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MAXIMUM LIKELIHOOD ESTIMATION OF LATENT INTERACTION EFFECTS 
WITH THE LMS METHOD 

A N D R E A S  K L E I N  AND H E L F R I E D  M O O S B R U G G E R  

JOHANN W O L F G A N G  GOETHE-UNIVERSITY,  FRANKFURT AM MAIN,  GERMANY 

In the context of structural equation modeling, a general interaction model with multiple latent 
interaction effects is introduced. A stochastic analysis represents the nonnormal distribution of the joint 
indicator vector as a finite mixture of normal distributions. The Latent Moderated Structural Equations 
(LMS) approach is a new method developed for the analysis of the general interaction model that utilizes 
the mixture distribution and provides a ML estimation of model parameters by adapting the EM algorithm. 
The finite sample properties and the robustness of LMS are discussed. Finally, the applicability of the new 
method is illustrated by an empirical example. 
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1. Introduction 

During the last two decades, the application of structural equation modeling (SEM) has be- 
come a common tool in the social and behavioral sciences, due to the fact that SEM integrates 
various statistical concepts (e.g., confirmatory factor analysis, path analysis, multiple regression, 
ANOVA, simultaneous equation models). The SEM approach makes it possible to analyze latent 
variable models, so that relationships between unobservable, latent variables can be formulated 
in structural equations and errors of the observed indicator variables are incorporated in measure- 
ment models. By the development of several software packages as EQS (Bentler, 1995; Bentler & 
Wu, 1993), LISREL (J~3reskog & SOrbom, 1993), or AMOS (Arbuckle, 1997), SEM has become 
available to a large community of researchers. 

In a structural equation, the latent variables are usually linearly related, that is, the latent 
endogenous variables are linear functions of the latent exogenous variables. But in some cases 
theory may suggest that the effect of a latent exogenous variable on a latent endogenous variable 
is itself moderated by a second exogenous variable. Then, in addition to the linear effects, a latent 
interaction effect becomes part of the latent model structure, which means that the slope of the 
regression of the endogenous variable on an exogenous variable varies with the realizations of 
a second exogenous variable, the 'moderator variable'. The interaction effect is implemented by 
including a product of latent exogenous variables in the structural equation. More general, latent 
interaction models involve nonlinear structural relationships including one or several products of 
exogenous variables in the structural equation. 

From the statistical standpoint, the nonlinear structural relationships have an important con- 
sequence for the distribution of variables which has been recognized (J6reskog & Yang, 1996) 
but has not yet been analyzed in detail. Even if all latent exogenous variables are normally dis- 
tributed, the distributions of the latent endogenous variables and their indicator variables are 
nonnormal. Depending on the size of the structural equation coefficients and covariances of the 
variables included in the nonlinear product terms, the multivariate distribution of the indicators of 
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latent endogenous variables deviates substantially from normality (Moosbrugger, Schermelleh- 
Engel & Klein, 1997). 

Ignoring the nonnormal distribution of indicator variables, the application of an estimation 
procedure can lead to different statistical problems: Either, if an estimation procedure is used 
under the assumption of multivariate normality, it must be robust against the type of nonnormality 
implied by latent interaction. Or, if an asymptotically distribution-free estimation method is used, 
it does not exploit the specific distributional characteristics of latent interaction models, which 
might lower the method's efficiency and power, especially when sample size is not very high. 

Several researchers have called for methods to estimate latent interaction effects in struc- 
tural equation models (Aiken & West, 1991; Cohen & Cohen, 1975; Jaccard, Turrisi & Wan, 
1990; Schmitt, 1990). Different approaches to the estimation of latent interaction models with 
continuous variables have been developed. Kenny and Judd (1984) were one of the first who 
proposed a model for the estimation of interaction effects in latent variables. The structural equa- 
tion included two latent exogenous variables and one latent product term to model the latent 
interaction effect. This model, henceforth called the "elementary interaction model," served as a 
prototype for the development of various estimation techniques. 

Hayduk (1987) established the estimation of the elementary interaction model in LISREL 
7-ML (J/3reskog & Si3rbom, 1989), using covariance structure analysis and maximum likelihood 
estimation for normally distributed indicator variables. For a correct model specification, Hayduk 
formed a measurement model for the latent product term by multiplying indicators of exogenous 
variables and introduced many phantom variables and nonlinear constraints for the model implied 
covariance matrix. Two-step approaches for LISREL 7-ML were developed to simplify the ardu- 
ous specification task of Hayduk's approach (Moosbrugger, Frank & Schermelleh-Engel, 1991; 
Ping, 1996a, 1996b). In the first step, Ping estimates the factor loadings and error variances of the 
measurement model and calculates loadings and error variances for products of indicators used 
as a measurement model for the latent product term. In the second step, the coefficients of the 
structural equation are estimated, whereas the parameters of the measurement model are fixed 
to their values calculated in the first step. But the application of the LISREL-ML procedures 
assumes multivariate normality of the indicator variables, and this assumption is violated in la- 
tent interaction models. Because products of indicators are formed to serve as indicators for the 
product term, the number of nonnormal variates is even more increased. In addition to violation 
of distributional assumptions, the two-step methods do not provide a simultaneous estimation of 
all model parameters. 

J/3reskog and Yang (1996, 1997) and Yang Jonsson (1997) used the nonlinear capacity of 
LISREL 8 (J/3reskog & Si3rbom, 1993) to implement the elementary interaction model. Thus, 
their approach avoids the multiple nonlinear constraints necessary for the phantom variables of 
Hayduk's method and, in contrast to the two-step approaches, establishes a simultaneous esti- 
mation of all model parameters. They propose LISREL-WLSA (weighted least squares based on 
the augmented moment matrix) as the asymptotically optimal method in LISREL, because it pro- 
vides asymptotically correct standard errors for the estimates. As LISREL-WLSA requires large 
sample sizes for establishing the asymptotic properties, they suggest that LISREL-ML could be 
used in many cases, although the assumption of multivariate normality is violated in LISREL- 
ML. It could be confirmed in simulation studies (Schermelleh-Engel, Klein & Moosbrugger, 
1998) that LISREL-ML estimates have no substantial bias in cases where the interaction effect 
is not too high and sample size is not too small. But the standard errors calculated by LISREL- 
WLSA or LISREL-ML often underestimate the true standard errors of the estimators, so correct 
testing of hypotheses cannot be expected for these methods, especially when sample size is too 
small. 

Bollen (1995, 1996) developed a two-stage least squares (2SLS) estimation method for 
structural equation models. The 2SLS approach establishes a non-iterative estimation proce- 
dure which provides consistent parameter estimators and permits significance tests by calculating 
standard errors for the estimates. In this method the indicator variables are allowed to originate 
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from nonnormal distributions. A simulation study with the 2SLS method confirmed relatively 
low bias for standard error estimates, which permits inferential statistics with acceptable Type I 
error. Still, the disadvantage of 2SLS lies in its low power and low efficiency, as shown by 
Schermelleh-Engel, Klein and Moosbrugger (1998). 

General methodological problems concerning the usage and interpretation of interaction 
models are described by Moosbrugger, Schermelleh-Engel and Klein (1997). Moreover, they 
give an overview on estimation methods for latent interaction models classifying their estimation 
characteristics. 

Klein, Moosbrugger, Schermelleh, and Frank (1997) presented an estimation procedure 
based on a complex analytical description of the distribution of indicator variables. The imple- 
mentation of this method was computationally intensive and slow with regard to computing time. 
The approach was restricted to the elementary interaction model and could not be generalized to 
more elaborate models. 

In this paper, a generalized latent interaction model and the "Latent Moderated Structural 
Equations" approach (LMS) is introduced 1, which implements a new ML estimation method 
especially developed for the distributional properties of this model. The new method is based on 
an analysis of the multivariate distribution of the joint indicator vector and takes the specific type 
of nonnormality implied by latent interaction effects explicitly into account. As a result, the j oint 
distribution of indicator variables is represented as a finite mixture of normal distributions. Model 
implied mean vectors and covariance matrices of the mixture components are derived and utilized 
for a maximum likelihood estimation of the model parameters. The mixture density function of 
the joint indicator vector is explicated in LMS, and the ML estimates are computed with the EM 
(expectation maximation) algorithm (Dempster, Laird & Rubin, 1977; Redner & Walker, 1984), 
which is adapted to the mixture density. Moreover, LMS enables the estimation of standard errors 
by calculating the Fisher information matrix according to general ML estimation theory. 

First simulation results and a comparison of LMS with LISREL and 2SLS with respect to 
the efficiency of the methods are given by Schermelleh-Engel, Klein and Moosbrugger (1998) 
for the analysis of the elementary interaction model. 

The contents of this paper are as follows: In section 2, we introduce the "general interaction 
model" with multiple interaction effects in matrix notation form. In section 3, the nonnormal 
distribution of the joint indicator vector is analyzed and the model implied mean and covariance 
structures of the appropriate mixture density are derived. In section 4, the computation of ML 
parameter estimates with the EM algorithm is explained. In section 5, the finite sample properties 
of the LMS estimators with respect to bias, efficiency, the model difference test, and the robust- 
ness are discussed. In section 6, the analysis of an empirical data set illustrates the applicability 
of the LMS method for research practice. 

2. The General Interaction Model 

Most approaches to the analysis of latent interaction models concentrate on the type of an 
elementary interaction model proposed by Kenny and Judd (1984) with one latent interaction 
effect. 

rl = ce + V1~1 + V2~2 + V3~1~2 + ~. (1) 

In this section, the concept of a general interaction model including multiple latent interactions 
is introduced, which allows not only the implementation of one interaction effect, but also the 
implementation of many interaction effects simultaneously 2. 

1The LMS method is developed as part of the doctoral thesis of Andreas Klein at J.W. Goethe-University, Depart- 
ment of Psychology, Frankfurt, Germany. 

2Because this paper focuses on the properties of interaction effects, we concentrate on a simplified structural equa- 
tion which is restricted to a one-dimensional latent endogenous variable r]. 
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In contrast to the elementary interaction model, the structural equation of the general inter- 
action model is enhanced by a quadratic form to include multiple latent interaction effects. Then 
the structural equation of the general interaction model is 

(2) 

where ~t is a (1 x 1) latent endogenous variable, c~ is an (1 x 1) intercept term, ~ is a (n x 1) 
vector of latent exogenous variables, F is the (1 x n) coefficient matrix giving ~'s impact on ~t, 
f~ is the (n x n) coefficient matrix giving the impact of  the product t e r m s  ~i~j ([ < j )  on ~, and 

is the (1 x 1) disturbance variable with E(g)  = 0 and Cov(G ~ )  = 0. Matrix f~ is assumed to 
be an upper triangular matrix with zeros in the diagonal: 

(i 12 / a = ' - (3) 
• • • 0 con- 1,n 
. . . . . .  

where o)ij = 0 for i > j .  The quadratic form ~"~,~" of  the structural equation (2) is nonlinear 
in the ~-variables and distinguishes the latent interaction model from ordinary linear SEMs. It 
includes product t e r m s  o)ij~i~j ([ < j )  which model the interaction effects between pairs of 
t-variables on the dependent variable rl. 

It is easily seen, that in the special case of two ~-variables and one interaction effect, the 
general model reduces to the following structural equation: 

(4) 

where o)12 equals the parameter V3 in the elementary model (see Equation (1)) described by 
Kenny and Judd (1984). 

The latent variables of the structural equation cannot be observed directly, they are measured 
with error via measurement models. In the general interaction model, the measurement equations 
for the latent variables are 

x = rx + A,,~ + ~, (5) 

y = ry -1- Ayrl + s, (6) 

where x is a (q x 1) vector of observed indicators of  ~, rx is a (q × 1) vector of  intercepts for 
x, Ax is a (q x n) factor loading matrix giving the impact of~ on x, and 8 is a (q x 1) vector of 
measurement errors. Similarly, y is a (p x 1) vector of observed indicators of ~1, ry is a (p x 1) 
vector of intercepts for y, Ay is a (p × 1) factor loading matrix giving the impact of  ~1 on y, 
and e is a (p x 1) vector of  meastLrement errors. The following assumptions on the variables are 
made: 

1. x is multivariate normal; 
2. 3, e are multivariate normal and mutually independent with E(8) = 0, E(e)  = O, 

Cov(& ~') = 0, Coy(e, ~') = 0; 

3. ~ is normal with E(~) = 0, Cov(G ~r) = 0, Cov(G 8r) = 0, and Cov(G s ~) = 0. 

The assumptions are comparable to that of J6reskog and Yang (1996) in their analysis of interac- 
tion models with LISREL-ML. In contrast to LISREI~-ML, the proposed LMS method does not 
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assume y to be normally distributed, because the normality assumption of LISREL-ML is not 
fulfilled for interaction models. For identification of the general interaction model, it is further 
assumed that the latent exogenous variables ~1, • • •, ~n are scaled by n variables among the indi- 
cators xl ,  • . . ,  xq, and that the latent endogenous variable rl is scaled by one variable among the 
indicators Yl, . . . ,  Yp. Each scaling variable is only influenced by a single latent variable (with 
factor loading set to one) and an error term. It should be noted that the model is not identified 
if  both the latent intercept term c~ and the intercept vector ry are free to be estimated; so at least 
one of them must be restricted. 

3. Distribution Analysis  of Indicator Variables 

In this section, we investigate the nonlinear variable relationships of the general interaction 
model and analyze the type of nonnormal distribution induced by latent interaction effects. As a 
result, it is shown that the distribution of the joint  indicator vector (x, y) can be represented as a 
finite mixture of multivariate normal distributions. To achieve this representation, the ~-variables 
are sorted for a separation of linear and nonlinear relationships and decomposed into mutually 
independent random variables zl ,  . . . ,  zn. The vector z = (zl,  . . . ,  zn) is partitioned into vec- 
tors X 1 and z2 in order to separate linear and nonlinear parts of the structural- and measurement 
equations. The subvector Zl is used to form an augmented random vector (Zl, x, y), and the den- 
sity of the augmented vector is derived. Then, the density of (x, y), which becomes the marginal 
density of the augmented vector, can be expressed as a continuous mixture of normal densi- 
ties. The model implied mean vectors and covariance matrices of the mixture components are 
derived in matrix notation form. Finally, the continuous mixture density developed for (x, y) is 
approximated by a finite mixture of normal densities. Hermite-Gaussian quadrature formulas of 
numerical integration are applied to calculate the appropriate mixture probabilities and mixture 
components for the finite mixture distribution. 

3.1. Nonnormality of rl and Joint Indicator Vector (x, y) 

In the measurement equation of the ~-variables (5), the indicator vector x and the vector 3 
of measurement errors are assumed to be multivariate normally distributed. Then it follows from 
the equations for the scaling variables among the xl ,  . . . ,  xq that ~ is multivariate normal. But 
if, under this assumption, interaction effects exist, then rl is nonnormally distributed, because the 
structural equation of rl (Equation (2)) contains the quadratic form ~ i ~ .  Since rl is measured 
by the indicator vector y, the indicator vector y is nonnormally distributed either. Therefore, the 
joint  indicator vector (x, y) is multivariate nonnormally distributed. 

Al l  model parameters are summarized in a parameter vector 0. In order to develop an ML 
estimation method for parameter vector 0, the distribution of the (q + p)  x 1 joint  indicator vector 
(x, y) = (xl . . . . .  xq, Yl . . . . .  yp) is analyzed in order to derive its multivariate density function. 
The characteristics of this nonnormal distribution have not yet been explored. 

3.2. Sorting of ~-Variables for Separation of Linear and Nonlinear Relationships 

The distribution analysis of the joint  indicator vector (x, y) starts from the equations of the 
general interaction model (i.e., (2), (5), (6)). The researcher is usually not interested in estimat- 
ing all possible interaction effects between pairs of latent exogenous variables. Therefore, some 
elements of the upper triangle of matrix ~ (see (3)) can be set to zero. Taking this into account, 
vector ~ is sorted so that the nonzero elements of ~ appear in its first k rows only and each of 
the first k rows contains at least one nonzero element: 
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l-I = 

/0 o)1,2 . . . . . . . . .  o~1,.'~ 

: " . .  " . .  

0 • • • 0 O a k , k + l  • • • O a k , n  

0 . . .  0 0 . . .  0 

0 . . .  0 0 . . .  0 

(7) 

Without loss of generality, vector ~ can always be sorted so that ~ has the appropriate form. 
Because after the sorting of vector ~ matrix l-I has nonzero elements in its first k rows only, we 
have i < k for the product t e r m s  o o i j ~ i ~ j  occurring in (2). Hence, the latent endogenous variable 
rl is linearly related to ~k+l . . . . .  ~n, but can be nonlinearly related to ~1 . . . . .  ~k. 

3.3. Decomposition o f  ~-Variables into Independent z-Variables 

Let @ = AA I be the Cholesky decomposition of the positive definite (n x n) covariance 
matrix @ of the normally distributed vector ~, where A is a (n x n) lower triangular matrix. 
With A assumed to be a lower triangular matrix, there is a one-to-one correspondence between 
positive definite covariance matrices @ and matrices A. Thus, for ML parameter estimation it is 
equivalent to estimate A instead of @. A is used for a decomposition of the ~-variables into n 
mutually independent variables z~, . . . ,  zn 

= Az ,  (8) 

where z = (zl . . . . .  zn) ~ is a (n × 1) standardized normally distributed random vector. The vectors 
and Az are identically distributed. 

3.4. Partitioning o f  z-Variables f o r  Separation o f  Linear and Nonlinear Relationships 

Vector z can be partitioned so that, with regard to the variables zl, • • •, zn of z, the linear and 
nonlinear parts of the structural- and measurement equations can be separated. For this purpose, 
a partitioned vector z is created, where zl = (zl . . . . .  zk) I and z2 = (zk+l . . . . .  zn / :  

Z = Z2 Z2 . 

The exogenous vector rl in the structural equation (2) is substituted by Az (i.e. (8)), the resulting 
expression is expanded for zl, z2 (with (9)), and the terms of z2 are collected: 

rl = a + F A z  + z~A~l-lAz + ( (10) 

Eol [] [o] [o 1] [o] [1 = a + F A  + F A  0 + AII-IA + AII-IA 0 
Z2 Z2 

+ [O21' A'I-IA [O1] + [zOl' A'I-IA [zO] + ( 

= (c~ + FA [ ~ 1  + [;II~AII-IA [ ; 1 1 ) +  ( F A +  [;1]~A~I-IA)[zOl + ~ . 

[o] 
The last identity holds because A~I-I equals the zero matrix. But l-I is not symmetric and 

f I A [ 0  lz2 isnonzero. T h e l a s t l i n e o f ( 1 0 )  showsthat r~is l inear inz2 ,  bu tnon l inea r inz l ,  which 
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implies that r~ is nonnormally distributed. For the measurement equations, the substitutions given 
by (8), (9), and (10) yield 

X = r x + A x ~ + 3  

= rx + A x A z +  3 (11) 

y = ry + Ayrl + e (12) 

+ 

Equation (11) shows that x is linear in Zl and z2, whereas (12) shows that y is linear in z2, but 
nonlinear in Zl. 

3.5. Derivation of Continuous Mixture Density of Joint Indicator Vector 

Vector Zl can be used to analyze the distribution of the joint indicator vector (x, y). For the 
multivariate normal distribution of z1, we have that 

Z 1 ~ N ( 0 ,  Ik), (13) 

where Ik is the (k x k) identity matrix. Because y is nonlinear in Zl, the distribution of y is non- 
normal. The joint indicator vector (x, y) is also nonlinear in Zl and therefore nonnormally dis- 
tributed, but it is linear in z2. Therefore, if values for Zl are given, the joint indicator vector (x, y) 
is linear in z2, that is, a linear combination of the normally distributed variables Zk+l, . . . ,  Z n. 
Thus, the conditional distribution of (x, y) I Zl is multivariate normal: 

(x, y) I Z1 ~ N ( # ( z 1 ) ,  ~ ( z 1 ) ) ,  (14) 

where #(Zl) denotes the (q + p) x 1 model implied mean vector and E (Zl) denotes the (q + p) x 
(q + p) model implied covariance matrix of the conditioned joint indicator vector (x, y) I Zl. 
They are functions of (k x 1) vector Zl and the model parameters 0. 

If  the subvector Zl is used to form the augmented vector (Zl, x, y), the density function 
of (x, y) can be derived. Following directly from the definition of conditional distributions, the 
distribution of (Zl, x, y) is the product of the distribution of Zl (i.e., (13)) and the distribution 
of (x, y) I Zl (i.e., (14)). The distribution of the joint indicator vector (x, y) equals the marginal 
distribution over Zl ---- (Zl . . . . .  zk) I and the resulting marginal density function f for (x, y) can 
be expressed as an integral over the k-dimensional real space R k. The density value for the 
realization (x = x, y = y) is 

f(x = x, y = y) = fRk @O'Ik (Z1)@I~(Zl)']~(Zl)(X' y) dzl.  (15) 

The integral describes a continuous mixture of (q + p)-dimensional normal densities 
q)~(Zl), E(Zl) with Zl as (k x 1) mixing vector. 

3.6. Model Implied Mean Vectors and Covariance Matrices of the Mixture Components 

In order to exploit (15) for a distribution analysis of the indicator variables, it is necessary to 
explicate the model implied mean vector #(Z1) and covariance matrix E (Z1) of the conditioned 
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joint indicator vector (x, y) ] Zl as functions of vector Zl. For notational purposes, mean vector 
and covariance matrix are partitioned: 

Fl*x(Zl)] (16) 
p,(Zl) = [p,y(Zl)J 

F~xx(Z1) ~]xy(Za)] (17) 
]~(Zl)= LX~y(Zl) ]~yy(Zl)]' 

where/~x(Zl)(q × 1) and/~ty(Zl)(p x 1) denote the model implied conditioned mean vectors of 
x I zl and y I Zl, respectively. The matrices Zxx(Za)(q x q), 2xy(Zl)(q x p), and Nyy(Zl)(p × p) 
denote the model implied conditioned covariance matrices of x given za and y given Zl in the 
appropriate order. 

Because (n x 1) vector z is assumed to be standardized normally distributed, the subvectors 
and submatrices of the model implied mean vector and covariance matrix can now be explicated 
by using (11) and (12) 

/~x(Zl) = rx + AxA [ ; 1 ] ,  

( []  El' []) /~y(Zl) =-cy+Ay c/+FA ~ + ;1 At~-~A ;1 , 

(: 0),, 
= A A x + 0,% EXX (Z1) AxA In-k 

( ° o ) (  I:] ) " '  0 FA + A~fIA Ay = ]~yx(Zl), ]~xy(Z1) = AxA In-k 

 ,y zl) + ['al A OA) (: in0_k) (F A  + [ O ] '  A ' I I A ) '  A~ 

(18) 

(19) 

(20) 

(21) 

(22) 

where the matrices O8 and Oe denote the covariance matrices of the error vectors ~ and e, 
respectively, g'l 1 denotes the variance of disturbance term ( .  

Summarizing the dependencies of the subvectors and submatrices with regard to Zl, it can 
be stated that submatrix gxx(Za) is independent of zl, whereas/~x(Zl) and Nxy(Zl) depend on 
the variables Zl, . . . ,  zk of zl linearly. In case of interaction, matrix f~ is different from zero 
matrix, and subvector/%(za) and submatrix ~yy(Zl) depend on the variables Zl . . . . .  zk of zl 
nonlinearly. 

For the case of the elementary interaction model, the model implied mean vectors and co- 
variance matrices are explicitly given by Schermelleh-Engel, Klein and Moosbrugger (1998). 

3. Z Approximation of Continuous Mixture Density by Hermite-Gaussian Quadrature Formulas 

Because of the nonlinear relationship mentioned above, the integral of the mixture density 
(15) cannot be solved analytically. Instead, the k-dimensional integral of (15) can be approxi- 
mated by numerical methods, for example, by application of Hermite-Gaussian quadrature for- 
mulas for numerical integration (Isaacson & Keller, 1966). To apply Hermite-Gaussian quadra- 
ture formulas, the integration variable zl is substituted by 

u = 2-1/2Zl, (23) 
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where u = (ul, . . . ,  Uk) I. Then, after inserting the k-dimensional standard normal density for 
~oo, ik (zl) and substituting zl, (15) changes to the following integral 

fR k -k/2 t fix = x, y = y) = rc e x p ( - u  u)q)/~(21/Zu),~(21/Zu)(X, y)  du  (24) 

f_ exp(-u 2 - k / 2  z * * oo" 2) . . .  exp(_uk) ~ (/)#(21/2U),~(21/2U) (X, y) dUl . . .  dUk. 

(25) 

The k-dimensional integral of (25) is approximated by iterated application (k times) of the 
Hermite-Gaussian quadrature formula, which approximates one-dimensional integrals with 
weight function e x p ( - u  2) in the integrand by finite sums (Isaacson & Keller, 1966). The 
quadrature formula provides M weights w j ( j  = 1 . . . . .  M )  and M ( k  x 1) node vectors 
v d (j = 1 , . . . ,  M) so that the density function f is approximated by a finite sum 

M 

f(x = x,  y = y) ~ ~ WjYr-k/2([?iz(21/evj), ]~(21/2vj) (X, y), (26) 
j = l  

where the choice of M determines the degree of exactness selected for the approximation. The 
weights and node vectors are derived analytically by quadrature theory for a choice of M and k. 
They are calculated independently of the model parameters and need not to be estimated (for lists 
of weights and nodes see Abramowitz & Stegun, 1971). The higher M is chosen for the quadra- 
ture, the more exact the approximation is. The accuracy of the approximation is not influenced 
by the model parameters. 

As a result, the finite sum (26) approximates the density function f of the joint indicator 
vector (x, y) as a finite mixture of M normal densities. Since the weights fulfil the condition 

M 

wjrc-k/e = 1, (27) 
j = l  

the t e r m s  w j z c - k / 2 ( j  = 1 . . . . .  M )  can be defined as mixture probabilities pj  ( j  = 1 . . . . .  M): 

pj  = w j r c - k / 2 ( j  = 1 . . . . .  M). (28) 

Using this definition, the expression for the density function (26) changes to the standard notation 
form for a finite mixture density: 

M 

f(x = x,  y = y) ~ ~ t)j([?iz(21/evj),]~(21/evj ) (X, y). (29) 
j = l  

For the case of the elementary interaction model, the mixture density is derived by Schermelleh- 
Engel, Klein and Moosbmgger (1998) as an example. In this case we have k = 1, and the choice 
M = 16 provides a sufficiently precise approximation. For k = 2, a choice of M = 24 node 
vectors provided a close approximation in simulation experiments. The higher k is, the more node 
vectors must be used for the approximation. Although interaction models with values of k greater 
than 2 have not yet been tested, k should be limited in size to about 4 or 5 for the implementation 
of LMS on present personal computers (e.g., Pentium 200 MHz). A more complete evaluation of 
this awaits further analytical research. 

4. ML Estimation 

A common approach to the ML estimation of parametric models with mixture densities is 
the application of the EM (expectation maximation) algorithm (Redner & Walker, 1984). Under 
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fairly general conditions, the EM algorithm provides an iterative estimation procedure that con- 
verges to a maximum likelihood estimation of the model parameters (Dempster, Laird & Rubin, 
1977). 

In the following, the adaptation of the EM algorithm for LMS is described. All model pa- 
rameters are collected in the parameter vector 0, and 0 (°) denotes the vector of starting values 
for the iterative algorithm. At the beginning of step r, the current value for parameter vector 0 is 
0 (r-l), and the new value 0 (r) is to be calculated. 

In the density function f (Equation 29), the parameter relations of the mean vectors and 
covariance matrices in the M mixture components are not independent  of each other, which 
involves a numerically more complicated situation for the EM algorithm than finite mixtures 
with independent  components. 

M denotes the number of mixture components selected for the approximation of the con- 
tinuous mixture density function f, and N denotes the sample size. Every iteration step consists 
of two subordinate steps, the expectation step and the maximation step. The expectation step is 
the calculation of the elements p(r) (j = j [ xi,  Yi) (i = 1 . . . . .  N;  j = 1 . . . . .  M )  of a (N x M) 
matrix p(r) containing the posterior probabilities for the mixture components j given the i-th row 
of the data matrix of joint indicator vector (x, y), where (xi, Yi) = (xi 1 . . . . .  xiq, Yil . . . . .  Yip): 

p(r)(j = j [ xi ,  Yi) IOj(D#(21/2vj),•(21/2vj)(Xi, Yi) 
= (30) 

f(x = xi,  y = Yi) 

A general derivation of (30) is given by Grim (1982). The numerator of Equation 30 is the density 
value of the j- th component of the finite mixture (29), and the denominator is the density value 
of (xi, Yi). For calculation of these values, the parameter vector 0 (r- 1) is used for computing the 
mean vectors 1~(21/2vj) and covariance matrices E (21~2v j )  with the argument values of the node 
vectors 21/2vj inserted for zl (see (18) to (22)). In contrast to covariance structure analysis, here 
LMS uses the full information of the raw data. The weights pj  and node vj vectors are derived 
analytically and need not to be estimated. 3 

The maximat ion  step is the calculation of the new parameter vector 0 (r) as the argument 
value of 0 which maximizes a sum weighted by the posterior probabilities computed in the ex- 
pectation step: 

0 (r) = argm;clx E E p ( r ) ( j  = j [x i ,Y i ) lnq)#(21/2v j ) ,2 (21/2v j ) (x i ,Y i )  , (31)  
i=1 j=l  

where 1~(21/2vj) and ~ ( 2 1 / 2 v j )  ( j  = 1 . . . . .  M )  on the right-hand side of (31) are functions of 
free parameter vector 0. A general derivation of Equation 31 is given by Grim (1982). For the 
calculation of 0 (r), numerical computation of partial derivatives and a straightforward application 
of the single step iteration method (Isaacson & Keller, 1966; Schwarz, 1993) for solving systems 
of nonlinear equations are used in LMS. The s e q u e n c e  [0(r)]r=0,1,2 .... provided by iteration of 

the EM steps converges to a ML estimation 0 of 0. 
For a flow chart which illustrates the different steps of the EM estimation procedure, see 

Moosbrugger, Schermelleh-Engel and Klein (1997). The EM algorithm is a computationally 
intensive procedure, and the parameter estimation with LMS (algorithm programmed in Delphi 
program code) on a personal computer (Pentium 200 MHz) typically needs from 10 to 60 EM 
iteration steps and from 5 to 60 seconds, depending on the model, sample size and starting values. 
The calculation of the standard errors is more complex and can require up to several minutes of 
computing time. 

3In a standard mixture analysis with unknown mixing weights, the average posterior probabilities equal the esti- 
mated mixing weights after the convergence of the EM algorithm, that is, the equality y~N p(j = j I xi, Yi)/N = fij 
holds. The equality is asymptotically true for the mixture analysis described here, where fij is replaced by the analytically 
derived mixing weight pj. 
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5. Properties of LMS Estimators 

In LMS, the density function of joint indicator vector (x, y) is represented as a finite mixture 
of normal densities, and LMS utilizes the model implied mean vectors and covariance matrices 
of the mixture components for an iterative estimation of the model parameters with the EM 
algorithm. Based on the distribution analysis of the joint indicator vector, LMS takes the non- 
normality of the distribution explicitly into account. It provides ML estimators, and their large 
sample properties are given by general ML estimation theory: they are consistent, asymptotically 
unbiased, asymptotically efficient, and asymptotically normally distributed. The standard errors 
for the LMS estimates can be computed from the Fisher information matrix, as follows from 
general ML estimation theory. For the elements of the Fisher information matrix, partial deriva- 
tives of the logarithm of the density function are used, and expectation values of this function 
are calculated. The expectation values are computed by using a simulated large sample which 
follows the distribution of the indicator vector given by the LMS parameter estimates. 

Moreover, again based on the density analysis of the general interaction model, one can 
carry out a model difference test for interaction hypotheses by calculating the likelihood ratio 
test statistic. In a model difference test, the loglikelihood for the interaction model (with free 
parameters in 12) is compared to the loglikelihood of a more restricted model (e.g., with all 
parameters in f~ set to zero). 

For the analysis of empirical data, LMS assumes that the specified interaction model holds 
and that the indicator vector x of the latent exogenous vector ~ is multivariate normally dis- 
tributed, which should be verified before using LMS. Unlike covariance structure analysis, LMS 
uses the raw data of indicator variables directly for estimation, and does not require the forming 
of any products of indicator variables. 

5.1. Bias and Efficiency 

The finite sample properties of LMS estimators have been examined in a Monte-Carlo study 
by Schermelleh-Engel, Klein and Moosbrugger (1998), where LMS was compared to three other 
estimation methods: LISREL-WLSA, LISREL-ML (JOreskog & Yang, 1996, 1997; Yang Jons- 
son, 1997), and 2SLS (Bollen, 1995, 1996). In the study, sample size and interaction effect size 
were varied at different levels in order to test the performance of the methods under different 
conditions. In this section, simulation results for the analysis of an elementary interaction model 
(4) with the following measurement equations are reported: 

/ xl)X2 t l~xzl 00 / ( ) (C~l 1 ~ 1  _1_ 82 
= 1 ~2 83 ' x3 ~00 X4 )2x42 84 

y =  ~. 

(32) 

(33) 

The elementary interaction model has 14 model parameters, and for data generation their values 
(see Table 1, column True Value) were taken from an example of JOreskog and Yang (1996). 
Using the PRELIS program (J~3reskog & S{3rbom, 1996), 500 data sets of sample size N = 400 
for the five indicator variables xb x2, x3, x4, y were generated. The data were generated with 
intercept vectors rx and ry set to zero. LMS, LISREL-WLSA, LISREL-ML, and 2SLS analyzed 
each data set separately, computing 500 estimates for every model parameter (with the exception 
of 2SLS, where only the parameters of the structural equation (a, ×1, ×2, o912) were estimated). 
For the analysis of the model, intercept vectors rx and r r did not need to be estimated. In the 
study, all methods provided unbiased parameter estimates, as the means of the estimates over 
all 500 data sets showed no substantial deviation from the true parameter values. Therefore, 
the means of the estimates are not reported here. The efficiency of the parameter estimators 
was examined by calculation of standard deviations (MC-SDs) of the distributions of estimates 
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"FABLE 1. 
Estimation results of a Monte-Carlo study for the elementary interaction model with one latent interaction effect 
(4). 500 data sets of sample size N = 400 were anMyzed with LMS, LISREL-WLSA, LISREL-ML, and 2SLS. 
The columns give for every model pm'ameter: lhe lrue value, the standard deviation of Monte Carlo parameter 
estimates (MC-SD), and the mean of estimated standard errors (Est-SE) over all 500 data sets. For the 
Hermite-Gaussian quadrature formula (26) M = 16 was chosen. 

LISREL- LISREL- 
LMS WLSA ML 2SLS 

True 

Parameter Value MC-SD Est-SE MC-SD Est-SE MC-SD Est-SE MC-SD Est-SE 

c~ 1.000 0.032 0.033 0.044 0.037 0.042 0.038 0.067 0.066 
V1 0.200 0.064 0.065 0.091 0.075 0.089 0.076 0.156 0.165 
Y2 0.400 0.061 0.061 0.079 0.( i )65 0.076 0.062 0.114 0.115 
¢o12 0.700 0.094 0.102 0.155 0.107 0.161 0.112 0.255 0.221 
411 0.200 0.025 0.024 0.094 0.101 0.050 0.039 - -  - -  
Lx21 0.600 0.092 0.099 0.136 0.085 0.121 0.079 - -  - -  
LX42 0.700 0.077 0.078 0.100 0.067 0.092 0.060 - -  - -  
q~ll 0.490 0.077 0.081 0.140 0.086 0.129 0.078 - -  - -  
~b21 0.235 0.044 0.040 0.058 0.032 0.049 0.031 - -  - -  
q522 0.640 0.087 0.086 0.115 0.074 0.110 0.068 - -  - -  
0~11 0.510 0.059 0.061 0.126 0.099 0.109 0.075 - -  - -  
0~22 0.640 0.050 0.054 0.091 0.068 0.060 0.039 - -  - -  
0~33 0.360 0.060 0.057 0.093 0.081 0.077 0.058 - -  - -  
0~4 4 0.510 0.046 0.047 0.078 0.067 0.052 0.036 - -  - -  

(see Table 1). In the study, the standard deviat ions of  the est imates (MC-SD)  indicated a higher  

eff ic iency for the L M S  parameter  est imators when compared  to the alternative methods.  

For  every  data set, each method  est imates also the standard errors for the parameter  esti- 

mates.  The  means  of  these est imated standard errors (Est-SE) were  computed  and compared  to 

the standard deviat ions o f  the est imates (MC-SD) .  In L M S ,  the means  of  these es t imated stan- 

dard errors (Est-SE),  calculated over  all 500 data sets, are very  close to the standard deviat ions 

calculated f rom the est imates  (MC-SD) .  Thus, the Monte -Car lo  study did not reveal  any substan- 

tial bias for the L M S  est imat ion o f  standard errors. Therefore ,  when L M S  analyzed a single data 

set, the es t imated standard errors for the parameter  es t imates  were  rel iable  measures  which could  

be  used for calculat ing conf idence  intervals and for testing o f  hypotheses  about  the parameters.  

The  L I S R E L - W L S A  method  tested in the study is asymptot ica l ly  distribution free, so 

there are no distr ibutional assumptions  violated when interaction models  are analyzed.  L I S R E L -  

W L S A  provides  consis tent  parameter  est imates,  but despite  o f  these theoret ical  properties,  

the application o f  this me thod  is l imited in practice:  The  results o f  the study showed that the 

eff ic iency of  the L I S R E L - W L S A  est imates  is low compared  to L M S  (see Table 1). Further,  

when Es t -SE  and M C - S D  are compared  for L I S R E L - W L S A ,  the standard errors are seriously 

underes t imated  for some parameters .  

The  L I S R E L - M L  approach provided  consistent  and unbiased parameter  estimates.  A l -  

though L I S R E L - M L  requires normally distributed indicator variables,  an assumption which is 

general ly  violated in interaction models ,  it could be used in cases where  the interact ion effect  

is not  too high and sample  size is not  too small.  ~I!ae means of  the standard errors g iven in 

L I S R E L - M L  outputs (Est-SE) often underes t imate  the Mon te  Carlo standard deviat ion (MC- 

SD) in Table 1. The  relat ive bias of  the standard errors rises with increasing interaction effect  

because  the normal i ty  assumption for the indicator variables is violated.  But also the corrected 

L I S R E L - M L  standard errors proposed  by J6reskog and Yang (1997) should not be  interpreted 

uncri t ical ly  for exact  inferential  statistics or conf idence intervals, because  in the s imulat ion study 

they often underes t imated  the true standard errors of  the method,  especial ly  when sample  size is 

small  or medium.  
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For the two-stage least squares (2SLS) approach proposed by Bollen (1995, 1996), only the 
parameters of  the structural equation were estimated. The simulation study showed a relatively 
low bias for standard error estimates, which allowed inferential statistics with acceptable Type I 
error. Still, the disadvantage of  2SLS lay in its low efficiency relative to the other methods exam- 
ined. In the study, the application of 2SLS required large sample size in order to provide efficient 
estimates for the detection of the interaction effect. 

The estimation results given in q~able 1 are representative for the large study of  Schermelleh- 
Engel, Klein and Moosbrugger (1998) with regard to bias and efficiency of  the LMS estimators. 
Summarizing the results of  that study, it can be stated that the LMS parameter estimators indi- 
cated to be the most efficient in relation to 2SLS and the LISREL approaches. 

5.2. Model Difference Test 

With a model difference test based on the likelihood ratio test statistic, the interaction model 
can be tested against a linear structural equation model. The test statistic asymptotically follows a 
)(2-distribution, but the distribution of the test statistic may differ for finite sample size. A simu- 
lation study was carried out to examine this problem. 800 data sets of sample size N = 400 were 
simulated for the elementary interaction model, with true values taken from Table 1. The linear 
model is given by restricting the interaction parameter o)12 (see (4)) to zero. Every data set was 
analyzed with LMS, providing a sample of 800 values for the test statistic. Pearson's goodness- 
of-fit test was carried out to test if this sample followed a x2-distribution with d.f. = 1. For 
the goodness-of-fit test, thresholds :for the theoretical )(2-distribution were calculated in order to 
form 20 categories of equal probability. Then frequencies of the 20 categories were computed 
from the sample. The result of Pearson's goodness-of-fit test statistic showed no significant de- 
viation of the sample statistics from the theoretical )(2-distribution (p = 0.42). For the model 
and sample size checked in this study, the model difference test allowed reliable testing of the 
interaction hypothesis. 

If  there are no interaction effects, the distribution of the indicator variables is multivariate 
normal under the assumptions of LMS. Then the models under the null and the alternative hy- 
potheses of the model difference test have different types of distributions which may affect the 
X 2-distribution of  the test statistic. As the result of the simulation study informed, this aspect had 
no impact on the distribution of  the likelihood ratio test statistic for the elementary interaction 
model used in the simulation study with sample size N = 400. 

5.3. Robustness 

The LMS method assumes the x-variables to be normally distributed, but what happens if 
these assumptions are violated? To check the robustnes of  the method, the following simulation 
study of  the elementary interaction model with nonnormal variables was conducted. The true 
values of the model parameters used for data generation were taken from Table 1, except the 
value for the interaction parameter (o12. Four interaction models with four different values of  
o)12(o)12 = 0.0, 0.1, 0.2, 0.7) were formed. In the first step, 200 data sets of  sample size N = 400 
for the 7 independent variables (~1, ~2, 31, 32, 33, 34, g) were generated with the EQS program 
(Bentler, 1995). The data for the latent exogenous variable ~1 were generated with a skewness 
of - 2 . 0  and a kurtosis of 6.0. The data for the latent exogenous variable ~2 were generated with 
a skewness of +1.5 and a kurtosis of 5.0. The 5 independent error variables (31, 32, 33, 34, ~) 
were simulated as normally distributed variables. In the second step, the 200 data sets of the 
5 indicator variables (Xl, x2, x3, x4, y) were computed for each of the four models separately, 
according to their model equations. The measurement models for the x-variables are identical 
in all four models. The skewness and kurtosis of the x-variables depend on their reliabilty. The 
skewness of xl, x2, x3, x4 is -0 .69 ,  -0 .21 ,  0.77, 0.35, respectively. The kurtosis of xl, x2, x3, 
x4 is 1.44, 0.29, 2.05, 0.72, respectively. 
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TABLE 2. 
Percentage of  significant test results of  the LMS model  difference test. The 
values are based  on a s imulat ion s tudy with tour  e lementary  interact ion 
models  and  nonnormal  indicator  variables. For  each of the four  models,  
200 data  sets of  sample  size N = 400 were  analyzed.  For  the 
Hermi te -Gauss ian  quadra ture  fo rmula  (26) M = 14 was chosen. 

LMS 
Significant model 

difference test results (in %) 

Model with o912 = 0.0 
Model with o912 = 0.1 
Model with 0912 = 0.2 
Model with 0912 = 0.7 

10.4% (Type I Error) 
48.0% (Power) 
93.5% (Power) 

100.0% (Power) 

The 200 data sets for each model were analyzed with LMS. A model difference test, which 

compares the interaction model to the linear model (witlh o)12 set to zero) was executed in LMS 

for every data set. The theoretical Type I error level of  the model difference test was set to 5%. 

Table 2 reports the percentage of  significant test results for the four models. 

As can be seen in Table 2, in case of the linear model with interaction parameter zero (o912 = 

0.0) LMS provided a significant model difference test in 10.4% of the data sets. Because of the 

nonnormality of the simulated x-variables, the Type I error level of the model difference test in 

the study here exceeds the theoretical 5% Type I error level. But, for the degree of nonnormality 

chosen in this study, there is no dramatic breakdown of the model difference test. 

In the model with o912 = 0.1, the interaction effect was detected in only 48% of the cases, 

because the size of the interaction effect is still relatively low. In the simulated data of the model 

with o912 = 0.2, the model difference test already provided a significant result in 93.5% of the 

data sets, although the variance of the interaction term (,~12~1~2 determined only 3.8% of the 

variance of simulated indicator y. Thus, this study gives some evidence that the LMS model 

difference test is still powerful in case of violated distributional assumptions. 

The robustness of LMS with respect to bias end efficiency of the estimates was checked for 

all four interaction models. It could be expected that the estimation for a model with a relatively 

high interaction effect size might become critical. The estimation results for the first three models 

(with o912 = 0.0, 0.1, 0.2) showed no substantial bias in the parameter and standard error esti- 

mates. The estimation results for the model with the highest interaction effect size (o912 = 0.7) 

are reported in Table 3 for the model parameters of  the structural equation (c~, 9/1, Y2, o912). This 

table gives for every model parameter: the mean of  the parameter estimates (M), the standard 

deviation of  parameter estimates (MC-SD), and the mean of  estimated standard errors (Est-SE) 

TABLE 3. 
Estimation results of a Monte-Carlo study for the elementary interaction model with one latent interaction effect 
(4). 200 data sets of sample size N = 400 were analyzed with LMS and 2SLS. The columns Nve for the listed 
model parameters: the true value, the mean of the paxameter eslimates (M), the standard deviation of parameter 
estimates (MC-SD), and the mean of estimated standard errors (Est-SE) over all 200 data sets. For the 
Hermite-Gaussian quadrature formula (26) M = 14 was chosen. 

LMS 2SLS 

Parameter True Value M MC-SD Est-SE M MC-SD Est-SE 

c~ 1.00 0.985 0.041 0.034 1.036 0.112 0.101 
Yl 0.20 0.067 0.100 0.077 0.073 0.299 0.309 
Y2 0.40 0.394 0.069 0.061 0.483 0.175 0.189 
o912 0.70 0.729 0.154 0.110 0.554 0.446 0.380 
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over all 200 data sets. The 200 data sets for this model were also analyzed with 2SLS (Bollen, 
1995, 1996), which is an estimation method that does not assume normally distributed indicator 
variables. 

Whereas the 2SLS estimates are biased for >'1, V1, and o)12, the LMS estimates show a 
substantial bias only for ?/1. When the estimated standard errors (Est-SE) are compared to the 
standard deviations computed from the estimates (MC-SD), the study informs that both methods 
underestimate the MC-SD for (o12. Relative to the size of MC-SD, the estimation of the standard 
errors by Est-SE provides smaller bias for 2SLS than for LMS. But absolutel>, the standard 
deviations of the parameter estimates (MC-SD) are between two and three times higher for 2SLS 
compared to LMS: With a mean (M) of 0.554 and a MC-SD of 0.446 for the 2SLS estimates of 
the interaction parameter oo12, compared to a mean (M) of 0.729 and a MC-SD of 0.154 for LMS 
in this study, 2SLS did not prove to be a powerful method for the detection of the interaction 
effect, whereas LMS clearly provided a more efficient parameter estimation. Future simulation 
research with different models, varied sample size and degree of nonnormality in the variables 
will decide if these primary results about the robustness of LMS can be generalized. 

6. Empirical Example 

This section covers an empirical example of LMS data analysis for an interaction model with 
one latent interaction effect and six indicator variables (xl, x2, x3, x4, Yl, Y2). We used data from 
Thiele (1998) who investigated age-related effects of coping strategies and the maintaining of 
well-being for middle-aged males. Part of Thiele's studies concentrated on the effect of flexibility 
in goal adjustment (~1) on the level of complaining about one's mental or physical situation 
(rl). He formulated an interaction hypothesis suggesting that the level of subjectively perceived 
fitness (~2) moderates this effect (aq2 /:  0). For persons with a high level of subjective fitness the 
flexibility of goal adjustment is supposed to have only a small or negligible effect on complaint 
level, whereas for persons with a low perceived availability of bodily resources, the flexibility of 
goal adjustment is expected to be an important factor for the level of complaining. Besides this 
interaction effect, the subjectively perceived fitness is assumed to have a linear additive effect on 
complaint level. The three variables are latent variables, and their relationship can be modeled 
by implementing (4): 

,~ = C* -4- (Yl Y2) ~2 q- (~'1 ~2) 2 ~1 ~2 -/- ¢, (34) 

= C~ -{- (~/1 "q- O12~2).~1 q- 1/2~2 -l- .(. 

The structural equation is rewritten in a form which shows that the total effect of~l on rl depends 
on a linear moderating function (V1 + a)12~2). ~II~e interpretation of ?/1 is one ,  reasonable as part 
of the moderating function (see Moosbrugger, Schermelleh-Engel & Klein, 1997, for a discussion 
of variable transformation problems in interaction models), which represents the variability of the 
total effect of ~1 on ~1, moderated by the level of ~2. 

The flexibility in goal adjustment (~1) refers to the coping style of a person and is indicated 
by a readiness to disengage from barren commitments, to adapt aspiration levels to feasible range 
and to find positive meaning in aversive events (accommodative mode of coping). The latent ex- 
ogenous variable ~1 is measured by splitting a flexibility scale from Brandst~dter and Renner 
(1990) into two subscales (xl, x2). ~l~e perceived fitness (~2) refers to the self-evaluation of the 
effectiveness with which one's body is functioning. It is also measured as a latent exogenous 
variable by splitting a scale of self-concept of bodily efficiency (Deusinger, 1998) into two sub- 
scales (x3, x4). The complaint level is measured by two indicators (psychological complaints Yl, 
psychovegetative complaints Y2) given by the complaint inventory of Degenhardt and Schmidt 
(1994), where Yl measures mental exhaustion and Y2 indicates psychovegetative complaints. The 
indicators xl, x3, and Yl are used as scaling variables for ~1, ~2, and rl, respectively, with factor 
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loadings set to one. Then the measurement model is given by 

lXl/x2 = t 1)vx21 010 i (  ) 1 3 1 1 ~ 2 ~ 1  _+_ 33g$2 (35) 13 100 
X4 '~x42 ~4 

( Y l )  ( 1 ) ( e l )  (36, 
Y2 = Xy21 I} + g2 ' 

For this elementary interaction model, a data set of sample size N = 304 %r the joint indicator 
vector (x, y) = (Xl, x2, x3, x4, Yl, Y2) was examined. The data were given in mean deviation 
form. q he  univariate skewness of the indicators xb  x2, x3, x4 was -0 .41 ,  -0 .34 ,  0.02, -0 .07 ,  
respectively. Furthermore, Mardia's coefficient for multivariate kurtosis of the indicator vector 
x (Mardia, 1970, 1974) was 0.55 with a critical ratio (kurtosis divided by standard error) of 
0.693. So the deviation of x from normality is not too high, and I,MS could be assumed to 
be robust against this degree of nonnormality (see section 5). The indicator vectors Yi and Y2 
were clearly nonnormal with univariate skewness of 1.23 and 0.92, respectively; their univariate 
kurtosis was 1.68 and 1.17, respectively. For the joint indicator vector (x, y), Mardia's coefficient 
for multivariate kurtosis was 4.43 with a critical ratio of 3.94, which indicates a substantial 
deviation from normality. 

The data of the indicator variables were transformed into standardized scores (with zero 
mean and standard deviation one) and analyzed by LMS. Table 4 gives the LMS parameter esti- 
mates, the estimated standard errors, and the transformed parameter estimates for a completely 
standardized model. 

TABLE 4. 
Parameter estimates, estimated standard errors, and parameter estimates for a completely standardized model 
provided by an LMS analysis of the elementary interaction model with six indicator variables and N = 304. For 
the Hermite-Gaussian quadrature formula (26) M = 14 was chosen. 

Parameter Estimate 
Parameter Estimated for Completely 

Parameter Estimate Standard Error Standardized Model 

c~ -0.036 0.045 -0.036 
V1 -0.215 0.061 -0.258 
V2 -0.457 0.067 -0.493 
o)12 0.176 0.059 0.189 
~11 0.411 0.061 0.598 
)vxll 1.000 - -  0.994 
)vx21 0.601 0.112 0.597 
Lx32 1.000 - -  0.894 
)~X4 2 0.893 0.087 0.798 
)VYl 1 1.000 - -  0.829 
)vY21 1.037 0.088 0.859 
~b 11 0.988 0.179 1.000 
q~21 0.210 0.055 0.236 
q522 0.799 0.105 1.000 
031~ 0.009 0.167 0.009 
0322 0.640 0.080 0.640 
0333 0.208 0.070 0.208 
{~344 0.367 0.061 0.367 
0C11 0.302 0.056 0.302 
0~22 0.250 0.057 0.250 



A N D R E A S  KLEIN A N D  HELFRIED M O O S B R U G G E R  473 

The negative signs of gl and V2 confirm the expected linear effects that the complaint level 
is low when goal adjustment is flexible or subjectively perceived fitness is high. The unstandard- 
ized interaction parameter estimate :5 = 0.176 with standard error SE(&12) = 0.059 yields the 
confidence interval [0.06, 0.29] for the 5% Type I error level. Therefore, the interaction parame- 
ter is significantly different from zero. The investigation of the standardized moderating function 
(}31 + d)12~2) = ( -0 .258  + 0.189~2) shows that the latent interaction neutralizes the effect of 
flexibility of goal adjustment ~1 on t/ if the subjectively perceived fitness ~2 has a high level, 
whereas for a low level of fitness the flexibility level of goal adjustment has a substantial impact 
on complaint level. 

Parallel to the LMS analysis, the empirical data set was analyzed with LISREL-ML. 
LISREL-ML provided the interaction parameter estimate (~)12 = 0.19 with standard error 
SE(&12) = 0.14. This yields the confidence interval [ -0 .08 ,  0.46] for the 5% Type I error level. 
Therefore, the estimate calculated by LISREL-MI,  is not significantly different from zero and 
the interaction effect cannot be detected in this case. 

Finally, a model difference test based on the likelihood-ratio test statistic for ML estimation 
confirms that the interaction model (model hypothesis t t l )  fits the data significantly better than 
a linear model with interaction parameter o)12 set to zero (model hypothesis Ho). The chi-square 

2 = 9.7 with p-vahle less than 0.01. In this empiri- value of  the model difference test w a s  Xdiff, d f =  1 

cal example, the high efficiency of  LMS estimators and the unbiased estimation of their standard 
errors provide a reliable device for the detection of latent interaction effects. 

7. Conclusion 

The LMS estimation procedure takes the distributional characteristics of the nonnormally 
distributed joint indicator vector in a latent interaction model explicitly into account. By analyz- 
ing the density function, the LMS approach implements an iterative ML estimation procedure 
tailored for the type of nonnormality induced by interaction effects and additionally gives theo- 
retical insight into the stochastic structure of latent interaction. Our simulation study suggests that 
the LMS parameter estimation is unbiased and more efficient than the estimation with alternative 
estimation techniques. Just as important, the estimation of standard errors in LMS showed no 
substantial bias which supports precise hypothesis testing of interaction effects. A model differ- 
ence test for LMS testing the interaction model against a linear model is obtained by applying the 
general likelihood ratio test statistic for ML estimators. A first simulation study indicates that the 
method is robust against moderate violation of its distributional assumptions. LMS seems to be 
a theoretically promising and practically adequate approach to the analysis of latent interaction 
effects. 
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