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Numerous theories within the social and behavioral sci-
ences hypothesize interaction, quadratic effects, or both 
between multiple independent and dependent variables 
(Ajzen, 1987; Cronbach & Snow, 1977; Karasek, 1979; 
Lusch & Brown, 1996; Snyder & Tanke, 1976). For exam-
ple, Ganzach (1997) studies the relationship between par-
ents’ educational level and child’s educational expectations. 
He hypothesizes and finds a simultaneous interactive and 
quadratic relationship: If at least one parent’s education lev-
el is high, the educational expectations of the child will also 
be high, even if the level of education of the other parent is 
quite low. In terms of the statistical model, this compensa-
tory hypothesis is represented by two positive quadratic ef-
fects (for each parent’s educational level) and one negative 
interaction effect. Within the measured variable framework, 
such hypotheses can be tested by specifying a multiple re-
gression model (see Aiken & West, 1991):

CEE = β0 + β1ME + β2FE +ω12ME•FE + ω11ME2 +  
           ω22FE2 + ε					        (1)

where CEE is the child’s educational expectation, ME is the 
mother’s educational level, FE is the father’s educational 
level, and ε  is a residual. The γs are the coefficients of the 
linear effects. Following Klein and Moosbrugger's (2000) 
and Klein and Muthén's (2007) notation, the ωs are the coef-
ficients of the nonlinear effects.

To clarify the necessity for models with simultaneous 
interaction and quadratic effects consider, for example, 
Ganzach's compensatory hypothesis. The hypothesis that 
only one parent's educational level needs to be high for high 
educational expectations of the child could not be tested with 
an (ordinary) single interaction effect model. A model with 
a single interaction effect would predict that each parent’s 
education has to be high for a high educational expectation 
of the child. This would be the interpretation of a positive 
interaction effect which would result if the quadratic terms 
were omitted in the analysis1. In Equation (1), the opposite 
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Schermelleh-Engel, Kelava, & Klein, 2009). Third, we apply the extended unconstrained approach to data from 
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1	  The true negative interaction effect and the two positive quadratic 
effects could reduce to one single positive interaction effect when the 
quadratic effects are omitted.
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signs of the quadratic and interaction effects assure the com-
pensatory relationship.

Since most variables in the behavioral sciences are 
measured with less than perfect reliability, a regression 
analysis often is not appropriate. Having non-perfectly reli-
able predictors results in biased estimates of the regression 
coefficients, especially for the nonlinear effects (Bohrnst-
edt & Marwell, 1978; MacCallum & Mar, 1995). Structural 
equation modeling (SEM) produces theoretically error free 
estimates of the effects of latent variables, overcoming this 
reliability problem (Marsh et al., 2004; Schumacker & Mar-
coulides, 1998). But, structural equation modeling of interac-
tion and quadratic effects has rarely been used by practition-
ers. This is partly due to the error-prone model specification 
within the traditional product indicator approaches (for an 
overview: Marsh et al., 2006). And, it is partly due to the ne-
cessity to use specialized commercial software, e.g. LISREL 
(Jöreskog & Sörbom, 1996) or Mplus (Muthén & Muthén, 
2007), in order to specify and estimate nonlinear SEM.

Goals of the article

The major goals of this article are threefold: First, we 
will give a brief overview on the approaches for the estima-
tion of nonlinear SEM. Second, we describe the extended 
unconstrained approach for the simultaneous estimation 

of latent interaction and quadratic effects (Kelava, 2009; 
Moosbrugger, Schermelleh-Engel, Kelava, & Klein, 2009). 
Third, we will apply the extended unconstrained approach 
to data from work and stress research using the freely acces-
sible sem package (Fox, 2006) in R (R Development Core 
Team, 2008) and compare it with LMS (Klein & Moosbrug-
ger, 2000) which is implemented in the commercial Mplus 
(Muthén & Muthén, 2007) software. Example syntax will 
be given in the Appendices.

Approaches for the estimation of nonlinear SEM

Most of the early literature focused on models with a 
single latent interaction or quadratic effect (e.g. Jöreskog & 
Yang, 1996; Kenny & Judd, 1984). Recently, the literature 
has begun to consider more complex models like Ganzach’s 
(1997) model of children’s educational expectations involv-
ing simultaneous interaction and quadratic effects (Kelava, 
Moosbrugger, Dimitruk, & Schermelleh-Engel, 2008; Ke-
lava et al., under revision; Klein & Muthén, 2007; Lee et al., 
2004; Lee, Song, & Tang, 2007; MacCallum & Mar, 1995). 
Equation (2) expresses Ganzach’s model with one interac-
tion and two quadratic effects (see Equation (1)) within the 
latent variable framework:

η = α + γ1ξ1 + γ2ξ2 + ω12ξ1 · ξ2 + ω11ξ
2
1 + ω22ξ

2
2 + ζ	     (2)

Figure 1. Nonlinear SEM with one interaction effect and two quadratic effects. Each latent variable is operationalized by three indicators. 
Within the nonlinear measurement model, the measurement error covariances have to be specified, when the latent linear predictors ξ1 and  
ξ2 are correlated (Kelava, 2009).
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In Equation (2), η denotes the latent criterion, ξ1 and ξ2 
are latent predictors, the product ξ1ξ2 represents the interac-
tion term, ξ1

1 and ξ2
2 are quadratic terms, α is the intercept, γ1 

and γ2 are linear effects of the predictors, ω12 is the nonlinear 
effect of the interaction term, and ω11, ω22 are the nonlinear 
effects of the quadratic terms, and finally, ζ is the distur-
bance term. Figure 1 depicts this nonlinear SEM model with 
one interaction effect and two quadratic effects.

Kenny and Judd (1984) were the first who developed an 
approach for the estimation of nonlinear SEM. It is called 
product indicator approach, because multiple product indi-
cators are used for the specification of each nonlinear term’s 
measurement model. Suppose that the normally distributed 
and centered latent variables ξ1 and ξ2 are measured by cen-
tered indicators 321 ,, xxx  and 654 ,, xxx , respectively 
(Equation (3)):

						      (3)

whereas the λχ s are factor loadings and the δ s are normally 
distributed measurement errors. The interaction term ξ1ξ2 is 
measured by products of each latent variable’s indicators, 
for example 635241 ,, xxxxxx  (see Figure 1). The quad-
ratic term ξ2

1 is measured by 2
3

2
2

2
1 ,, xxx , and so on. Un-

fortunately, this approach (in its original form) has rarely 
been used by applied researchers. The main reason is that it 
involves the specification of nonlinear parameter constraints 
that are difficult for researchers to implement. Suppose that 

2x  and 5x  are indicators of the linear latent predictor vari-
ables ξ1 and ξ2 (with  and ), 
then the indicator 52 xx  of the interaction term ξ1 ξ2 would 
be:

					     (4)

The variance decomposition of the indicator product 
52 xx  which is required for the model specification and 

estimation (for example) in the LISREL software, is given 
by: 

						      (5)

where:

					     (6)

						      (7)

		  (8)

Because factor loadings and variances of the indicator 
products are functions of the factor loadings and variances 
of the linear indicators, this estimation approach demands 
the specification of nonlinear parameter constraints, which 
is very error prone. Furthermore these constraints only hold 
if the latent predictors are normally distributed (see Wall & 
Amemiya, 2001).

Fortunately, two different trends recently emerged, one 
trying to simplify and expand the product indicator ap-
proach, which is the biggest class of approaches, and one 
coming from a different perspective and using a distribu-
tion-analytic approach.

The product indicator approach was particularly de-
veloped as reflected in contributions by Jaccard and Wan 
(1995), Ping (1995, 1996), Jöreskog and Yang (1996), Al-
gina and Moulder (2001), Wall and Amemiya (2001), Marsh 
et al. (2004), Little, Bovaird, and Widaman (2006). These 
developments led to simplifications of the specified model. 
The simplest approach has been published by Marsh et al. 
(2004). The “unconstrained approach” was developed for 
the estimation of single interaction effects. It relaxes all non-
linear constraints. This means that, for example,  in 
Equation (8) is not constrained to the right-hand side com-
bination of the parameters, but instead is estimated freely. In 
the next section, we will go into detail about this approach 
and about its extension for the simultaneous estimation of 
interaction and quadratic effects.

Since the traditional product indicator approach suffers 
from the violated assumption of multivariate normally dis-
tributed variables2 when ML estimates are derived, so-called 
distribution-analytic approaches have been developed that 
address the nonnormal distribution. Klein and Moosbrugger 
(2000) developed a Latent Moderated Structural Equations 
(LMS) approach which approximates the nonnormal distri-
bution of the multivariate indicator vector by a mixture of 
normal distributions. By applying the EM algorithm (Demp-
ster, Laird, & Rubin, 1977), ML estimates are obtained. 
LMS computes unbiased standard errors for the nonlinear 
effects, which are slightly underestimated when applying 
the product indicator approach (Jöreskog & Yang, 1996; 
Kelava et al., 2008). Unfortunately, this approach becomes 
computationally (numerically) intensive as the number of 

2	 When applying the ML estimator, it is assumed that the product indi-
cators (e.g., x1x4) and the y-indicators are normally distributed. This 
assumption never holds, because products of normally distributed 
variables are never normally distributed (Aroian, 1944).
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nonlinear effects increases. In addition to this, LMS is only 
available within the commercial Mplus software, but not 
available within a freely accessible software. In order to 
overcome the problem of high computational burden and 
in order to develop a more robust approach when indica-
tors are nonnormally distributed, Klein and Muthén (2007) 
published a Quasi-Maximum Likelihood (QML) approach. 
QML permits the estimation of multiple nonlinear effects. It 
approximates the likelihood of the multivariate nonnormally 
distributed indicator vector by a normal and a conditionally 
normal distribution. The parameter estimates are obtained 
by using a Newton-Raphson algorithm.

In addition to the distribution-analytic approaches (LMS 
and QML) and product indicator approaches, a variety of 
less-established, alternative approaches has been developed 
(for an overview: Marsh et al., 2006; Schumacker & Mar-
coulides, 1998). For example, there are also Bayesian ap-
proaches (Arminger & Muthén, 1998; Lee et al., 2007), a 
2-step method of moments (2SMM) approach (Wall & Am-
emiya, 2000), and a 2-step least squares (2SLS) approach 
(Bollen, 1995). Elaborated simulation studies need to be 
conducted with the Bayesian approaches and the 2SMM 
approach in order to assess the robustness and competitive-
ness with the established approaches. 2SLS estimates were 
substantially less efficient when compared to alternative es-
timation approaches (Klein & Moosbrugger, 2000; Scher-
melleh-Engel, Klein, & Moosbrugger, 1998).

In the following, we will describe the well-known un-
constrained approach (Marsh et al., 2004) and its extension 
for the simultaneous estimation of interaction and quadratic 
effects. The unconstrained approach can be implement by 
using commercial structural equation modeling software 
(e.g., LISREL) or by using the freely available sem pack-
age in R (see Appendix A). The unconstrained approach has 
proven to have robust properties in specific circumstances 
(Kelava, 2009; Kelava et al., under revision; Marsh et al., 
2004, 2006).

The extended unconstrained approach

In this section, we will summarize the unconstrained 
approach for the estimation of single interaction effects as 
proposed by Marsh et al. (2004, 2006). After this we will 
present an extension of the unconstrained approach for the 
simultaneous estimation of interaction and quadratic ef-
fects as proposed by Kelava (2009) and Moosbrugger et al. 
(2009). We provide a detailed Technical Appendix show-
ing how to estimate the models using the freely accessible 
sem package (Fox, 2006) in R (R Development Core Team, 
2008).

Marsh et al.’s (2004) unconstrained approach

The main idea of the unconstrained approach is to relax 
all constraints formulated by Kenny and Judd (1984) that 

make the specification of the interaction model complicated 
(see Equations (5) - (8)) and to estimate these parameters 
freely. Suppose we have a simple interaction model:

						      (9)

with normally ξ1, ξ2 distributed and ζ variables with means 
equal to zero. The linear measurement models are given 
by:

						      (10)

and

						      (11)

with centered and normally distributed δ and ε measurement 
error variables. The nonlinear measurement model is given 
by:

						      (12)

Although we assume that  and  
the latent expectation  will be equal to  
and thus needs to be estimated (or otherwise constrained).

In summary, since parameter estimation is based on em-
pirical and model implied covariance matrices (like in LIS-
REL or in the sem package), the following parameters have 
to be estimated freely:
•	 regression coefficients: 

  and 
•	 variances and covariances of the latent predictors: 

 and 
•	 variances of the disturbances: 

 and  

•	 latent expectation of the nonlinear predictor: κ3 (or oth-
erwise constrained to )
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For purposes of model identification,  and 
 have to be fixed at 1 and need not to be estimated.
Instead of estimating the structural model’s latent in-

tercept α and the latent expectation κ3, latent intercepts of 
the outcome indicators ( 321 ,, yyy ) and product indicators 
( 635241 ,, xxxxxx ) can be estimated, too. For example, α 
could be omitted in Equation (9). Then, the latent intercepts 

 and  must be estimated within a modified out-
come measurement model:

					     (13)

In the modified product indicator measurement model, then 
 and  must be estimated, when omitting κ3:

						      (14)

If the indicator variables 
61 ,..., xx  are nonnormally dis-

tributed, Marsh et al. (2004) propose to estimate Cov(ξ1ξ2,ξ1) 
and Cov(ξ1ξ2,ξ2) additionally, because these covariances are 
not equal to zero, if the latent predictors ξ1 and ξ2 are non-
normally distributed. If it can be assumed that nonnormal-
ity results from nonnormally distributed measurement error 
variables of the linear indicators (e.g., ceiling effects can 
produce a nonnormal δ2 measurement error variable), then 
measurement error covariances between the linear and their 
related nonlinear indicators (e.g., Cov(δ2,δ8)) should be spec-
ified and estimated, too (because both, 2x  and 852 : xxx = , 
contain the nonnormal δ2 which is also part of δ8). A nonlin-
ear SEM with a single quadratic effect, instead of an interac-
tion effect, is specified analogously.

The extended unconstrained approach for the  
simultaneous estimation of latent interaction  
and quadratic effects

In this subsection we present the extension of the uncon-
strained approach for the simultaneous estimation of inter-
action and quadratic effects. In order to keep it as simple as 
possible, we will assume that the latent predictors ξ1 and ξ2 
and their indicators are normally distributed and centered 
(with zero means).

Equation (15) shows the nonlinear SEM with both effect 
types:

				    (15)

The linear measurement models for ξ1, ξ2 and η are giv-
en by Equations (10) and (11). The nonlinear measurement 
model is given by (cp. Figure 1):

						      (16)

Once again, κ3=E(ξ1ξ2), κ4=E(ξ2
1) and κ5=E(ξ2

2) are not 
equal to zero in general. These expectations of the nonlinear 
latent variables have to be constrained or estimated freely.

When estimating a nonlinear SEM with simultaneous in-
teraction and quadratic effects, additional measurement er-
ror covariances of the nonlinear indicators (e.g. Cov(δ8,δ11)) 
must be specified, because they are not zero when Cov(ξ1,ξ2) 
≠ 0 (Kelava, 2009; Kelava et al., 2008). This should be the 
case in most research situations. If the covariances are not 
specified, the estimates of the nonlinear effects will be se-
verely biased (Kelava, 2009). Unfortunately, these addition-
al covariances have been omitted not only in early literature 
(Kenny & Judd, 1984), but also in recent literature (Lee et 
al., 2004). Suppose that 52 xx  is an indicator of ξ1ξ2 and 2x  
is an indicator of ξ2

1 (see Figure 1). Then Cov(δ8,δ11) must 
be estimated, because 2x ’s measurement error δ2 is part of 

52 xx  (see Equation (4)) and part of 2
2x ). In Figure 1, we 

have used double-sided arrows to show that the measure-
ment error covariances have to be estimated freely.

As long as variables are centered and normally distribut-
ed, measurement error covariances between linear and non-
linear indicators (e.g., Cov(δ2,δ8)) need not to be estimated, 
because they are third moments and are equal to zero. When 
the variables are nonnormally distributed, they will not be 
equal to zero and need to be estimated, too (assuming the 
model being identified).

Within the extended unconstrained approach, the fol-
lowing parameters have to be estimated freely:
•	 regression coefficients: 

                                      and 
•	 variances and covariances of the latent predictors:

                                                                   and 
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•	 variances of the disturbances:

                                                and 
•	 latent expectations of the nonlinear predictors: κ3, κ4 and 

κ5.

For purposes of model identification  
and  have to be fixed at 1 and need not to be estimated.

As before, instead of estimating α and κ3 - κ5, latent in-
tercepts  and  of the outcome indicators ,, 21 yy
and 3y , and latent intercepts  of the nonlinear 
product indicators 2

6
2
2

2
141 ,...,,,..., xxxxx  can be specified, 

too (cp. Equation (13) and (14)).

Empirical example from the work and stress research

In this section, we provide a very brief empirical exam-
ple from the work and stress research which is based on a 
data set that has already been published in a larger publica-
tion by Diestel and Schmidt (2009)3. In their publication, 
the authors examined the relationship between ‘work load’ 
(wl) and ‘anxiety’ (ax) and found that the variable ‘demands 
for impulse control’ (ic) is a significant moderator of that 
relationship. In detail, they found that higher work load and 
higher demands to control emotional impulses lead to in-
creased anxiety. In addition to these linear effects, higher 
work load leads to higher anxiety when the demands to con-
trol emotional impulses are high.

In terms of a regression model, this result can be ex-
pressed by the following Equation (17):

(17)

where the explained variance is R2 = .492 and N = 574.
The (standardized) data were analyzed with LMS (Klein 

& Moosbrugger, 2000) which is implemented in the the 
commercial Mplus (Muthén & Muthén, 2007) software. As 
can be seen from Equation (17), there is a strong effect of 
work load and a relatively high interaction effect of work 
load and demands for impulse control.

We reanalyzed the original data set and specified an 
additional quadratic effect for the demands for impulse 
control. We applied two approaches: First, we used the ex-
tended unconstrained approach which can be implemented 
in the non-commercial sem package (Fox, 2006) in R (R 
Development Core Team, 2008). Second, we analyzed the 
data with the additional effect using the LMS approach. A 
detailed description on how to apply both approaches is giv-
en in Appendix A (sem package) and Appendix B (Mplus).4 

In order to illustrate the procedure for both approaches, a 
hypothetical data set was generated and analyzed.

The analyzed model can be summarized by the follow-
ing Equation (18): 

               (18)

Results are given in Table 1. As can be seen, in both 
approaches, there are significant linear effects and a signifi-
cant interaction effect (according to the analyses of Diestel 
& Schmidt, 2009). But, in LMS there is also a significant 
quadratic effect of the demands for impulse control. In the 
unconstrained approach, we were modeling the additional 
(proposed) measurement error covariances of the product 
indicators and linear indicators, in order to account for the 
non-normality in the data, and found that there is no sig-
nificant quadratic effect. Since Diestel and Schmidt (2009) 
report substantive non-normality in the data, the significant 
additional quadratic effect in LMS might be spurious. Simu-
lation studies (Brandt, 2009) and theoretical considerations 
(Klein & Muthén, 2007; Kelava et al., under revision) have 
shown that LMS (but not QML!) should be more vulnerable 
to non-normality (due to its distributional assumptions).

DISCUSSION

In this article three goals were set. First, we gave a short 
overview on the different types of approaches for the esti-
mation of nonlinear structural equation models. Mainly two 
approaches have shown to be easily applicable by applied 
researchers. While the application of the distribution ana-
lytic approaches has been described in Kelava et al. (under 
revision), the user-oriented description on how to apply the 
product-indicator approach when estimating multiple non-
linear effects has not been published, by now.

Second, we described the unconstrained approach in de-
tail (Marsh et al., 2004) and extended the original model 
with one interaction effect to a model with one interaction 
effect and two quadratic effects, because the unconstrained 

3	 We gratefully thank Stefan Diestel for sharing the original data.
4	 Appendices are available at the journal webpage  

http://psihologija.ffzg.hr/review.

Table 1
Results of the reanalysis of the Diestel and Schmidt (2009) data 

with the extended unconstrained approach and the LMS approach

Approach Parameter Estimate Standard 
error z-value p

Extended  
unconstrained 
approach

γ1 .534 .060 8.881 < .001
γ2 .171 .043 4.018 < .001

ω12 .238 .083 2.853 .004
ω22 -.071 .041 -1.727 .084

LMS  
approach

γ1 .545 .061 8.974 < .001
γ2 .166 .041 4.014 < .001

ω12 .190 .055 3.487 < .001
ω22 -.072 .037 -1.943 .052
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approach has shown to have some robust properties (Ke-
lava, 2009; Marsh et al., 2004).

Third, we provided a brief example from the work and 
stress research finding an quadratic effect of ‘impluse con-
trol’ on ‘anxiety’ with LMS, but not with the unconstrained 
approach. The additional quadratic effect might be spuri-
ous. In the Appendix, we show how the original and ex-
tended unconstrained approach can be implemented in the 
sem package in R. This gives the opportunity for applied 
researches to estimate latent nonlinear effects within a non-
commercial software.

There are several advantages of estimating multiple non-
linear effects. One advantage refers to the development of 
behavioral theories containing interaction and quadratic ef-
fects (Ganzach, 1997). For example, Ganzach’s theory on 
educational expectations leads to completely different pre-
dictions when models are estimated that contain both effect 
types, interaction and quadratic effects, instead of contain-
ing one interaction effect only. A simple interaction effect 
model predicts a high educational expectation, if both par-
ents’ educational levels are high, whereas Ganzach’s theory 
hypothesizes a compensatory effect of the parents’ educa-
tional levels. Therefore, models with an adequate amount of 
nonlinear effects need to be estimated and need to be acces-
sible for a broad audience.

Another advantage results from a statistical perspective. 
A model with both effect types (i.e., with one interaction 
and two quadratic efects) serves better as a comparison 
model than a linear one when testing the significance of in-
teraction effects with the χ2-difference test (Klein, Scher-
melleh-Engel, Moosbrugger, & Kelava, 2009). In contrast 
to the hitherto widespread usage of the linear model as a 
comparison model for interaction effects, Klein et al. argue 
that an additive model containing quadratic and linear ef-
fects is more adequate. One important point is that spurious 
interaction effects can occur instead of true - but unspecified 
- quadratic effects due to the correlation of the nonlinear 
terms, if the linear predictors are correlated (cf. Ganzach, 
1997; Lubinsky & Humphreys, 1990).

Therefore the extension of the unconstrained approach 
for the simultaneous estimation of quadratic and interaction 
effect is an important issue for testing the significance of 
interaction effects.

There are some limitations that need to be considered. 
First, we concentrated on the usage of non-overlapping in-
dicators for each nonlinear term (e.g. ,, 5241 xxxx  and 63 xx  
as indicators of ξ1ξ2, instead of using 52615141 ,,, xxxxxxxx  
etc.). This was necessary in order to reduce the model com-
plexity and might lead to a slight decrease in validity. But, 
a modification with different numbers of indicators can be 
implemented with a reasonable amount of effort (for a com-
parison of different numbers of nonlinear indicators for the 
interaction model see Marsh et al., 2004). Second, although 
the approach has proven to be robust under some circum-
stances, an underestimation of standard errors of the nonlin-

ear effects can occur which leads to an increased Type I error 
rate if assumptions are violated (e.g. nonnormal distribution 
of the linear predictors, high multicollinearity). It might be 
an advantage to use bootstrap procedures to overcome this 
problem (Efron, 1979).
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