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· A procedure is described· that enables researchers to estimate nonlinear and in­
teractive effects of latent variables in structural equation models. Given that the 
latent variables are normally distributed, the parameters of such models can be 
estimated. To do this, products of the measured variables are used as indicators 
of latent product variables. Estimation must be done using a procedure that allows 
nonlinear constraints on parameters. The procedure is demonstrated in three dif­
ferent examples. The first two use artificial data with known parameter values. 
These parameters are successfully recovered by the procedure. The final complex 
example uses national election survey data. 

The use of structural models with latent or 
unmeasured variables (Bentler, 19 80; Maru­
yama & McGarvey, 1980) is increasing in the 
social sciences. Such models are useful because 
they allow us to estimate the coefficients · of 
linear models while controlling for the biasing 
effects of measurement error. One useful but 
oversimplified view oflatent variable structural 
models is that they involve two estimation 
procedures. First, an oblique factor analysis is 
performed. Second, the covariances among the 
resulting factors are entered into a multiple 
regression procedure. The estimation oflatent 
variable structural models can be viewed as a 
synthesis of factor analysis and multiple 
regression, with both estimation procedures 
conducted simultaneously. 

However, there are two features in esti­
mating the coefficients of linear models with 
multiple regression that are not available in 
latent variable models. With multiple regres­
sion, it is a relatively simple matter to estimate 
the nonlinear and interactive effects of pre­
dictor or exogenous variables. We do this by 
computing the appropriate product terms 
among the exogenous variables and then en-
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tering those products as predictors in a regres­
sion equation. Thus, if X and Z are viewed as 
exogenous variables that affect Y, we estimate 
the nonlinear effect of X on Y with the equa­
tion: 

Y = aX + bX2 + W, ( 1) 

and the interactive effects of X and Z on Y 
with the equation: 

Y = cX + dZ + eXZ + V. (2) 

In these equations a, b, c, d, and e are regres­
sion coefficients; W and V are the usual re­
sidual terms in regression equations. 

Models with interactions and nonlinear ef­
fects are quite common in psychology. Buse­
meyer and Jones ( 1983) have shown that there 
is currently no adequate procedure available 
to estimate interactive and nonlinear effects 
oflatent variables. They have also shown that 
the reliability of product terms tends to be 
less than the reliability of the component vari­
ables. Hence, a procedure to estimate nonlin­
ear and interactive effects of latent variables 
would be quite useful. 

The purpose of this article is to demonstrate 
such a procedure. That is, we show how the 
coefficients for Equations 1 and 2 can be es­
timated when X and Z, ·and consequently X 2 

and XZ, are unmeasured or latent variables. 
We first explain the estimation with simple 
nonlinear and interactive models, using com­
puter generated data to illustrate the tech­
niques. We then illustrate the procedure with 
a more complex example using national survey 
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data from the 1968 National Election Survey 
conducted by the Center for Political Studies 
at the University of Michigan. 

Nonlinear Effects 

We begin by showing how to estimate the 
coefficients of Equation 1 when X is a latent 
variable. The measured variables, X 1 and X 2 , 

are indicators oflatent variable X. In equation 
form, ' 

Xi= X + U1 (3) 

(4) 

with U1 , U2 , W, and X all uncorrelated, W 
being the residual in Equation 1. All variables 
are in mean deviation form. That is, the means 
of U1, U2 , W, and X are zero. 

To estimate the effects of the latent variable 
X2, we need to develop indicators of it. We 
can use the three possible products among the 
indicators of X as indicators of X 2

• Thus, 
Xf, X~, and X 1X 2 are all indicators of X 2

• 

These products can be expressed as functions 
of latent variables by taking the appropriate 
products of Equations 3 and 4: 

x 2 =x2 +2xu +u2 
1 1 1, 

x 2 = r2x 2 + 2-rxu + u2 
2 d· 2 2, 

X1X2 = JX2 + fXU1 + XU2 + U1 U2. 

(5) 

(6) 

(7) 

Equations 3 through 7 imply the loading ma­
trix contained in Table l. This matrix contains 
the loadings of the indicators on all latent vari­
ables. As can be seen, there. is only one free 
parameter or loading coefficient to be esti­
mated, that is, f, the loading of X 2 on X. All 
other nonzero loadings are either set at one 
or two or are functions. off. Thus, when the 
nonlinear indicators (Xy, X~, and X 1X 2) are 
included, no new loading coefficients need to 
be estimated. 

The loadings of the nonlinear indicators are 
derived by simple algebraic manipulations 
performed on Equations 3 and 4 without in-

. valving any additional distributional assump­
tions. The covariance matrix among the latent 
variables X, X 2

, U1, U2, Uy, Ut XU1 , XU2 , 

and U1 U2 , however, can be known only if we 
make further distributional assumptions. That 
is, different distributions of the latent variables, 
X, U1 , U2 , result in different covariance ma-

trices. Following Bohmstedt and Goldberger 
(1969) and Busemeyer and Jones (1983), we 
assume that the latent variables X, U1 , and 
U2 are normally distributed. Under this as­
sumption, it follows that 

<rj'2 = 2<r}; 01Jt = ·2<rt,; 

_2 2 - 2-4 . __2 2 2 • <rch - u u2, <rxu1 = ax~u, , 

aiu2 = oia't12; G1!1u2 = <r1u,01!2· 
It also follows that all covariances between the 
latent variables1 are zero (see Appendix). Given 
the normality assumption, with the previous 
assumptions that X, U1, and U2 are all un­
correlated with zero means, then the variances 
of all of the other latent variables are functions 
of oi, <r2u1 , and 01,2 • Thus, the model with 
nonlinear indicators of X 2 is in principle iden­
tified, because no new parameters need to be 
estimated outside of the effect on X 2 on Y, 

Although we have assumed that X, U1 , and 
U2 are normally distributed, latent variables 
that are products of these ( e.g., X 2

) cannot be 
normally distributed (Kendall & Stuart, 1958). 
A frequent assumption in estimating latent 
variable models is that all variables are nor­
mally distributed. Here this assumption clearly 
does not hold. Hence, we cannot use a pro­
cedure that estimates parameters by mini­
mizing a maximum likelihood loss function 
that assumes multivariate normality· of the la­
tent variables. For example, the maximum 

· likelihood estimation procedure of LISREL 
(Joreskog & Sorbom, 1981) is inappropriate. 
McDonald (1978) suggests that a reasonable 
alternative is a generalized least squares loss 
function. Therefore, we use a generalized least 
squares estimation procedure in which the 
weighting matrix is the inverse of the sample 
covariance matrix (Fraser, 1980). 

There is one further complication in the 
estimation. Nonlinear constraints must be put 
on the estimated parameters. For instance, 
bot~ f and f 2 must be estimated. Likewise, 
variances that are products of u}, <r1u,, and 

1 There is, throughout this article, the potential to con­
fuse the variance of a product variable, for example, 
o1,y, and the squared covariance of its components, for 
example, ai,Y• As shown, we differentiate between these 
two by using a comma between the component variables 
.inyolved in covariances; 
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Table 1 
Loading Matrix for Nonlinear Model 

Variable X xi Vi V2 

X1 1 0 1 0 
X2 f 0 0 1 
Xy 0 1 0 0 
Xi 0 f2 0 0 
X1X2 0 f 0 0 

cr2u2 must be estimated. McDonald (1978) de­
scribes a procedure for estimating latent vari­
able models that allows nonlinear constraints 
to be placed on the coefficients. Fraser (1980) 
has written the program ( COSAN) that imple­
ments McDonald's ideas. 

Example 

To illustrate the estimation, we used a ran-· 
dom number generator to create values for 
500 cases on the four latent variables, X, U1 , 

U2 , and W. These variables were generated so 
as to be uncorrelated, multivariate normal, 
with zero means and variances of 1.0, 0.15, 
0.55, and 0.20, respectively, in the population. 
From these four variables, we derived values 
for the 500 cases for X1 , X2, Xy, Xl, X1X2, 
and Y. In generating these values, the following 
coefficients were used: a= .25, b = -.50, and 
f= .60. Thus, the data were derived from the 
following set of population equations: 

and 

Y = .25X - .50X2 + W, 

X1 = X+ U1, 

X 2 = .60X + U2. 

Our task is to show that these coefficients can 
be recovered from the estimation procedure 
performed on the observed sample covariance 
matrix among X1, X2, X}, X~, X1X2, and Y. 
We assume that Y is perfectly measured. This 
assumption does not, however, limit the gen­
erality of the procedure. As we illustrate later 
in the example with real data, Y can also be 
a latent variable. 

The resulting sample covariance matrix 
among the observed variables is presented in 
Table 2. 

Using COSAN, the following generalized least 
squares estimates of the parameters were ob-

Vi VI XV1 XV2 V1U2 

0 0 0 0 0 
0 O· 0 0 0 
1 0 2 0 0 
0 1 0 2/ 0 
0 0 f 1 l 

tained: a = 0.247 b = -0.500 f = 0.624 ~ = 
0.989 oi,1 = 0.160 a-fh = 0.540 a2w = 0.199. 
It seems to us that the procedure recovered 
the coefficients quite accurately. 

Interactive Effects 

Interactions among latent variables are 
handled similarly to nonlinear effects. Indi­
cators of the interactions are formed, and their 
loading matrix is derived by simple algebra. 
The covariance matrix among the latent vari- . 
ables is derived under the assumption of mul­
tivariate normality. 

The interactive model of Equation 2 has Y 
affected by X, Z, and XZ. The latent variables 
X and Z have two indicators each. Their equa­
tions are 

X1 =X+ U1, 

X2 = gX+ U2, 

Z1 = Z + U3, 

Z2 = hZ + U4. 

(8) 

(9) 

(10) 

(11) 

The indicators of the XZ product latent vari­
able are 

X1Z 1 = XZ + XU3 + ZU1 + U1U3, (12) 

X1Z2 = hXZ + XU4 + hZU1 + U1 U4, (13). 

X 2Z 1 = gXZ + gXU3 + ZU2 + U2U3, (14) 

X 2Z 2 = ghXZ + gXU4 + hZU2 + U2U4. 
(15) 

Thus, there are a total of 15 latent variables: 
X, Z,XZ,XU3,XU4, ZU1, ZU2, Ui, U2, U3, 
U4, U1 U3, U1 U4, U2U3, and U2U4. The loading 
matrix for the 8 observed variables on these 
15 latent variables is contained in Table 3. 
This matrix appears complex; however, there 
are in fact only 2 free parameters to be esti­
mated: g and h. 
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Table 2 
Nonlinear Example: Observed Sample Covariance Matrix (N = 500) 

Variable x, X2 Xr x~ X,X2 y 

Xi 1.150 
X2 0.617 0.981 
Xr -0.068 -0.025 2.708 
x~ 0.075 0.159 0.729 1.717 
X1X2 0.063 0.065 1.459 1.142 1.484 
y 0.256 0.166 -1.017 -0.340 -0.610 0.763 

Assuming once again that X, Z, U1 , U2 , 

U3 , U4 , and V are all in mean deviation form, 
multivariate normal, and mutually uncorre­
lated with the exception of X and Z, the di­
agonal of the covariance matrix among the 
latent variables is 

<?xz = a2~ + o-l,z 
tJ1!1 U3 = at, a2u3 

tJ1!1 U4 = air1 tJ1!4 

tJ1!2U3 = air2D"I/3 

tJ1!2U4 = <Tf.r2D"If4 

u}U3 = <T.1'<l1;3 

ul,u4 = u}a2u4 

uiu1 = <?z.a2u, 

ulu2 = <?z.ai,2, 

where ux,z is the covariance of X and Z (see 
Appendix). The only nonzero covariance in 
the matrix is ax,z. Again, the program COSAN, 
using a generalized least ·squares loss function, 
can be used to estimate the coefficients of the 
model under these nonlinear constraints. 

Table 3 
Loading Matrix for Interactive Model 

Variable X z xz U1 U2 U3 U4 U1U3 

Xi 1 0 0 1 0 0 0 0 
X2 g 0 0 0 1 0 0 0 
Z1 0 1 0 0 0 1 0 0 
Z2 0 h 0 0 0 0 1 0 
X1Z1 0 0 1 0 0 0 0 1 
X,Z2 0 0 h 0 0 0 0 0 
X2Z1 0 0 g 0 0 0 0 0 
X2Zi 0 0 gh 0 0 0 0 0 

Example 

To ·illustrate the estimation, we once again 
generated values for 500 cases on the 7 latent 
variables X, Z, U1 , U2 , U3 , U4, and V. All 
variables were generated so that in the pop­
ulation they had means of zero and shared a 
multivariate normal distribution. All pairs of 
variables were uncorrelated in the population 
with the exception of X and Z, which were 
generated so that their correlation in the pop­
ulation was .20. The population variances for 
the 7 variables were 

o-l,=2.15 

UI/1 = 0.36 

<Tif3 = 0.49 

oi = 0.16 

u! = 1.60 

<TI!2 = 0.81 

<Tif4 = 0.64. 

From these latent variables, we derived val­
ues for the five hundred cases. for X 1 , X 2 , Z 1 , 

Z2, X1Z1 , X1Z:i, X2Z1, X2Z 2 , and Y. In gen-

U1U4 U2U3 U2U4 XU3 XU4 ZU1 ZU2 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 1 0 1 0 
1 0 0 0 1 h 0 
0 1 0 g 0 0 1 
0 0 1 0 g 0 h 
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Table 4 
Interactive Example: ·observed Sample Covariance Matrix (N = 500) 

Variable X1 Xi Z1 Zi 

Xi 2.395 
Xi 1.254 1.542 
z, 0.445 0.202 2.097 
Z2 0.231 0.116 1.141 1.370 
X1Z1 -0.367 -0.070 -0.148 -0.133 
X1Zi -0.301 -0.041 -0.130 -0.117 
XiZ1 -0.081 -0.054 0.038 0.037 
XzZi -0.047 -0.045 0.039 -0.043 
y -0.368 -0.179 0.402 0.282 

erating these nine observed variables, the fol­
lowing coefficients were used: c = - .15, d = 
.35, e = .70, g = .60, and h = .70. Thus, the 
data were derived from the following set of 
population equations: 

Y = -.15X + .35Z + .70XZ + V, 

Xi= X + U1, 

X2 = .60X + U2 , 

Z 1 = Z + U3 , 

Z2 = .70Z + U4. 

Once again, our task is to show that these 
coefficients can be recovered within the limits 
of sampling error from the estimation pro­
cedure performed on the observed sample co­
variance matrix. That matrix is contained in 
Table 4. 

Using COSAN, we obtained the following 
generalized least squares estimates of the free 
parameters: 

C = -0.169 
g = 0.646 
~ = 1.883 

CT1J1 = 0.428 
·. a2u

4 
= 0.552 

d = 0.321 
h = 0.685 

c?z = 1.654 
0"1Ji = 0. 721 
(Ti-= 0.265 

e = 0.710 

<Jx,z = 0.369 
0"1;3 = 0 .444 

Once again, the procedure seems to have re­
covered the generating coefficients. 

Complex Example 

We now study an example using real data. 
The reader should be forewarned that we are 
using a complex example to illustrate the full 
potential of the procedure. A number of re­
searchers in social psychology have recently 

X1Z1 X1Z2 XiZ1 X2Zi y 

5.669 
2.868 3.076 
2.989 1.346 3.411 
1.341 1.392 1.719 1.960 
2.556 1.579 1.623 0.971 2.174 

been interested in the extent to which voters 
misperceive the positions espoused by political 
candidates (e.g., Granberg & Brent, 1974; 
Granberg & Seidel, 1976; Judd, Kenny, & 
K.rosnick, 1983; Kinder, 1978). More specif­
ically, they have examined whether voters as­
similate and contrast the positions of candi­
dates whom they either like or dislike. Assim­
ilation would be found if voters overestimate 
their agreement with liked candidates. Con­
trast would be found if voters overestimate 
their disagreement with disliked candidates. 
Both assimilation and contrast are consistent 
with balance theory. 

The hypothesis of assimilation and contrast 
argues that the relation between a voter's po­
sition on an issue ( V) and his or her judgment 
of the candidate's position ( C) should be mod­
erated by the voter's liking or sentiment (S) 
toward the candidate. If the candidate is dis­
liked, a negative relation between V and C is 
consistent with contrast. If the candidate is 
liked, a positive V-C relation is consistent with 
assimilation. Hence, the voter's own position 
( V) and his or her sentiment toward the can­
didate (S) should interact to affect the judg­
ment of the candidate's position ( C). 

Some of the early work on the assimilation­
contrast hypothesis suggested that assimilation 
effects are more potent than contrast effects. 
This suggestion means that the effect of the 
VS interaction on C should be stronger at 
higher levels of S. In other words, not only 
should the VS interaction affect C, but also 
the VS2 interaction should affect C. 

Judd et al. (1983) argued that misspecifi­
cations in the existing research were probably 
responsible for the conclusion that VS2 affects 
C. Some of these misspedfications, such as 
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Table 5 
Loading Matrix for Assimilation-Contrast Example 

Variable V s s2 vs vs2 

Vi 1 0 0 0 0 
V2 1 0 0 0 0 
s 0 1 0 0 0 
s2 0 0 1 0 0 
ViS 0 0 0 1 0 
ViS 0 0 0 1 0 
ViS2 0 0 0 0 1 
V2S2 0 0 0 0 1 

the probable presence of correlated measure­
ment errors in V and C, can be eliminated if 
V and C are treated as latent variables, with 
multiple indicators of each, allowing errors of 
measurement in indicators of V to covary with 
errors of measurement in indicators of C. 

Using the 1968 National Election Survey 
conducted by the Center for Political Studies 
of the University of Michigan, Judd et al. 
(1983) examined the judgment of the presi­
dential candidates Hubert Humphrey and 
Richard Nixon on two issues: the Vietnam 
War and control of crime. Using a latent vari­
able model, Judd et al. examined the VS and 
VS2 interactions by dividin~ up the sample 
on sentiment (S) toward the candidate and 
looking for both linear and nonlinear differ­
ences in the path from V to C among the 
sentiment subsamples. Using this procedure, 
Judd et al. found strong evidence for the VS 
interaction but no support for the effect of 
VS2

• In other words, assimilation-contrast was 
found, but no evidence was found for stronger 
assimilation than contrast. 

A much more efficient procedure to ex­
amine these issues is to estimate the effects of. 
the VS and VS2 interactions directly in the 
.latent variable model. In the model, there are 
two indicators of V and two of C for each 
candidate. V1 and C1 are voters' judgments of 
self and candidate on the crime issue. V2 and 
C2 ~re judgments on the Vietnam War issue. 
They are assumed to be indicators of latent 
constructs V and C. These are defined as the 
underlying ideological position of the voters 
and the judged ideological position of the can­
didates. Errors of measurement in V1 and V2 

are allowed to affect errors in C 1 and C2 , re­
spectively. Sentiment (S) was measured di-

u, U2 u,s U2S U1S2 U2S2 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

rectly on a 100-point "thermometerH scale. 
(See Judd et al., 1983, for a thorough definition 
of all variables.) 

The model's equations are as follows: First, 
V1 and V2 are indicators of V, and C1 and C2 
are indicators of C: 

V1 = V + U1 , 

V2 = V+ U2 , 

C1 = C + U3 , and 

C2 = C + U4. 

Notice that all loading coefficients here are set 
at one. This constraint is necessary for the 
model to be identified when there are only two 
indicators each of V and C and when their 
errors are allowed to correlate. 2 The constraint 
is also justified by earlier research that has 
shown that attitudes on various political issues 
have approximately equal loadings on a single 
underlying construct (Judd & Milburn, 1980). 
The structural equation among these latent 
variables is 

C =av+ bS + cS2 + dVS 

+ eVS2 + w, (16) 

where a through e are parameters to be esti­
mated and Wis the usual disturbance term, 

2 The necessity of this constraint to achieve the model's 
identification is not a result of the nonlinear estimation 
that we are conducting. The constraint is necessary with 
only two indicators of V and C regardless of whether non­
linear terms are present. There is nothing in our procedures 
that constrains the loadings of observed variables over and 
above any constraints necessary for a model to be identified . 
in the absence of nonlinear effects. 
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Table 6 
Paths for the Assimilation-Contrast Example 

Latent Latent exogenous variables 
endogenous 

variables V s s2 vs vs2 

C X X X X X 
U3 0 0 0 0 0 
U4 0 0 0 0 0 

assumed to be uncorrelated with all exogenous 
variables. 

Table 5 presents the loading matrix for the 
indicators of the latent exogenous variables. 
Notice that once the loading of Vi and V2 on 
V are constrained at one, all other loadings in 
this matrix are also constrained. Table 6 pre­
sents the paths from the latent exogenous con­
structs to the latent endogenous constructs that 
need to be estimated. All X entries in this table 
are free parameters to be estimated. The five 
Xs in the first row of the table represent the 
parameters a to e in Equation 16. The other 
free parameters allow for correlated errors of 
measurement between U1 and U3 and between 
U2 and U4 • Notice that we are allowing the 
magnitude of the relation between errors to 
vary both linearly and nonlinearly with S. 

Table 7 presents the nonzero parameters in 
the covariance matrix of the latent exogenous 
constructs. These terms. were generated under 
the assumption that all variables are normally 
distributed with means of zero. (See Appen­
dix.) In fact, however, we know that the nor­
mality assumption is not true. Sentiment (S), 
for instance, as a directly measured variable 
is non.normal. Consequently, the constraints 
on the covariance matrix in Table 7 are in 
error to the extent that the distributions are 
not normal~ Nevertheless, it is instructive to 
illustrate the procedure with these data even 
though we know its assumptions are violated. 

The observed variables S, V1 , V2 , C1 , and 
C2 are all in mean deviation form. The product 
indicators are not. In addition, sentiment 
scores are divided by 10 so that the latent 
variables involving S2 will have more man­
ageable variances and covariances. 

Table 8 contains the covariance matrix for 
the 10 observed variables for the Nixon model 

Ui U2 U1S U2S U1S2 U2S2 

0 0 0 0 0 0 
X 0 X 0 X 0 
0 X 0 X 0 X 

The sample size is 1,160, consisting of all re­
spondents to the 1968 election study who pro­
vided complete data on all relevant variables. 

COSAN was used to provide generalized least 
squares estimates for all parameters. The es­
timated paths from the latent exogenous vari­
ables to the latent endogenous variables are 
presented in Table 9. The estimates of the free 
variances and covariances of the latent vari­
ables are 

a}= 0.894 
CT1!1 = 2.456 
CTIT4 = 1.363 

u} = 4.208 
c?u2 = 2.629 
a2w= 3.74 

<Tv,s = 0.095 
a2u3 = 1.619 

Returning to the parameter estimates in Ta­
ble 9, it can be seen that the estimated coef-

Table 7 
Variances and Covariances of Latent Variables 
for Assimilation-Contrast Example · 

<?s2 = 2oJ 

c?vs = a2vai + i?v,s 

i?vsz = 3a2v<T1' + 12c?v;sei 

uv,vsz = a2vai + 2a2v,s 

o-vs,s2 = 211v,s~ 

<Is,vs2 = 3crv,s~ 

ot,s = a2u1 oi­

otzS = Uil2oi 

01!,s2 = 3<T1,1 a1, 

c?U2S2 = 301.r2u1' 

O'u1,u,s2 = a2u1 oi­

<Tu2,uzS2 = a2uzc?s 
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Table 8 
Nixon Model: Observed Sample Covariance Matrix (N = 1,160} 

Variable C1 C2 Vi Vi s 

C1 2.626 
C2 0.569 2.207 
Vi 0.615 0.211 3.729 
Vi -0.105 0.721 1.084 3.834 
s -0.724 -0.054 0.416 0.358 4.963 
sz 0.252 -0.219 -0.629 -0.182 -7.315 
ViS 2.317 0.686 -0.677 -1.242 -0.629 
VzS 1.321 2.313 -1.242 -0.685 -0.183 
ViS2 0.559 -0.097 21.253 7.726 6.135 
ViS2 -4.015 1.076 7.725 23.673 3.284 

ficient for the VS2 interaction is quite small. 
If we graph the effect of V on C at varying 
levels of S, that graph is exceedingly linear 
and quite consistent with the results presented 
in Judd et al.'s (1983) Figure 4. 

Discussion 

The purpose of this article was to suggest 
a way in which nonlinear and interactive effects 
oflatent variables can be estimated. Estimating 
these effects is made possible by using non­
linear and product indicators. The loadings of 
these indicators on the latent variables are de- · 
rived by multiplying together structural equa­
tions. This results in no additional loadings 
to be estimated. In order to derive the co­
variance matrix among the latent variables, 
distributional assumptions must be made 
about the latent variables. 3 These assumptions 
permit us to derive the variances and covari­
ances of the latent variables that are products 
of other latent variables. We have assumed 
that the nonproduct latent variables are nor­
mally distributed with zero expected values. 
This is one of a set of possible assumptions 
that we could have made in order to derive 
the covariance matrix among the latent vari­
ables. In the Appendix we have shown how 
this assumption permits us to know the prod­
uct variances and covariances. Although the 
normality assumption may be reasonable in 
some situations, in others it may be less so. 
For instance, in our third example we knew 
that the distribution of S was far from normal. 
In such cases, other distributional assumptions 
might be made to derive the product variances 
and covariances. If our recommended pro-

s2 ViS ViS ViS2 V2S 2 

53.924 
4.071 21.080 
1.507 7.577 23.545 

-25.205 -41.522 -28.734 381.402 
-6.781 -28.884 -49.602 181.204 460.865 

cedure is to be useful when dealing with non­
normally distributed data, derivations for other 
distributions need to be developed. 

Although we have assumed that nonproduct 
latent variables are normally distributed, this 
assumption means that the product latent 
variables are not. This fact means that in es­
timation, we should avoid minimizing a loss 
function that assumes multivariate normality, 
such as the maximum likelihood function in 
LISREL (Joreskog & Sorbom, 1981). We have 
therefore reported results based on a gener­
alized least squares loss function. It is inter­
esting to note, however, that when we estimated 
the parameters using a maximum likelihood 
criterion, the parameter estimates were in most 
cases not appreciably different from the gen­
eralized least squares estimates that we report. 
Investigations of when different loss functions 
result in appreciably different parameter es­
timates are called for. 

Using a generalized least squares loss func­
tion, as opposed to a maximum likelihood one, 
means that the standard errors of the estimated 
coefficients are unknown. Thus, at this point, 
whereas our procedure can be used to estimate 
nonlinear and interaction coefficients, confi­
dence intervals for the population values of 
these coefficients cannot be estimated. There­
fore, we suggest that estimation of these effects 
should proceed only when there is clear prior 

3 It might seem that a possible distribution-free pro­
cedure would be to estimate the variances and covariances 
of the latent variables rather than constraining them at 
particular values specified by the distributional assump­
tions. Such an approach, however, invariably results in an 
unidentified model. 
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'"rable 9 
Nixon Model: Estimated Effects of Exogenous Latent Variables on Endogenous Latent Variables 

lS.ndogenous Exogenous latent variables 
latent 

variables V s si vs vs2 U1 U2 U1S U2S u,s2 U2S2 

C 0.180 -:--0.111 -0.019 0.207 0.009 0 0 0 0 0 0 
U3 0 0 0 0 0 
U4 0 0 0 0 0 

evidence for them. In the absence of known 
standard errors,· we recommend reporting de­
scriptive indices of a model's efficiency in re­
producing a sample covariance matrix (e.g., 
Bentler & Bonett, 1980). 

Like the normality assumption, the as­
sumption that all nonproduct latent variables 
have means of zero is one possible assumption 
that could have been made. We could have 
assumed means different from zero, but this 
would have made the derivation of the latent 
product variances and covariances more com­
plicated. When dealing with the observed 
variables, we have rescaled them so that their 
means are zero before computing the product 
indicators.4 These product indicators were not, 
however, rescaled to have zero means. Again, 
we could have allowed nonproduct indicators 
to have nonzero means, but this raises addi­
tional complications that have yet to be fully 

· worked out. 
When faced with the need to make com­

parisons of nonlinear or interactive parameters 
across populations or over time, it is not ap­
propriate to force the latent variables to have 
zero ~nd, hence, equal means. Not only is it 
unlikely that the means in the different pop­
ulations would be equal, but forcing equal 
means can greatly complicate the comparison 
of parameter estimates. 

Our hope is that the procedure we have out­
lined will be useful to researchers who wish 
to estimate nonlinear and interactive effects 
in the presence of measurement error. We be­
lieve, however, that our procedure is merely a 
beginning in developing a general approach to 
such estimation. Further work needs to be de­
voted to the question of how various distri­
butional assumptions can be used to derive 
the covariance matrix among latent variables. 
In addition, work that examines the conse­
quences of violating those assumptions is also 

0.162 0 0.095 0 0.011 0 
0 0.167 0 0.092 0 0.004 

called for. We believe our recommended pro­
cedure constitutes a partial solution to this 
important problem. 

4 Actually, in the first two examples we did not subtract 
the sample means from the indicator variables prior to 
computing the product indicators, because these variables 
were constructed in such a way that their expected values 
were zero. 
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Appendix 

We show here the various expectations of product 
variables given that the component variables have 
a multivariate normal distribution. All of these re­
sults are well known in the statistical literature but 
are relatively unfamiliar to psychologists. 

Let variables X, Y, Z, W, U, and V have a mul­
tivariate normal distribution with mean zero. The 
covariance between two variables will be denoted 
as uxy and the variance as u}. All odd moments, 
for example, E(XYZ), are zero (Kendall & Stuart, 
1958). The fourth moment is 

E(XYZW) = Uxy<Jzw + O-xzO'YW + O-xw<Tyz (Al) 

(Kendall & Stuart, 1958), where Eis the expectation 
operator. It then follows that E[Cov(XY, Z)] = 
E(XYZ) - E(XY)E(Z) = 0. Therefore, E[Cov(X2

, 

Z)] = 0. 
The expectation of Cov(XY, ZW) equals 

E(XYZW) - E(XY)E(ZW), 

which given Equation Al equals o-xyuzw + 
uxzuyw + uxWO'yz - crxycrzw or more simply 
uxzuyw + O"xwO'yz. Using this result we can show 
that 

E[Var(XY)] = ui,cr} + <Ti,Y, 
E[Var(X2

)] = 2a}, 

E[Cov(XY, XW)] = UX,o-yw + O"xWO"yx, 

. 2 . 
E[Cov(X , ZW)] = 2o-xzo-xw, 

E[Cov(X2
, XW)] = 2a2xuxw-

The expectation of Cov(X, YZW) equals 

E(XYZW) - E(X)E(YZW), 

which given Equation Al equals: axyazw + 
uxzuyw + <TxwO"yz. Using this result it follows that 

E[Cov(X, XZW)] = 01-0-zw + 2uxwa-xz, 

E[Cov(X, Y 2 W)] = a2yO'xw + 2uyw(Tyx, 

E[Cov(X, X 2 W)] = 3oio-xw, 

E[Cov(X, X 3
)] = 3cr}. 

All covariances involving five variables, for example, 
Cov(XY, ZWU), equal zero. 

The sixth moment is: 

E(XYZWUV) = o-xrE(ZWUV) + o-xzE(YWUV) 

+ uxwE(YZUV) + uxuE(YZWV) 

+ uxvE(YZWU) 

(Kendall & Stuart, 1958). It then can be shown that 

E[Var(XYZ)] = o:i,a2ye?z + 2oi,CT},z + 2CT}o:},z 

+ 2~oi.Y + 8uxy(Tzx(Tyz, 

and E[Var(X2 Y)] = 3o'io} + 12oio:x,,y. 
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