformed indicator vector. After this
transformation, the model is treated as a variance function model (Carroll, Rup-
pert, & Stefanski, 1995), and mean and variance functions for the nonlinear
model are calculated. Then, the quasi-likelihood estimation principle is applied
and the density function of the indicator vector is approximated by a product
of an unconditionally normal and a conditionally normal density function. A
Quasi-ML estimator is established by maximizing the log-likelihood function
based on the approximating density function. The distributional assumptions



QUASI-MAXIMUM LIKELIHOOD ESTIMATION 651

on which the Quasi-ML estimator are based are less rigid than the normality
assumption for the predictor variables under LMS. This is because Quasi-ML
only assumes approximate conditional normality for the latent criterion variable
where in LMS the criterion variable is assumed to exactly follow the distribu-
tion of a polynomial function of normal variates. Therefore, Quasi-ML can be
expected to be more robust than LMS against the violation of the normality
assumptions. Simulation studies also presented in this article were carried out to
investigate the properties and robustness of Quasi-ML. Quasi-ML outperformed
the other approaches under a variety of conditions. The only limitation of Quasi-
ML found so far from the simulation studies is that when the predictor variables
are clearly skewed and the size of a nonlinear effect is very large, some bias
could occur in the estimation of the structural parameters.

The contents of this article are as follows. In the section “Structural Equation
Models With Quadratic Forms,” we introduce a general structural equation model
with a quadratic form of latent variables. In the section “Quasi-ML Estimation
Procedure,” the Quasi-ML estimation procedure is developed. In the section
“Simulation Studies,” the finite sample properties of the Quasi-ML estimators
with respect to bias and efficiency are examined, and the Quasi-ML likelihood
ratio test is evaluated. In the section “Empirical Example,” the applicability of
the proposed method to the analysis of empirical data sets is shown for the
empirical example on psychology of aging.

STRUCTURAL EQUATION MODELS WITH

QUADRATIC FORMS

In this section, a structural equation model with a general quadratic form of
latent independent variables (predictor variables) is introduced. The elementary
interaction model proposed by Kenny and Judd (1984) with one latent inter-
action effect and the model proposed by Klein and Moosbrugger (2000) with
multiple interaction effects but no quadratic effects are special cases of the model
specified here. The model we propose covers structural equations with a poly-
nomial of degree two of predictor variables. We propose the following structural
equation model with a quadratic form:

˜t D ’ C �Ÿt C Ÿ0

t �Ÿt C —t ; t D 1; : : : ; N; (1)

where ˜t is a latent dependent variable (criterion variable), ’ is an intercept
term, Ÿt is a (n�1) vector of latent predictor variables, � is a (1�n) coefficient
matrix, � is a symmetric (n � n) coefficient matrix, and —t is a disturbance
variable. We call the parameters given by the matrices � and � the structural
parameters of the model. The quadratic form Ÿ0

t �Ÿt of the structural equation (1)
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distinguishes the model from ordinary linear SEM. The vector Ÿt is assumed to
be multivariate normally distributed with E.Ÿt/ D 0 and Cov.Ÿt ; Ÿ0

t/ D ˆ. The
disturbance variable —t is assumed to be normally distributed with E.—t / D 0,
Var.—t / D §, and Cov.—t ; Ÿ0

t/ D 0. The latent variables of the structural equation
are measured with error via measurement models:

xt D ƒxŸt C •t ; t D 1; : : : ; N; (2)

yt D ƒy˜t C ©t ; t D 1; : : : ; N; (3)

where xt is a (q � 1) vector of observed indicators of Ÿt , ƒx is a (q � n) factor
loading matrix, and •t is a (q � 1) vector of measurement errors. Similarly, yt

is a (p � 1) vector of observed indicators of ˜t , ƒy is a (p � 1) factor loading
matrix, and ©t is a (p � 1) vector of measurement errors. The error vectors
•t and ©t are assumed to be multivariate normally distributed with E.• t/ D

0, E.©t/ D 0, a diagonal covariance matrix Cov.•t ; •0
t/ D ‚•, a diagonal

covariance matrix Cov.©t ; ©0
t / D ‚©, Cov.•t ; Ÿ0

t/ D 0, Cov.•t ; ©0
t / D 0, and

Cov.©t ; Ÿ0

t/ D 0, Cov.—t ; •0

t/ D 0, and Cov.—t ; ©0
t/ D 0. It is further assumed that

the identifiability of the measurement model for the x-variables is guaranteed
by certain restrictions on the parameters of the measurement model. For the
identification of the measurement model for the y-variables, it is assumed that
y1t is a scaling indicator with loading œy11 D 1. It can be assumed without loss
of generality that the x-variables and the y-variables have zero mean, which
implies that ’ D �tr.�ˆ/. This restriction does not limit the applicability of
the model in practice because the indicator variable means can be regarded
as nuisance parameters here. The nonlinear structural equation implies that the
vector yt is nonnormally distributed in general (Jöreskog & Yang, 1996; Klein
& Moosbrugger, 2000).

The identification of the proposed nonlinear structural model is not different
from an ordinary linear structural model: For each latent predictor variable, at
least two indicator variables are needed for identification. Up to the present, an
appropriate fit index, which is comparable to the chi-square fit measure for linear
structural equation models, is not available. The reason for this lies in the fact
that an unrestricted covariance structure is not a saturated model for a nonlinear
SEM, and thus there is no straightforward computation of a fit measure. Future
research is needed to address this important issue.

QUASI-ML ESTIMATION PROCEDURE

The major characteristic of a nonlinear structural equation model lies in the
fact that the latent dependent variable ˜t given by the structural equation (1)
is nonnormally distributed in general, which also implies that the vector yt
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of indicator variables is nonnormally distributed. The distribution type of ˜t

has been investigated for special cases in the literature (Gurland, 1955; Imhof,
1961; Press, 1966; Shah, 1963), but as Johnson and Kotz (1970) point out,
these representations of the nonnormal density function are neither theoretically
nor practically useful because of their complicated structure. The characteristic
function of ˜t or yt can be expressed in closed form (Srivastava & Khatri,
1979), but it is not possible to derive the density function from the characteristic
function by integrating out the transform variable because the integral cannot be
solved in an analytically closed form.

The Quasi-ML estimation procedure developed in this article is based on an
approximation of the nonnormal density function f .x; y/ of the indicator vec-
tor .x0

t ; y0
t/

0 by a nonnormal density f �.x; y/, which is a product of a normal
and a conditionally normal density. This approximation makes use of the con-
cept of variance function models (Carroll et al., 1995, pp. 269–272), where the
mean and variance function of a dependent variable conditional on the indepen-
dent variables is specified. More precisely, for Quasi-ML the critical assumption
about the structural part of the model is that the conditional distribution of the
latent criterion variable given the x-variables can be approximated by a normal
distribution. In Quasi-ML, the conditional mean and variance are derived under
the assumption that the latent predictors and the error variables are normal, but
this latter part of the model could be modified when a distribution different
from the normal is assumed for the predictors. The distributional assumption for
Quasi-ML is less rigid than it is for the LMS method, which assumes that the
criterion variable is exactly distributed as a specific polynomial of normal vari-
ates. In the Quasi-ML method, the model parameters of the nonlinear structural
equation model are simultaneously estimated. The maximization of the quasi-
log-likelihood function derived from the approximating density f �.x; y/ yields
the Quasi-ML parameter estimates. The Quasi-ML principle has been applied
to a specific heterogeneous latent growth curve model before (Klein & Muthén,
2006), but the development of the estimation procedure for the cross-sectional
model given here is more complex and more general.

In the Quasi-ML method, a transformation of the nonnormally distributed
indicator vector .x0

t ; y0
t/

0 ! .x0
t ; y1t ; u0

t D y0
t R

0/0 is carried out such that only
one component of the transformed indicator vector, namely, the scaling variable
y1 with loading one, is nonnormally distributed. Then, the conditional mean and
variance of the nonnormally distributed component y1 are derived. The technical
details of these parts are described in the Appendix. Finally, the derived mean
and variance function are used to develop the Quasi-ML estimation procedure.
Also, standard errors for the parameter estimates and a quasi-likelihood ratio
test statistic are computed.

The application of the variance function modeling concept is based on the
idea that the conditional distribution of .y1jx D x; u D u/ is approximated by a
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normal distribution. For this approximating normal distribution, the mean func-
tion EŒy1t jxt D x; ut D u� and the variance function Var.y1t jxt D x; ut D u/

are used. The application of the quasi-likelihood principle suggests the following
approximation f �.x; y/ of the density function f .x; y/ of the indicator vector
.x0

t ; y0
t/

0:

f .x; y/ D f2.x; Ry/f3.y1jxt D x; ut D Ry/

� f2.x; Ry/f �
3 .y1jxt D x; ut D Ry/

DW f �.x; y/

(4)

where f2.x; u/ is the normal density function of .x0
t ; u0

t/
0 and f �

3 .y1jxt D x;

ut D Ry/ is a univariate normal density with mean EŒy1t jxt D x; ut D Ry�

and variance Var.y1t jxt D x; ut D Ry/. It should be noted that the approximat-
ing density function f �.x; y/ is nonnormal in general. The Quasi-ML method
maximizes the quasi-log-likelihood function, which is the log-likelihood func-
tion based on the approximating density f �.x; y/, for the parameter vector ™

by application of standard numerical methods. Technically, this maximization
is executed in two stages: In the first stage of the maximization process, the
single-step iteration method (Isaacson & Keller, 1966; Schwarz, 1993) is used;
in the second stage, the Newton-Raphson algorithm is applied. The maximiza-
tion algorithm is programmed in Delphi Pascal program code and executed on
an IBM compatible computer (Pentium, 1.4 GHz). The typical computing time
for one data set lies between 2 and 10 seconds.

The Quasi-ML software is available for download under https://netfiles.uiuc.
edu/agklein/QML/ or by contacting Andreas G. Klein for the latest version.
The program comes with a manual that describes the model commands and
sample data, and it is running under the Windows operating system. The program
requires the data to be in ASCII format, and the model is specified using matrix
commands and an input file. Fully standardized solutions, standard errors for the
parameters, and likelihood ratio tests for testing simultaneous nonlinear effects
can also be obtained.

For structural equation models with interaction and quadratic effects among
latent variables, the two-step method of moments technique proposed by Wall
and Amemiya (2000, 2003) is a procedure that uses only part of the statistical
information used in the Quasi-ML method. The difference between Quasi-ML
and their two-step approach can be best illustrated by regarding a model with
one y-variable only, where y D v0“ C — and v is a vector that carries the
constant 1, the latent Ÿ-variables, and the product terms among Ÿ-variables that
are involved in the structural equation. In the first step of Wall and Amemiya’s
approach, the parameters of the measurement model for Ÿ are estimated, for
example, by using ML factor analysis. In the second step, the quadratic ma-
trix E.vv0/ � N �1†i E.vv0jxi / of product moments is estimated, where the
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conditional product moments of the matrices E.vv0jxi/ are computed using the
measurement model estimated in step one. Similarly, the vector E.vy/ is es-
timated. In analogy to ordinary linear regression, estimates for the coefficient
vector “ are then obtained by solving the estimating equation E.vv0/“ D E.vy/

for “. It can be shown that the Quasi-ML method leads to an equivalent estimat-
ing equation for “ if in Quasi-ML the variance function Var(yjx) is constrained
to a constant variance term and the parameter estimates of the measurement
model for Ÿ are fixed at the values that are obtained in step one of Wall and
Amemiya’s approach. Wall and Amemiya’s (2000, 2003) approach combines a
stepwise estimation of parameters with a method of moments estimation tech-
nique. It does not utilize the statistical information provided by the variance
function that is deduced from the latent product terms for the Quasi-ML method
proposed in this paper. In general, the Quasi-ML method could as well be alge-
braically extended to polynomial structural equation models with model-implied
variance functions, although this is not pursued here because higher order poly-
nomials might be of limited interest for practical applications.

The difference between the LMS method (Klein & Moosbrugger, 2000) and
Quasi-ML is that LMS provides an ML estimation under the assumption that
the predictor and error variables are all normally distributed. The LMS method
relies on a numerical approximation of the nonnormal density function, which
becomes computationally very intensive when the number of latent product terms
increases. In contrast to this, Quasi-ML depends on the normality assumption
about the predictor and error variables only insofar as the mean and variance
functions are derived under this assumption. In practice, the mean and variance
functions may still be good approximations even if the predictor and error vari-
ables are nonnormal. Moreover, the major difference between LMS and Quasi-
ML lies in the fact that the computational burden does not critically increase
for Quasi-ML when many latent product terms are included in the model, but it
does critically increase for LMS.

For the computation of confidence intervals for the Quasi-ML parameter esti-
mates, standard errors can be computed. The calculation of standard errors under
Quasi-ML is straightforward and uses the “sandwich estimator” J� (Carroll et al.,
1995), which estimates the covariance matrix of the Quasi-ML estimator. The
sandwich estimator is given by

J� D N �1H�1JH�1 (5)

where N is the sample size, and H and J are the matrices.

H D

�

�EO™

�

@2 ln f �.x; y/

@™i @™j

��

;

J D

�

EO™

��

@ lnf �.x; y/

@™i

� �

@ ln f �.x; y/

@™j

���

:

(6)
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The adjustment of the information matrix J given by (5) is necessary in order
to correct for a bias of estimation of standard errors. For the computation of
the expectation values in the matrices H and J, two alternative ways have been
developed: They are either computed by stochastic integration, using a gener-
ated large sample of the indicator vector .x0

t ; y0
t/

0 (expected Fisher information),
or they are computed by using the observed sample for stochastic integration
(observed Fisher information). In the first case, typically a sample size between
20.000 and 30.000 is used for data generation, depending on the complexity of
the model. The sample is generated according to the model equations specified
by equations (1), (2), (3), where the Quasi-ML estimates are chosen for the pa-
rameter values. Simulation studies not reported here have indicated that standard
errors based on the observed Fisher information are often preferable, which is
in line with the suggestions by Efron and Hinkley (1978).

With the calculation of likelihood ratio test statistics based on the quasi-
log-likelihood function, model difference tests can be carried out under the
Quasi-ML method, and nested nonlinear structural equation models can be tested
for significant differences in the model structure. For example, the statistical
significance of multiple latent nonlinear effects can be tested simultaneously.
Because the quasi-log-likelihood function is only an approximation of the correct
log-likelihood function, the likelihood ratio test statistic L D �2.l. O‚0/� l. O‚//

cannot be expected to asymptotically follow an exact chi-square distribution
under the null hypothesis. However, simulation results not further reported here
suggest that it is very close to the theoretical chi-square distribution for models
with multiple latent interaction effects.

SIMULATION STUDIES

The Quasi-ML method has been specifically developed with the goal to provide
a robust, efficient, and computationally inexpensive analysis of structural equa-
tion models with multiple nonlinear effects. In this section, the finite sample
properties of the Quasi-ML estimation method are compared with four alter-
native estimation techniques: the latent moderated structural equations (LMS)
approach (Klein & Moosbrugger, 2000), the unconstrained approach (Marsh
et al., 2004), the constrained approach (Marsh et al., 2004), and the general-
ized appended product indicator (GAPI) approach (Wall & Amemiya, 2001).
We conduct four major simulation studies. In Studies I and II, we compare
Quasi-ML with LMS for an elementary interaction model under the condition
that the distributional assumptions are met or violated, respectively. In Study
III we compare the robustness of Quasi-ML with LMS for a complex model
with three latent interaction effects. In Study IV we repeat a previously pub-
lished simulation study for Quasi-ML (Vers. 2.61) and compare its performance



QUASI-MAXIMUM LIKELIHOOD ESTIMATION 657

with simulation results known for the unconstrained approach, the constrained
approach, and the GAPI approach.

Quasi-ML Versus LMS (Studies I, II, and III)

The LMS method is a full information maximum likelihood approach which
assumes that the Ÿ-variables are normally distributed. The normality assumption
might be too rigid in practice when empirical data sets are analyzed. LMS is
based on the expectation-maximization (EM) algorithm, and it becomes com-
putationally very intensive for more complex models with multiple interaction
terms because it heavily relies on multidimensional numerical integration, and
the dimensionality of the integration depends on the number of predictor vari-
ables involved in the latent product terms. Quasi-ML only assumes that the con-
ditional distribution of the latent criterion given the x-variables can be approx-
imated as a normal distribution. Quasi-ML can be expected to be more robust
than LMS, when the normality assumption for the Ÿ-variables is violated. For
Quasi-ML the computational complexity does not increase significantly when
multiple product terms are involved in the nonlinear part of the model. This ex-
pected difference in robustness between Quasi-ML and LMS may become even
more evident when a complex model is analyzed. Apart from the potential ro-
bustness problem for LMS stays the question whether Quasi-ML is as efficient as
the ML estimator of LMS when the distributional assumptions are met and only
a simple model is analyzed. To investigate this, we conducted three simulation
studies: First, we repeated the two studies described in Klein and Moosbrugger
(2000, p. 468) for an elementary interaction model with exactly the same param-
eter values and simulation conditions and then analyzed the simulated data sets
with Quasi-ML. For the first study (Study I), data were generated according to
the normality assumption. For the second study (Study II), we investigated the
robustness, and data were generated for the same elementary interaction model
as in Study I, but with the distributional assumptions violated. In Study II, the
nonnormal data were generated exactly as described in Klein and Moosbrugger
(2000, p. 469). For the generation of the nonnormal data, the EQS program was
used, which allows the specification of values for skewness and kurtosis for data
generation of variables. In this way, the data for the exogenous variables were
generated in EQS, and then the data for the observed variables were computed
from these according to the model equations, using a Pascal program. An ex-
ample of an EQS data generation file for skewed data can be downloaded under
https://netfiles.uiuc.edu/agklein/QML/ or by contacting Andreas G. Klein. For
the third study (Study III), we conducted a robustness study for a complex model
with three latent interaction terms with distributional assumptions violated and
then analyzed data sets both with Quasi-ML and LMS.
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For Studies I and II, an elementary interaction model with the following
structural equation was selected:

˜t D ’ C ”1Ÿ1t C ”2Ÿ2t C ¨12Ÿ1tŸ2t C —t : (7)

The following parameter values were selected: ’ D 1:00, ”1 D 0:20, ”2 D

0:40, ¨12 D 0:70, ¥11 D 0:49, ¥21 D 0:235, ¥22 D 0:64, œx21 D 0:60, œx42 D
0:70, § D 0:20. The predictor variables Ÿ1t , Ÿ2t were measured by two x-
variables each; Ÿ1t was measured with reliabilities .49, .22, and Ÿ2t was measured
with reliabilities .64, .38. The criterion variable ˜t was measured by one y-
variable without error: yt D ˜t . The selection of ¨12 D 0:70 gives a model
where the percentage of variance of ˜ explained by the interaction term is
33%, which is a very large interaction effect under substantive considerations.
Thus, the study tested the performance of the method for an extremely nonlinear
model. The reliabilities were selected to be not very high in order to evaluate the
performance of the method under reasonably difficult conditions. The specified
model has 14 parameters and five indicator variables. It has been investigated
before by Jöreskog and Yang (1996), Schermelleh-Engel et al. (1998), and Klein
and Moosbrugger (2000). For Study I, the data for the latent exogenous variables
were generated according to the normal distribution. For Study II, the data for
the latent exogenous variable Ÿ1 were generated using EQS (Bentler, 1995) with
a skewness of �2.0 and a kurtosis of 6.0; the data for the latent exogenous
variable Ÿ2 were generated with a skewness of C1.5 and a kurtosis of 5.0. The
endogenous error variables were simulated as normally distributed variables in
both Studies I and II. In Studies I and II, 500 data sets of sample size N D 400

for the five indicator variables were then generated, according to the model
equations. The data sets were then analyzed with Quasi-ML. For computation
of Quasi-ML standard errors, the observed Fisher information was used. Table 1
shows the simulation results for Quasi-ML in Studies I and II in comparison
with the results previously published for LMS (Klein & Moosbrugger, 2000,
pp. 468, 470; Schermelleh-Engel et al., 1998). We restrict the report of the
simulation results to the three structural parameters of interest, ”1, ”2, and ¨12.
Under the normal condition (Study I) both Quasi-ML and LMS showed virtually
unbiased estimates and a relative bias within ˙3% around the true values across
all parameters. Under the nonnormal condition (Study II), the parameters not
listed in Table 1 showed a relative bias within ˙12% for Quasi-ML and within
˙22% for LMS, suggesting that Quasi-ML is more robust against the violation
of the distributional assumption.

In Table 1, under the nonnnormal condition (Study II), a bias for the pa-
rameter estimate of ”1 is noticed for both methods, due to the skewness of the
predictor variables. In the model simulated in Study II, the variance proportion
of ˜ explained by the interaction term 0:7Ÿ1Ÿ2 is 31%, which is an extremely
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TABLE 1

Estimation Results of Studies I and II for the Elementary Interaction Model

With One Latent Interaction Effect (Equation 7)

Quasi-ML Quasi-ML

(Study I, Normal Condition) (Study II, Nonnormal Condition)

500 Replications, N D 400 500 Replications, N D 400

True

Value M SD SE SE/SD M SD SE SE/SD

”1 0.200 0.206 0.071 0.069 0.97 0.065 0.096 0.090 0.94
”2 0.400 0.395 0.063 0.062 0.98 0.409 0.077 0.072 0.94
¨12 0.700 0.694 0.111 0.110 0.99 0.668 0.122 0.113 0.93

LMS (Normal Condition) LMS (Nonnormal Condition)

(Study I, Normal Condition) (Study II, Nonnormal Condition)

500 Replications, N D 400 500 Replications, N D 400

True

Value M SD SE SE/SD M SD SE SE/SD

”1 0.200 0.196 0.064 0.065 1.02 0.067 0.100 0.077 0.77
”2 0.400 0.411 0.061 0.061 1.00 0.394 0.069 0.061 0.88
¨12 0.700 0.698 0.094 0.102 1.09 0.729 0.154 0.110 0.71

Note. In both studies, 500 data sets of sample size N D 400 were analyzed with Quasi-ML.
The columns give for every model parameter the true value, the mean (M) of parameter estimates,
the Monte-Carlo standard deviation (SD) of parameter estimates, the mean of estimated standard
errors (SE) across all data sets, and the SE/SD ratios.

strong interaction effect compared with what is typically found in empirical
studies (Jaccard & Wan, 1995). The reason for the bias lies in the fact that
the variance function specified within Quasi-ML becomes incorrect when there
is considerable skewness of the predictors involved the interaction term. Other
studies not reported here revealed that the bias for a parameter appears only in
the situation of strong skewness of the predictors in combination with a very
strong interaction effect. In this case, the user of Quasi-ML should be aware of
a possible bias. For a future improvement of Quasi-ML it is planned to modify
the variance function appropriately to accommodate this special situation.

Under the normal condition (Study I), the Monte-Carlo standard deviations
(SD) are somewhat smaller for LMS than they are for Quasi-ML. The largest dif-
ference occurs for ¨12, with SD.¨12/LMS being 15% smaller than SD.¨12/Quasi-ML.
This matches the expectation of the possibly somewhat lower efficiency of Quasi-
ML under the normal condition because Quasi-ML is only an approximate ML
estimator. But the simulation results under the nonnormal condition (Study II)
show that in case of violated distributional assumptions, Quasi-ML clearly pro-
vides a more efficient estimation of the interaction parameter ¨12 than LMS does.
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Here, SD.¨12/LMS is 26% larger than SD.¨12/Quasi-ML. The results further show
that for Quasi-ML the standard errors are estimated without any critical bias:
The SE/SD ratios for Quasi-ML are all close to one, whereas for LMS the ratio
has an undesirably low value of 0.71 for ¨12.

The robustness of the Quasi-ML method in terms of bias, Type I error, and
power was further examined by repeating the robustness study (Study II) with
different values for the interaction parameter (¨12 D 0:0, 0.1, 0.2, 0.7), while all
other conditions of Study II were held constant. For the study with ¨12 D 0:0,
the bias was 0.03 for ¨12, for the studies with ¨12 D 0:1, 0.2, the relative bias
across all parameters lay within ˙7%, ˙8% around the true value, respectively.
This suggests that the bias under violation of the normality assumption does not
become very large when the interaction effect size is not of an extreme size. Also,
the robustness of the likelihood ratio test for testing the interaction parameter
¨12 against zero was investigated in these studies. The observed Type I error/
power for Quasi-ML under the four conditions was 6.5%, 46.5%, 88.0%, and
100.0% under the conditions ¨12 D 0:0, 0.1, 0.2, 0.7, respectively. These values
give the rates of data sets for which the test was significant at the 5% Type I error
level in the simulation studies. For LMS the observed Type I error/power was
10.4%, 48.0%, 93.5%, and 100.0%, respectively (Klein & Moosbrugger, 2000).
Thus, with 6.5% the Type I error for Quasi-ML is not substantially inflated
as compared with a more inflated Type I error of 10.4% for LMS. Under the
conditions studied, the likelihood ratio test is more robust for Quasi-ML than it
is for LMS. Altogether, Study II indicates that when the normality assumption
is violated, Quasi-ML is more robust than LMS. For Study III, a complex model
with multiple nonlinear effects was selected:

˜t D ’ C ”1Ÿ1t C ”2Ÿ2t C ”3Ÿ3t C ¨12Ÿ1tŸ2t

C ¨13Ÿ1t Ÿ3t C ¨23Ÿ2tŸ3t C —t :
(8)

The following parameter values were selected: ’ D �0:05, ”1 D 0:30,
”2 D 0:40, ”3 D 0:50, ¨12 D 0:10, ¨13 D �0:20, ¨23 D 0:20, ¥11 D ¥22 D

¥33 D 1:00, ¥21 D 0:30, ¥31 D 0:10, ¥32 D 0:20, œx21 D œx42 D œx63 D 0:70,
§ D 0:40. This model has three latent predictor variables, Ÿ1t , Ÿ2t , Ÿ3t , and
one latent criterion variable, ˜t . The predictor variables Ÿ1t , Ÿ2t were measured
by two x-variables each, which had reliabilities of .70 and .53. The criterion
variable ˜t was measured by one y-variable without error: yt D ˜t . The model
includes three latent interaction effects among the predictor variables. The struc-
tural coefficients ¨12, ¨13, ¨23 were selected to have opposite signs and represent
relatively small effects to give a more realistic situation than in Studies I and II.

In Study III, it was of particular interest to see how precisely the Quasi-
ML method estimates and separates small multiple nonlinear effects of opposite
signs. For Study III, the data for the latent exogenous variables Ÿ1t , Ÿ2t , Ÿ3t
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were generated nonnormally using EQS with [skewness, kurtosis] D [�1.5, 4.0],
[1.5, 5.0], [0.5, 5.0], respectively. The endogenous error variables were all sim-
ulated as normally distributed variables. The specified model has 23 parameters
and seven indicator variables. Two hundred fifty replications of data sets with
sample size N D 400 were generated using the model equations and then ana-
lyzed with the Quasi-ML method and the LMS method. The computational com-
plexity of this model under LMS is already large and requires two-dimensional
numerical integration; it can grow exponentially with the number of additional
interacting predictor variables added. For Quasi-ML, the computational complex-
ity mainly increases linearly with the number of parameters. For computation
of Quasi-ML standard errors, the observed Fisher information was used. The
estimation results for the structural parameters are given in Table 2.

The results show no substantial bias for Quasi-ML, but for LMS the estimates
for ”2 and ¨12 are biased. For all six structural parameters, the Monte-Carlo stan-
dard deviations (SD) are all equal or less for Quasi-ML than they are for LMS,
so Quasi-ML produces at least as efficient estimates as LMS. For the estimation
of ¨23, Quasi-ML is clearly more efficient than LMS. The Monte-Carlo standard
deviations are estimated with little bias for Quasi-ML, because the SE/SD ratios
lie between 0.90 and 1.08. Opposed to this, the study reveals a clear underesti-
mation of the Monte-Carlo standard deviations for LMS, for which the SE/SD

ratios lie between 0.75 and 0.93. Altogether, Study III indicates that Quasi-ML
is the more robust technique: it shows no substantial bias, is as efficient as LMS,

TABLE 2

Estimation Results of Study III for a Complex Interaction Model

With Three Latent Interaction Effects (Equation 8)

Quasi-ML LMS

(Study III, Nonnormal Condition) (Study III, Nonnormal Condition)

250 Replications, N D 400 250 Replications, N D 400

True

Value M SD SE SE/SD M SD SE SE/SD

”1 0.300 0.296 0.056 0.057 1.02 0.264 0.057 0.053 0.93
”2 0.400 0.401 0.062 0.060 0.97 0.462 0.062 0.055 0.89
”3 0.500 0.493 0.062 0.057 0.92 0.504 0.066 0.055 0.83
¨12 0.100 0.094 0.062 0.056 0.90 0.023 0.065 0.049 0.75
¨13 �0.200 �0.210 0.059 0.064 1.08 �0.219 0.065 0.060 0.92
¨23 0.200 0.225 0.055 0.057 1.04 0.230 0.071 0.055 0.77

Note. Two hundred fifty data sets of sample size N D 400 were analyzed with Quasi-ML and
LMS. The columns give for every model parameter the true value, the mean (M) of parameter esti-
mates, the Monte-Carlo standard deviation (SD) of parameter estimates, and the mean of estimated
standard errors (SE) across all data sets, and the SE/SD ratios.
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and provides more accurate confidence interval estimates for the structural pa-
rameters in this complex model, where the distributional assumptions for the
predictor variables have been violated.

Quasi-ML Versus Other Approaches (Study IV)

Marsh et al. (2004) conducted a comprehensive simulation study where the
performances of four methods developed for latent interaction models were
compared: the unconstrained approach (Marsh et al.), the constrained approach
(Marsh et al.), the generalized appended product indicator (GAPI) approach
(Wall & Amemiya, 2001), and the Quasi-ML method (Vers. 1.31). In a complex
simulation design for a model with two predictors, one latent interaction term,
and nine indicator variables, they varied interaction effect size, sample size, cor-
relation among predictor variables, and the distribution type of the endogenous
variables in data generation. Interaction effect size was varied across two levels
(¨12 D 0, 0.2), sample size was varied across three levels (N D 100, 200, 500),
correlation was varied across two levels (¥12 D :3, .7), and distribution type was
varied across three levels (normal, uniform, chi-square (df D 6)). Somewhat un-
common, for the nonnormal conditions not only the latent predictors but also
the error variables were simulated according to the nonnormal distribution type,
which results in severe violation of normality in particular under the condition
“chi-square.” This resulted in a simulation design with 36 conditions. Under
each condition, they generated 250 replications of data sets. For the details of
their study and design, we refer to Marsh et al.

For this article, we chose to repeat their simulation design using Quasi-ML
(Vers. 2.61) and compare it to their results reported for the other methods. For the
standard errors reported by Marsh et al. (2004), who used Quasi-ML (Vers. 1.31),
the expected Fisher information was used because no other options were avail-
able at that time. Version 2.61 now uses improved standard errors based on
the observed Fisher information. Also, we applied the likelihood ratio test in
Quasi-ML for testing the interaction parameter against zero. We repeated their
study for Quasi-ML (Vers. 2.61) for N D 200 under the remaining 12 condi-
tions of their design. We generated the data according to their instructions given
and then re-analyzed the data sets with Quasi-ML (Vers. 2.61). The results of
our simulation study for Quasi-ML are given in Table 3 and compared with the
results taken from Marsh et al. Only the results for the interaction parameter
are given here, and Table 3 has a format similar to Tables 6, 7, and 8 given by
Marsh et al. and can thus be directly compared. From the bias and the standard
deviation (SD) of estimates, the root mean squared error (RMSE) was computed:

RMSE D
p

Bias2 C SD2. The RMSE is the square root of the expected squared
loss around the true parameter value. It is a suitable measure to compare the
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TABLE 3

Quasi-ML Estimation Results of the Repeated Simulation Study for a Latent Interaction

Model With One Interaction Parameter ¨12

!12 D 0 !12 D 0:2

Approach TI Error RMSE SE/SD Power RMSE SE/SD

N D 200, Normal Condition, �12 D :3, see Marsh et al., (2004), Table 6

Unc .032 .125 .84 .49 .144 .80
Con .056 .114 .88 .51 .123 .84
GAPI .056 .128 .87 .46 .144 .81
Quasi-ML .073 (.106) .095 (.100) .96 (.80) .60 (.60) .112 (.110) .86 (.86)

N D 200, Normal Condition, �12 D :7, see Marsh et al., (2004), Table 6

Unc .049 .084 .91 .69 .107 .82
Con .048 .081 .93 .71 .098 .86
GAPI .040 .091 .91 .66 .114 .83
Quasi-ML .056 (.141) .076 (.073) .96 (.74) .84 (.84) .085 (.085) .93 (.89)

N D 200, Uniform Condition, �12 D :3, see Marsh et al., (2004), Table 7

Unc .044 .140 .86 .41 .175 .81
Con .060 .118 .86 .54 .115 .93
GAPI .060 .133 .88 .45 .146 .90
Quasi-ML .045 (.096) .093 (.101) 1.01 (.79) .62 (.61) .097 (.097) 1.03 (.98)

N D 200, Uniform Condition, �12 D :7, see Marsh et al., (2004), Table 7

Unc .044 .131 .91 .38 .149 .96
Con .072 .098 .86 .48 .100 .95
GAPI .048 .130 .92 .36 .147 .97
Quasi-ML .041 (.189) .078 (.083) 1.09 (.64) .56 (.67) .084 (.084) 1.11 (.94)

N D 200, Chi-Square Condition, �12 D :3, see Marsh et al., (2004), Table 8

Unc .032 .118 .92 .50 .159 .78
Con .032 .104 .99 .65 .115 .94
GAPI .036 .115 .96 .52 .140 .84
Quasi-ML .057 (.114) .091 (.106) 1.10 (.83) .79 (.78) .099 (.099) 1.12 (1.07)

N D 200, Chi-Square Condition, �12 D :7, see Marsh et al., (2004), Table 8

Unc .040 .088 .89 .77 .100 .87
Con .120 .091 .95 .95 .111 .85
GAPI .048 .086 .92 .77 .099 .88
Quasi-ML .085 (.201) .084 (.092) 1.08 (.76) .96 (.96) .104 (.104) 1.09 (1.03)

Results are taken from 250 replications of sample size N D 200 under twelve conditions (¨12 D 0, 0.2;
¥12 D :3, .7; distribution type D normal, uniform, chi-square (df D 6)). The simulation results for Quasi-ML
are compared with the results for the unconstrained (Unc) approach, the constrained (Con) approach, and the
generalized appended product indicator (GAPI) approach as given by Marsh et al. (2004). For Quasi-ML, the
results reported earlier by Marsh et al. are given in parentheses. The columns give for the interaction parameter:
the Type I error or power, the root mean squared error (RMSE), and the ratio between average estimated standard
error and Monte-Carlo standard deviation of estimates (SE/SD).
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precision of estimators across different methods because it combines bias and
standard error.

The relative bias of Quasi-ML for the parameters of the linear effects of the
two predictors was within ˙5% under all 12 design conditions. The bias for the
interaction parameter ¨12 under the conditions “¨12 D 0, normal” and “¨12 D 0,
uniform” was smaller than 0.01. The bias for ¨12 under the condition “¨12 D 0,
chi-square, ¥12 D :3” was 0.03, and under the condition “¨12 D 0, chi-square,
¥12 D :7” it was 0.05. The bias for ¨12 under the conditions “¨12 D 0:2,
normal” and “¨12 D 0:2, uniform” was smaller than 0.02. Under the conditions
“¨12 D 0:2, chi-square, ¥12 D :3” the bias for ¨12 was with 0.040 (D C20%)
somewhat larger, and under “¨12 D 0:2, chi-square, ¥12 D :7” it was again
larger with 0.065 (D C32%). Apart from the structural parameters, the relative
bias of all the other parameters was within ˙5% under all 12 design conditions.
The bias for ¨12 under the condition “¨12 D 0:2, chi-square,” for which the
violation of the normality assumption is most severe, is similar to the bias
found for Marsh’s constrained approach (Unc), where additional constraints are
imposed that are based on the normality assumption. To further validate the
results for Quasi-ML, other indicators such as root mean squared error (RMSE)
had to be investigated.

The results show that when the Quasi-ML simulation results are compared
with the results reported for Quasi-ML by Marsh et al. (2004), their results
under condition ¨12 D 0:2 could be replicated for power, RMSE, and SE/SD. But
under the condition ¨12 D 0 the new results obtained under Version 2.61 deviate
substantially from their results on Quasi-ML (Vers. 1.31). The new results do
not show any critical inflation of Type I error as reported by them, and the
Type I error for Quasi-ML does not substantially exceed the nominal level
of 5% for the test of the hypothesis H0: ¨12 D 0. Table 3 also shows that
under the condition ¨12 D 0:2, Quasi-ML clearly outperforms the other three
methods with respect to power across all distribution types. Also, when compared
with the other three methods, the RMSE is the lowest for Quasi-ML in 11 out
of the 12 conditions; only under the condition with ¨12 D 0:2, chi-square
distribution, ¥12 D :7, the RMSE for Quasi-ML is minimally larger than it is
for the unconstrained and the GAPI approach. Thus, the results of this particular
validation study indicate that Quasi-ML tends to give the most precise estimates
for the interaction parameter.

The results also show that the RMSE for Quasi-ML increases only very
moderately when the distributional assumptions are violated, with the largest
increase from 0.85 to 0.104 under the condition ¨12 D 0:2, ¥12 D :7. For
the SE/SD ratios, the table shows that the values for Quasi-ML lie between
0.86 and 1.12. Under the nonnormal distribution conditions, the Quasi-ML
standard errors based on the observed Fisher information tend to overestimate
the Monte-Carlo standard error up to 12%, whereas the other three methods
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tend to underestimate the Monte-Carlo standard error, with SE/SD ratios as
low as 0.78 for Unc, as low as 0.85 for Con, and as low as 0.84 for GAPI.
Although not displayed in Table 3, under the normal distribution condition,
the Quasi-ML estimates showed no indication of bias, in line with what was
previously stated by Marsh et al. (2004). Furthermore, under the normal dis-
tribution condition, the SE/SD ratios for Quasi-ML are closer to one than they
are for the other three methods, indicating that Quasi-ML gives more precise
interval estimates for the interaction parameter than the other three techniques,
when the normality assumption holds. Future simulation research with different
models, varied sample size, and varied degree of nonnormality in the variables
will decide if these primary results about the robustness of Quasi-ML can be
generalized.

EMPIRICAL EXAMPLE

This section covers an empirical example of an aging study in psychology for
a nonlinear latent variable model with two interactions, three quadratic effects,
and seven indicator variables. The empirical data set was collected by Thiele
(1998), who investigated age-related effects of coping strategies and the main-
tenance of well-being for middle-aged males. The sample size was 302, and
males in the age range from 35 to 64 years were examined. Starting from the
theory of primary and secondary control in life span development (Heckhausen
& Schulz, 1993) and the theory of assimilative versus accommodative coping
(Brandstädter & Renner, 1990), Thiele examined the impact of different cop-
ing strategies. He investigated the effect of subjectively perceived fitness (Ÿ1t ),
objective fitness (Ÿ2t ), and flexibility in goal adjustment (Ÿ3t ) on the level of
complaining about one’s mental or physical situation (˜t ). He formulated the
interaction hypotheses that the effect of flexibility in goal adjustment on the
complaint level is high when individuals have low values on the fitness scales
but that it is neutralized or weak for individuals with high values on the fitness
scales. For participants with a high level of subjective fitness, the flexibility
of goal adjustment is supposed to have only a small or negligible effect on
complaint level, whereas for persons with a low perceived availability of bodily
resources, the flexibility of goal adjustment is expected to be an important factor
for the level of complaining.

The interaction hypotheses can be modeled by including appropriate prod-
uct terms (Ÿ1tŸ3t and Ÿ2tŸ3t ) in a structural equation model. The interaction
model itself is nonadditive, and the alternative model is a model where the
predictor variables have only additive effects on the criterion, although these
additive effects are not necessary linear. Ganzach (1997) provides arguments to
include the quadratic terms of the interacting predictors in regression models
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with multiple interactions in addition to the interaction terms, in order to avoid
the estimation of artifactual interactions due to overlooked quadratic effects and
multicollinearity between interaction and quadratic terms. Therefore, we selected
the following nonlinear structural equation for analysis:

˜t D ’ C ”1Ÿ1t C ”2Ÿ2t C ”3Ÿ3t C ¨11Ÿ
2
1t C ¨22Ÿ

2
2t

C ¨33Ÿ2
3t C ¨13Ÿ1t Ÿ3t C ¨23Ÿ2tŸ3t C —t :

(9)

This initial model has five nonlinear effects. The subjectively perceived fitness
(Ÿ1t ) refers to the self-evaluation of the effectiveness with which one’s body is
functioning. It was measured by a split scale (x1; x2) of the Frankfurt self-
concept scales of bodily efficiency (Deusinger, 1998), and the construction of
the item split is described in detail by Thiele (1998). The objective fitness
(Ÿ2t ) refers to the objective level of fitness. It was measured by lung volume
(x3). Flexibility in goal adjustment (Ÿ3t ) addresses the fact that individuals are
more or less willing to adapt their goals to the limits given by their individual
physical situation or health condition, which refers to the coping style of a
person. The latent predictor variable Ÿ3t was measured by two subscales (x4; x5)
taken from a flexibility scale developed by Brandstädter and Renner (1990).
Sample items were asking about recovery from disappointments or if a person
gives up easily The complaint level (˜t ) was measured by two indicators (y1:
psychological complaints, sample items were asking about feelings of mental
exhaustion or having depressive symptoms; y2: psychovegetative complaints,
sample items were asking about dizziness or backache) given by the complaint
inventory of Degenhardt and Schmidt (1994). The data were z-standardized and
analyzed with the Quasi-ML method. The univariate skewness of the five x-
variables was between �0.33 and 0.01, their univariate kurtosis was between
�0.07 and 0.30.

Initially, the full model (8) with all five nonlinear effects was estimated, and
the estimates for the structural coefficients are listed in Table 4. For the measure-
ment model, the estimated communalities (percentage of explained variance) for
the seven observed variables were .91 for x1, .60 for x2, 1.00 for x3, .99 for
x4, .36 for x5, .67 for y1, and .75 for y2. The estimated correlations between
the three Ÿ-variables lay between �0.08 and 0.24. The analysis of the data set
revealed that the subjectively perceived fitness has larger linear and quadratic
effects than the objective fitness. A simultaneous interaction hypothesis (H0:
¨13 D ¨23 D 0) was tested using a likelihood ratio test statistic based on the
quasi-likelihood, which gave a significant result (¦2 D 7:25, p < :05, df D 2),
suggesting that there is significant interaction beyond the additive quadratic and
linear effects. However, the standardized estimates for ¨22 and ¨23 were rela-
tively small (0.029 and 0.08, respectively), and thus it was decided to modify and
re-estimate the model with now ¨22 and ¨23 being fixed to zero (see Table 4).
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TABLE 4

Parameter Estimates, Estimated Standard Errors, and Standardized Parameter Estimates

for the Structural Equation Parameters and the Variance of the Disturbance Term

Provided by the Quasi-ML Method

Initial Model Re-estimated Model

Parameter Estimate SE

Standardized

Estimate Estimate SE

Standardized

Estimate

”1 �0.389 0.068 �0.452 �0.393 0.067 �0.455
”2 �0.104 0.048 �0.126 �0.099 0.048 �0.120
”3 �0.225 0.058 �0.274 �0.223 0.052 �0.269
¨11 �0.051 0.030 �0.056 �0.047 0.029 �0.052
¨22 0.024 0.030 0.029 — — —
¨33 0.083 0.039 0.101 0.074 0.036 0.089
¨13 0.106 0.055 0.123 0.125 0.056 0.145
¨23 0.066 0.061 0.080 — — —
§ 0.384 0.081 0.572 0.396 0.075 0.582

In the re-estimated model, again the likelihood ratio test (H0: ¨13 D 0) gave a
significant result for the interaction effect (¦2 D 5:53, p < :05, df D 1) beyond
the quadratic and linear effects.

For the standardized solution of the re-estimated model, the negative sign of
”2 and the additive effects �0:455Ÿ1t � 0:052Ÿ2

1t and �0:269Ÿ3t C 0:089Ÿ2
3t indi-

cate the expected, generally negative relationship between the latent variables Ÿ1t ,
Ÿ2t , Ÿ3t , and ˜t : High values for subjective or objective fitness and high values for
flexibility in goal adjustment predict a low complaint level. However, the positive
sign of ¨13 indicates the expected direction of the interaction between subjective
fitness and flexibility in goal adjustment: Conditional on a high level of subjec-
tive fitness (Ÿ1t ), the effect of flexibility in goal adjustment (Ÿ3t ) on complaint
level (˜t ), which is given by the entire term Œ�0:269 C 0:145Ÿ1t �Ÿ3t C 0:089Ÿ2

3t ,
becomes smaller because the moderator function Œ�0:269C0:145Ÿ1t� gets closer
to zero and the variance of the term decreases. Analogously, at low levels of
subjective fitness the flexibility level of goal adjustment has a more substantial
impact on complaint level. Taking the high efficiency and the modeling capabil-
ities of the Quasi-ML method into account, the new estimation method can be
used to separate between multiple nonlinear effects among latent or observed
variables and to test a model with a block of interaction effects against an ad-
ditive quadratic model. If the model in (9) had been analyzed using one of the
product indicator approaches, a large number of products of indicators would
have been specified and made the estimation process very likely to be unsta-
ble because of sampling variation of and possible multicollinearity between the
product indicators.
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CONCLUSION

The Quasi-ML method proposed in this article has been developed for an ef-
ficient and computationally feasible estimation of multiple nonlinear effects in
structural equation models with quadratic forms. In the Quasi-ML approach,
the nonnormal density function of the joint indicator vector is approximated
by a product of a normal density and a conditionally normal density. For the
conditionally normal density, the concept of variance function models is applied.

The simulation studies carried out indicate that the Quasi-ML method is more
robust than the LMS method against the violation of distributional assumptions
(Studies II, III). When the distributional assumptions are met, Quasi-ML is
almost as efficient as LMS (Study I). Quasi-ML provides robust standard errors
for the structural parameters (Studies III, IV), and the likelihood ratio test for
Quasi-ML showed no substantial inflation even under nonnormal conditions
(Study II). Also, Quasi-ML can handle complex models with multiple nonlinear
effects (Study III and empirical example with five nonlinear effects) without
any computational problems. When compared with three alternative estimation
techniques, Quasi-ML estimates were overall more precise and standard error
estimates were less biased under the wide majority of the conditions studied
(Study IV). Also, Quasi-ML outperformed the alternative methods clearly with
respect to statistical power. Limitations of the Quasi-ML method arise when
a very large interaction effect size is combined with considerable skewness of
the latent predictors (Study II) or if both latent predictors and error variables
are considerably skewed (Study IV, “chi-square” condition): Under these special
conditions, parameter estimates for the structural parameters can be biased in
Quasi-ML.

The applicability of Quasi-ML was further demonstrated by an empirical
example, where a model with five latent nonlinear effects was estimated, and
a latent interaction was positively tested against an additive model with both
linear and quadratic effects. Based on the current state of research, Quasi-ML
seems to be an efficient, fairly robust, computationally inexpensive method that
can handle a wide range of nonlinear structural equation models. Future research
needs to be carried out to further investigate the practical applicability of the new
method and to further improve the robustness of Quasi-ML under the condition
of skewed variables.
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APPENDIX

Transformation of Indicator Vector

Because the latent criterion variable ˜t includes a quadratic form of normally
distributed variates, the indicator vector .x0

t ; y0
t/

0 is in general not normally dis-
tributed. But by an appropriate transformation, the indicator vector can be trans-
formed such that qCp�1 of the qCp components of the transformed vector are
normally distributed and only one component remains nonnormally distributed.
Let “ D .œy21; : : : ; œyp1/

0 be the ..p � 1/ � 1/ subvector of the free parameters
of ƒy , and let R D .�“; I.p�1//, where I.p�1/ is the ..p � 1/ � .p � 1// identity
matrix. Let ut D Ryt , so that ut D R©t . Then, according to the transforma-
tion theorem (Krickeberg & Ziezold, 1988), the density function f .x; y/ of the
indicator vector .x0

t ; y0
t/

0 is

f .x; y/ D f1.x; y1; Ry/ D f2.x; Ry/f3.y1 j xt D x; ut D Ry/; (10)

where f1.x; y1; u/ is the density function of the transformed indicator vector
.x0

t ; y1t ; u0
t/

0 , f2.x; u/ is the density function of .x0
t ; u0

t/
0, and f3.y1jxt D x;

ut D u/ is the conditional density function of y1t under the condition xt D x,
ut D u. The vector .x0

t ; u0
t/

0 is normally distributed, but y1t is nonnormally
distributed in general. The function f2 is a normal density, but the density f1

and the conditional density f3 are nonnormal in general.
The indicator variable y1t is a function of Ÿt , —t , and ©1t (see Equations 1, 2),

and the vector .x0
t ; u0

t ; Ÿ0
t ; —t ; ©1t/

0 is multivariate normally distributed. The vari-
able .y1jxt D x; ut D u/ can be formally written as a sum of its mean function
and a residual variable et.x; u/:

.y1t jxt D x; ut D u/ / EŒy1t jxt D x; ut D u� C et .x; u/: (11)

In Equation (11), EŒy1t jxt D x; ut D u� is the conditional expectation of y1t

given xt D x, ut D u.

Calculation of Mean and Variance Function

In this subsection, Equation (11) is further analyzed, and the conditional mean
EŒy1t jxt D x; ut D u� and conditional variance Var.y1t jxt D x; ut D u/ of y1t
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are derived. A straightforward application of a common result on the conditional
normal distribution (Longford, 1995) to the conditional distribution of y1t gives
the mean function and the following expression for the residual:

EŒy1t jxt D x; ut D u� D tr.�†1/ C ’ C �L1x C x0L0
1�L1x C L2u (12)

et.x; u/ / �tr.�†1/ C .� C 2x0L0
1�/z1t C z0

1t�z1t C e0t ; (13)

where the distribution of .x0
t ; u0

t ; z0
1t ; e0t/

0 and the parameter matrices L1, L2,
†1, †2 are given by

2

6

6

4

xt

ut

z1t

e0t

3

7

7

5

� N

0

B

B

@

0;

2

6

6

4

ƒX ˆƒ0
x C ‚• 0 0 0

0 R‚©R
0 0 0

0 0 †1 0

0 0 0 †2

3

7

7

5

1

C

C

A

; (14)

L1 D ˆƒ0
x Œƒxˆƒ0

x C ‚•�
�1; L2 D �™©11“

0ŒR‚©R
0��1; (15)

†1 D ˆ � ˆƒ0

xŒƒxˆƒ0

x C ‚•�
�1ƒxˆ;

†2 D § C ™©11 � ™2
©11“

0ŒR‚©R
0��1“:

(16)

By using Equations (13), (14), the conditional variance Var.y1t jxt D x;

ut D u/ can now be calculated. Equation (13) shows that the residual et.x; u/

does not depend on u. It is composed of the term .� C 2x0L0
1�/z1t C e0t ,

which is linear in z1t and e0t , and the quadratic term z0
1t�z1t . The linear and

the quadratic term are uncorrelated. This gives for the variance function of y1t ,

Var.y1t jxt D x; ut D u/ D Var.et .x; u//

D Var..� C 2x0L0

1�/z1t C e0t/ C Var.z0

1t �z1t/

D .� C 2x0L0
1�/†1.� C 2x0L0

1�/0

C †2 C Var.z0
1t �z1t/:

(17)

Both the conditional mean E.y1t jxt D x; ut D u/ and the conditional vari-
ance Var.y1t jxt D x; ut D u/ are polynomials of degree two of the components
of x. The variance Var.z0

1t �z1t/ is a constant that does not depend on x, and
the exact expression is computed by using a known result on expectation values
of products of normal variates (Busemeyer & Jones, 1983):

Var.z0
1t �z1t/ D

X

i;j;k;s

¨ij ¨ks.¢ij ¢ks C ¢ik¢js C ¢is¢jk/ � Œtr.�†1/�
2; (18)

where the ¨ij are the entries of � and the ¢ij are the entries of the covariance
matrix †1.


