
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=hsem20

Download by: [University of Kansas Libraries] Date: 11 May 2017, At: 13:31

Structural Equation Modeling: A Multidisciplinary Journal

ISSN: 1070-5511 (Print) 1532-8007 (Online) Journal homepage: http://www.tandfonline.com/loi/hsem20

A Fit Index to Assess Model Fit and Detect Omitted
Terms in Nonlinear SEM

Carla Gerhard, Rebecca D. Büchner, Andreas G. Klein & Karin Schermelleh-
Engel

To cite this article: Carla Gerhard, Rebecca D. Büchner, Andreas G. Klein & Karin
Schermelleh-Engel (2017) A Fit Index to Assess Model Fit and Detect Omitted Terms in
Nonlinear SEM, Structural Equation Modeling: A Multidisciplinary Journal, 24:3, 414-427, DOI:
10.1080/10705511.2016.1268923

To link to this article:  http://dx.doi.org/10.1080/10705511.2016.1268923

Published online: 06 Feb 2017.

Submit your article to this journal 

Article views: 120

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=hsem20
http://www.tandfonline.com/loi/hsem20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10705511.2016.1268923
http://dx.doi.org/10.1080/10705511.2016.1268923
http://www.tandfonline.com/action/authorSubmission?journalCode=hsem20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=hsem20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10705511.2016.1268923
http://www.tandfonline.com/doi/mlt/10.1080/10705511.2016.1268923
http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2016.1268923&domain=pdf&date_stamp=2017-02-06
http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2016.1268923&domain=pdf&date_stamp=2017-02-06


A Fit Index to Assess Model Fit and Detect Omitted
Terms in Nonlinear SEM

Carla Gerhard, Rebecca D. Büchner, Andreas G. Klein, and Karin Schermelleh-Engel
Goethe University Frankfurt, Germany

A new descriptive fit measure, the Homoscedastic Fit Index (HFI), is proposed to detect
omitted nonlinear terms (quadratic and interaction terms) in SEM by analyzing the dispersion
of the residuals in the structural part of the model. The HFI is defined as a descriptive
goodness-of-fit index for SEM. The Type I error rates of the HFI and the power to detect
heteroscedasticity due to omitted nonlinear terms or nonnormally distributed variables are
investigated in a Monte Carlo study. The results show that the new measure performs
satisfactorily with regard to Type I error rates and power when sample size was sufficiently
large. It is investigated under what conditions the Type I error rate was inflated. Nonnormally
distributed error terms resulted in high power. Nonnormally distributed predictors had no
influence on the Type I error rates.

Keywords: descriptive fit index, homoscedasticity, Monte Carlo study, nonlinear SEM

Over the last two decades, linear structural equation models
have been extended to nonlinear structural equation model-
ing (SEM), by adding latent interaction or quadratic terms to
the structural equation of the model (cf. Jöreskog & Yang,
1996; Klein & Moosbrugger, 2000; Klein & Muthén, 2007;
Marsh, Wen, & Hau, 2004; Ping, 1995; Schumacker &
Marcoulides, 1998). Nonlinear effects, and in particular
interaction and quadratic effects, are often relevant to psy-
chological research. In differential psychology, for instance,
nonlinear effects could be investigated to explain and pre-
dict behavior (cf. Dormann & Zapf, 2004). Nonlinear SEM
is also common in social science research (cf. Beierlein,
Werner, Preiser, & Wermuth, 2011; Berkel et al., 2010;
Caravita, Di Blasio, & Salmivalli, 2009; Goodnight, Bates,
Staples, Pettit, & Dodge, 2007; Lischetzke & Eid, 2003;
Specht, Egloff, & Schmukle, 2011; Toker & Biron, 2012).

As with linear SEM, it is possible with nonlinear SEM to
incorporate measurement errors in the model, to increase the
construct validity by using multiple measures, and to esti-
mate very complex linear and nonlinear relationships in a
single model. For the analysis of nonlinear SEM, different

estimation methods are available (for an overview see Klein
& Muthén, 2007; Moosbrugger, Schermelleh-Engel, &
Klein, 1997).

Frequently used methods are (a) the product indicator
(PI) approaches (Algina & Moulder, 2001; Jaccard &
Wan, 1995; Jöreskog & Yang, 1996; Kenny & Judd, 1984;
Marsh et al., 2004; Ping, 1995, 1996; Wall & Amemiya,
2001), where products of the indicators are formed to be
used as indicators of the latent nonlinear terms, and (b) the
distribution analytic approaches of latent moderated struc-
tural equations (Klein & Moosbrugger, 2000) as well as
quasi maximum likelihood (Klein & Muthén, 2007),
which take the nonnormality caused by the latent nonlinear
terms into account. Some newer developments are Bayesian
approaches (e.g., Kelava & Nagengast, 2012; Lee, Song, &
Tang, 2007; Song & Lu, 2010) and method of moment
approaches (e.g., Mooijaart & Bentler, 2010; Wall &
Amemiya, 2003).

Regardless of the method applied, a limitation of non-
linear SEM is that the evaluation of the model fit has not
been thoroughly investigated compared to linear SEM.
Whereas the overall model fit of linear SEM can be assessed
using a likelihood ratio test or several descriptive fit mea-
sures (cf. Schermelleh-Engel, Moosbrugger, & Müller,
2003), established fit measures are not yet available for
nonlinear SEM.
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For linear SEM, the chi-square test is available. It is
based on the likelihood ratio test (cf. Jöreskog, 1967). The
likelihood of the target model is set in relation to the like-
lihood of a saturated model. Here, the saturated model is a
model with zero degrees of freedom, which perfectly repro-
duces the empirical covariance matrix. The target model is
nested within the saturated model and has less parameters
than the number of variances and covariances given in the
empirical covariance matrix.

For nonlinear models the situation is more difficult. The
parameters of a nonlinear model are not fully identified
when only variance and covariance information of the
observed variables is used for estimation. The saturated
model used for linear SEM cannot be applied to nonlinear
SEM because the latter is not nested in the former model.
Misspecifications due to omitted nonlinear terms cannot be
readily detected by using the conventional chi-square test.
Even though the chi-square values are not appropriate for
nonlinear SEM, chi-square values are indeed calculated by
the software when a PI approach is used. In a simulation
study, Mooijaart and Satorra (2009) showed that the con-
ventional chi-square test is not able to detect omitted inter-
action terms, and it has no power to identify this type of
misspecification. Even when strong interaction effects are
present and the model is misspecified, the distribution of the
test statistic shows no deviation from a chi-square distribu-
tion. If a linear structural equation model fits the data well
according to the chi-square statistic, the underlying model
might indeed be severely nonlinear. The majority of the
descriptive fit measures for linear SEM also build on the
chi-square statistic (cf. Schermelleh-Engel et al., 2003), and
possible nonlinearity in the model structure is not taken into
account by these measures. However, to evaluate the fit of a
nonlinear model, some researchers have recommended test-
ing nonlinear models in a two-step estimation procedure
(Maslowsky, Jager, & Hemken, 2015; Muthén, 2012): In a
first step, a linear model with no nonlinear effects is tested
to confirm a good fit in terms of the chi-square test. In a
second step, the nonlinear terms are added, and the signifi-
cance of a single or several nonlinear effects can be tested
by the likelihood-ratio test statistic (Klein & Moosbrugger,
2000). A clear limitation of this approach is that the initial
evaluation of the fit of the linear model could be misleading.

Other approaches to detect omitted nonlinear terms were
developed in the context of regression analysis and SEM.
The idea of these approaches is that omitted nonlinear terms
result in heteroscedasticity.

Klein and Schermelleh-Engel (2010) developed the Zhet
measure that quantifies the heteroscedasticity of the residual
scores on a Z-scale. Zhet is based on the comparison of the
likelihood for the structural residuals under the assumption
of heteroscedasticity with the likelihood for the structural
residuals under the assumption of homoscedasticity. A ser-
ious limitation of the Zhet measure is found in the need for a
large sample size or very strong nonlinear effects to gain a

desirable power of detection of heteroscedastic regression
residuals (Klein, Gerhard, Büchner, Diestel, Schermelleh-
Engel, 2016).

Klein et al. (2016) recently proposed a new measure for
testing the heteroscedasticity of regression residuals, the hhet
measure. The hhet measure functions by using the idea that, in
the heteroscedastic case, regression residuals have been
drawn from distributions with different standard deviations,
thus the variance of the squared heteroscedastic residuals
tends to be greater compared to homoscedastic residuals.
The measure hhet is straightforward to apply. Its particular
advantage is that it can detect the heteroscedasticity of the
regression residuals that has been generated not only by
observed but also by unobserved predictor variables.

In SEM, descriptive fit indexes are frequently used for the
evaluation of model fit. Fit indexes, which are based on
model comparisons, usually reach values between zero (indi-
cating poor model fit) and one (indicating perfect model fit).
As the exact distributions of these descriptive measures are
often unknown, inferential statistical testing is not possible.
Instead of using a statistical test, it is common to use cutoff
values (Hu & Bentler, 1999), where good model fit is indi-
cated when the descriptive fit values are greater than a certain
threshold.1 For example, the comparative fit index (CFI) has a
cutoff value of .95 (Hu & Bentler, 1999).

The primary aim of this article is to develop a fit measure
that has some descriptive validity, rather than a strict test of
model fit. It is desirable to obtain a measure that is scaled
simultaneously to other known fit indexes in SEM. The idea
is to extend the measure hhet for residual scores taken from
SEM and, thereby, to analyze the dispersion of the residuals
in the structural part of the model. In SEM, the residual
scores are not obtained directly, but they are score estimates
for the latent residual variable. In particular, research in this
article focused on the question whether the performance of
the fit measure is influenced by the fact that now latent
variable scores are used. Additionally, the fact that indica-
tors do have a measurement error, as opposed to predicted
scores in regression, might have an impact on how reliably
the new fit measure performs.

This article is organized as follows: In the next section,
we provide a novel measure for heteroscedasticity in SEM,
the HFI. A Monte Carlo simulation study is then conducted
to evaluate the performance of the HFI. Results for robust-
ness, Type I error, and power rates are provided. Finally, we
discuss implications of the simulation study and the limita-
tions of the new measure.

1 Examples of measures based on model comparisons are the non-
normed fit index (NNFI/TLI, Bentler & Bonett, 1980; Tucker & Lewis,
1973), the normed fit index (NFI, Bentler & Bonett, 1980), the comparative
fit index (CFI, Bentler, 1990), the goodness-of-fit index (GFI, Jöreskog &
Sörbom, 1989; Tanaka & Huba, 1984), and the adjusted goodness-of-fit
index (AGFI, Jöreskog & Sörbom, 1989).
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HOMOSCEDASTIC FIT INDEX

Omitted nonlinear terms in SEM cause heteroscedastic resi-
duals in the structural part of the model. Therefore, a new
descriptive index, the HFI, is provided to measure the
homoscedasticity when a target structural equation model
is fit. It is important to note that if the test indicates hetero-
scedasticity, different sources of heteroscedasticity are pos-
sible. In addition to omitted nonlinear terms, outliers in the
data or misspecifications of the model equations are other
potential sources of heteroscedasticity. The heteroscedasti-
city can also be affected by an unobserved nonlinear term
(cf. Klein et al., 2016).

In the following, the measure of heteroscedasticity, hhet ,
for regression analysis is further developed and transformed
to evaluate the heteroscedasticity of latent SEM. The mea-
sure hhet is defined as a standardized estimator of kurtosis:

hhet :¼
ffiffiffiffiffi
n

24

r
n�1

P
e4i

ðn�1
P

e2i Þ2
� 3

 !
; (1)

where e is the vector of residuals (Klein et al., 2016), and 3
and

ffiffiffiffiffiffiffiffiffiffi
n=24

p
standardize the expectation value and the stan-

dard deviation. Originally, this estimator is asymptotically
standard normally distributed for independent random vari-
ables (cf. Davidson & MacKinnon, 1993). Also, because
residuals meet the constraint ē = 0, they are not exactly
independently distributed. In simulation studies, however, it
was confirmed that the asymptotic distribution holds for
sufficiently large sample sizes (n ≥ 100). In addition, Klein
et al. (2016) demonstrated that if the population errors are
heteroscedastic and sample size is very large, hhet is asymp-
totically greater than zero. Thus, these results indicate the
suitability of a one-tailed test for hhet.

For the HFI, the proposed model is compared to a
homoscedastic comparison model: A close descriptive fit
with a value close to one indicates that the residuals in the
structural part of the model are homoscedastic. A value
less than one indicates that the variance of the residuals of
the target model is greater than the variance of a homo-
scedastic model, which means that the residuals are het-
eroscedastic. An advantage of a descriptive fit measure is
that it quantifies the degree of fit along a continuum (cf.
Hu & Bentler, 1999). It appears more appropriate to
quantify the degree of heteroscedasticity along a conti-
nuum rather than by a simple positive or negative deci-
sion. Nevertheless, it is common to devise cutoff values
for descriptive fit measures. The defined cutoff value
might be treated as a more lenient decision criterion than
the critical value of statistical significance test. As cutoff
values between .90 and .97 are common for descriptive fit
measures based on model comparisons in SEM (Hu &
Bentler, 1999; Schermelleh-Engel et al., 2003), the HFI
uses a cutoff value of .95.

For the development of the HFI we assume that residual
scores e1; :::; en on a residual variable e are also available for
the error ζ in the structural part of a structural equation
model. When a structural equation model has been ana-
lyzed, such residual scores can be readily computed from
the model equations by using the estimated parameters, the
factor scores, and the observed scores on the indicators (for
a more in-depth discussion, see Klein & Schermelleh-Engel,
2010).

Several steps are needed to transform hhet into the known
terms of a descriptive fit measure for SEM. First, hhet is
adjusted so that in the homoscedastic case the measure has a
value close to 1, and in the heteroscedastic case its value is
smaller than 1:

hhetadj ¼
1

hhet þ 1
: (2)

In a second step, the required cutoff value for a descriptive
measure is derived from Equation 2. The critical value of hhet
in Equation 1 for a one-tailed test and for α = 5% is z = 1.645.
To determine a specific cutoff value, cHFI, for α = 5%, the
standardized value z = 1.645 and an additional scaling factor
a are inserted in Equation 2:

cHFI ¼ 1

1:645aþ 1
: (3)

By solving Equation 3 for cHFI = .95, an approximate value
of a = .032 is obtained. A cutoff value of approximately .95
for the descriptive HFI is then given by:

cHFI ¼ 1

:032� 1:645þ 1
� :95: (4)

As heteroscedasticity is given if hhet > 0, a one-tailed test
is sufficient. For this, all values of hhet � 0 are set to 0 for
the HFI. The descriptive measure HFI is then defined as:

HFI :¼ 1 if hhet � 0
1

:032hhetþ1 if hhet > 0:

�
(5)

In the homoscedastic case, the HFI can be expected to
assume a value close to 1.0, and in the heteroscedastic case,
the HFI can be expected to assume a value smaller than 1.0.
A cutoff value of cHFI = .95 is recommended for α = 5%.

SIMULATION STUDY

In a Monte Carlo study we demonstrate the performance of
the HFI for the detection of omitted nonlinear terms in
structural equation models. The study investigates the influ-
ence of nonlinear effect size and sample size. Additionally,
the effect of nonnormally distributed error terms is
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examined. Specifically, in a robustness study, the conse-
quences of nonnormally distributed latent predictors on the
HFI are investigated. Various linear and nonlinear popula-
tion models were selected for data generation. After intro-
ducing the design of the simulation study, we present the
findings on the performance of the HFI in detecting omitted
nonlinear terms.

Population Models

Seven population models were chosen for data genera-
tion. The Type I error rate for overparameterized models
was investigated using the first population model. The
power and Type I error rate for models with omitted
nonlinear terms were examined in the second, third,
fourth, and fifth model. The influence of nonnormally
distributed error terms was investigated in the sixth
model. The seventh model focused on the Type I error
rate when the assumption of normally distributed vari-
ables was violated.

The first population model, ML, is linear and contains
two linear effects:

η ¼ αþ γ1�1 þ γ2�2 þ ζ; (6)

where η is a latent dependent variable, α is an intercept
term, �1 and �2 are latent predictor variables, and ζ is an
error term. The variables �1, �2, and ζ are normally
distributed. Both of the latent predictors, �1 and �2, are
measured by three indicators, x1 to x6, all of which have
reliabilities of .64. The latent criterion η has zero mean
and one indicator y with a reliability of 1.00. The corre-
lation between ξ1 and ξ2 was set to Φ12 = .40 in all
conditions. The variances of �1, �2, and η were set to
1.0. The error terms correspond to 55.20% of the var-
iance in η. The linear effect coefficients γ1 ¼ :40 and
γ2 ¼ :40 were held constant across all simulation
conditions.

The second model, MLQ, is the same as the linear
model ML, except for the addition of the quadratic term
�21 to the structural equation. MLQ is a quadratic model
with two linear (L) effects and one quadratic effect (Q):

η ¼ αþ γ1�1 þ γ2�2 þ ω1�
2
1 þ ζ; (7)

where the size of the quadratic effect ω1 was set to .20, .25,
and .30 in three effect size conditions, respectively. The
quadratic effect explains between 8% and 18% of the var-
iance in η so that 52% to 63% of the variance in the model
is explained.

The third model, MLI, is an interaction model with two
linear (L) effects and one interaction effect (I):

η ¼ αþ γ1�1 þ γ2�2 þ ω3�1�2 þ ζ: (8)

MLI is the same as ML, except for adding the interaction
term �1�2. The size of the interaction effect ω3 was set to
.30, .35, and .40 in three effect size conditions. The inter-
action effect explains between 10% and 19% and the error
term explains between 36% and 44% of the variance in η.

The fourth nonlinear equation model, MLQI, contains two
linear (L) effects, one quadratic (Q), and one interaction (I)
term:

η ¼ αþ γ1�1 þ γ2�2 þ ω1�
2
1 þ ω3�1�2 þ ζ: (9)

The quadratic effect coefficient ω1 and the interaction effect
coefficient ω3 were set to ω1 ¼ :20, ω3 = .15, to
ω1 ¼ ω3 ¼ :20; and to ω1 ¼ :20, ω3 ¼ :30 in three effect
size conditions, respectively. Taken together, these nonlinear
effects explain between 10% and 19% of the variance in η.
Overall, between 60% and 73% of variance in the model is
explained. The structural part of MLQI is depicted in Figure 1.

The fifth nonlinear equation model, MLQQI, is the full
model with two linear (L), two quadratic (QQ), and one
interaction (I) term:

η ¼ α þ γ1�1 þ γ2�2 þ ω1�
2
1 þ ω2�

2
2

þ ω3�1�2 þ ζ: (10)

The size of the quadratic effect coefficients ω1 and ω2 and
the interaction effect coefficient ω3 were set to
ω1 ¼ ω2 ¼ :10, ω3 ¼ :15, to ω1 ¼ ω2 ¼ :10, ω3 ¼ :20,
and to ω1 ¼ :15, ω2 ¼ :10, ω3 ¼ :20 in three effect size
conditions, respectively. These nonlinear effects together
explain between 6% and 11.5% of the variance in η so
that between 56% and 61% of variance in η is explained.

FIGURE 1 Structural part of the nonlinear population model,MLQI, with two
linear terms, �1 and �2, one quadratic term, �21, and one interaction term, �1�2.
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The sixth population model, MSζ, is the same as the linear
model ML, except for the nonnormally distributed distur-
bance term ζ, Sζð Þ. The technical details for the nonnormally
distributed disturbance terms are described in the Appendix.
In the simulation study, the kurtosis of ζ was set to .80 with a
skewness of .37, .49, or .70, and the skewness of ζ was set to
.50 with a kurtosis of .38, .60, or 1.19 in six conditions. The
error term corresponds to 55.20% of the variance in η.

The seventh population model, MS�2 , is the same as the
linear model ML, except for a nonnormally distributed latent
predictor �2, S�2ð Þ. Derivation of nonnormally distributed
latent predictors is provided in the Appendix. In four con-
ditions, the values of kurtosis and skewness for �2 were set
to 0/0, .50/.30, .50/.50, and .95/.50. For this model, 44.80%
of the variance is explained.

Design

The data for the population models were generated with the R
software (R version 3.2.2, R Core Team, 2015). For each
condition, 500 replications were performed, and the data
were analyzed with Mplus (Version 7.4: Muthén & Muthén,
2013) in the R software environment by using the Mplus
automation package (Hallquist & Wiley, 2015). The models
were estimated with the latent moderated structural equations
method (Klein & Moosbrugger, 2000). To obtain the resi-
duals ζi for the structural part of the model in Mplus, the
factor scores option (i.e., ‘Save = FS;’) was used. This option
provides ML-based factor scores for the latent variable η. The
factor scores for η were subtracted from the scores for y.
These values were studentized to obtain the required residual
scores for ζ . This procedure has been described in detail by
Klein and Schermelleh-Engel (2010). In addition, the authors
provided the Mplus syntax to obtain the residuals in the case
of more than one indicator for η.

Across all conditions, the sample size n was set to 300, 500,
800, or 1,200. Data for seven populationmodels (ML,MLQ, MLI,
MLQI, MLQQI,MSζ,MS�2 ) were generated. The populationmodel
MSζ was analyzed as a linear model. The other population
models ML, MLQ, MLI, MLQI, MLQQI, and MS�2 , were each
analyzed as a correctly specified and as a misspecified model.
For each model, several conditions were investigated.

Data generated for linear population models, ML, were
analyzed by correctly specified linear models, and by var-
ious overparameterized nonlinear models to study the Type I
error rate. Data generated for nonlinear population models
were analyzed by linear models for power analysis and by
correctly specified models for Type I error analysis. Two
linear models, MSζ and MS�2 , were considered in the robust-
ness study. Data produced for a linear population model
with the nonnormally distributed error term, MSζ; were
each analyzed by linear models, ML. For the investigation
of linear models with a nonnormally distributed predictor
term, MS�2 ; the generated data were analyzed by correctly

specified linear models and underparameterized linear mod-
els where the nonnormally distributed predictor term was
omitted. In the following, the percentage of data sets is
reported for HFI values smaller than .95.

RESULTS

The HFI mean values, Type I error and power rates of the HFI
to detect omitted nonlinear terms are reported.

The data for the linear population model ML were ana-
lyzed by a correct linear model and by the overparameter-
ized nonlinear models MLQ, MLI, MLQI, and MLQQI. In
Table 1, mean HFI values and the Type I error rates of the
HFI for the different linear and nonlinear analysis models
are listed. The mean HFI values were .99 in all conditions.
The HFI Type I error rates were close to the nominal
α ¼ 5% level across all conditions. The HFI correctly indi-
cates that the residuals are homoscedastic as no nonlinear
terms have been omitted.

Table 2 presents the results for the quadratic population
model MLQ. The mean HFI values ranged between .98 and
.99 when no term was omitted and between .82 and .98 when
the quadratic termwas not analyzed. The HFI Type I error rates
were close to the nominal 5% level for ω1 ¼ :20 and
ω1 ¼ :25, and they increased up to 9.40% for ω1 ¼ :30 and
n ¼ 1; 200. A desirable power of 80% was approximately
reached in samples of n = 600 when the quadratic effect size
was ω1 ¼ :30 (not listed in Table 2). The power rates were
close to 80% for ω1 ¼ :25 and n = 1,200. No appropriate
power was reached with a quadratic effect size of ω1 ¼ :20.

Table 3 provides the results for the interaction population
model MLI. The mean HFI values were between .98 and .99
when no nonlinear term was omitted and between .85 and
.97 when the interaction effect was not modeled. Most HFI
Type I error rates were close to the nominal 5% level, and
the largest value was 8.80%. The HFI reached a power of
80% in large samples (n = 800) when the interaction effect
size was ω3 ¼ :40.

Table 4 presents the results for a nonlinear population model
MLQI including a quadratic and an interaction effect. The mean
HFI values were between .97 and .99 when the correctly speci-
fied models were analyzed and between .67 and .93 when the
two nonlinear effects were not modeled. The Type I error rates
were increased for an effect size ofω1 ¼ :20 andω3 ¼ :30 and
reached a maximum value of 21.20%. For the other effect sizes,
the Type I error rates were slightly increased. A power of 80%
was exceeded in samples with n = 300when the nonlinear effect
sizes were sufficiently large.

Table 5 provides the mean HFI values, the Type I error rates,
and the power of the HFI for the full model MLQQI. The Type I
error rates for all correctly specified models were slightly higher
with a maximum value of 12.80% and the mean HFI values
were between .98 and .99. The mean HFI for omitted nonlinear
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terms was between .79 and .95. A power of 80% was reached
for ω1 ¼ ω2 ¼ :10; ω3 ¼ :20 and n = 800, and for
ω1 ¼ :15; ω2 ¼ :10; ω3 ¼ :20 and n = 500.

The linear model with nonnormally distributed error terms,
MSζ, was analyzed as a linear model (Table 6). The power
reached values between 40% and 95%, whereas both increasing
kurtosis and skewness resulted in higher power. The mean HFI
values were not greater than .95.

The linear population model MS�2 with skewed �2 was
analyzed as a linear model with one or two predictors
(Table 7). For the analysis with two predictors, the Type
I error rates ranged between 3% and 6% and the mean
HFI values were .99. Power rates for the analysis with
one predictor were also close to 5% for skewness and
kurtosis with values close to 0. With increasing kurtosis
and skewness, the power increased to between 17.20%
and 62.80%, respectively.

DISCUSSION

In this article we proposed a novel descriptive measure for
nonlinear structural equation models to detect omitted non-
linear terms, the HFI. The HFI examines the homoscedasti-
city of a target latent variable model. The HFI measure makes
direct use of the dispersion of the squared residuals of the
structural part of the model to examine a possible deviation
from homoscedasticity. The HFI is proposed for the evalua-
tion of fit, it quantifies if there is a sufficient modeling of
possible nonlinearity in the model. Values close to one indi-
cate that there is sufficient modeling of nonlinearity.

In a Monte Carlo study we demonstrated that the HFI is
sensitive to heteroscedasticity caused by omitted nonlinear
terms. The HFI responds to separately omitted quadratic and
interaction terms, as well as to both terms omitted simulta-
neously. In sufficiently large sample and effect size conditions,

TABLE 6
Mean HFI Values and Type I Error Rates (in Percent) as a Function of Sample Size (N), Kurtosis, and Skewness of ζ for Population Model MSζ

with Nonnormally Distributed ζ

Population Model
MSζ

η ¼ αþ γ1�1 þ γ2�2

Analysis Model
ML

η ¼ αþ γ1�1 þ γ2�2

(Centered)
Kurtosis of ζ 0.80 0.80 0.80 0.38 0.60 1.19
Skewness of ζ 0.37 0.49 0.70 0.50 0.50 0.50

N M Power M Power M Power M Power M Power M Power

300 0.95 40.00 0.94 44.80 0.94 44.80 0.97 21.60 0.95 36.60 0.93 53.60
500 0.93 53.60 0.92 62.40 0.93 60.00 0.96 29.20 0.94 50.80 0.90 70.40
800 0.91 67.40 0.90 78.40 0.91 76.60 0.95 42.20 0.93 64.00 0.87 85.00
1,200 0.89 80.80 0.89 86.20 0.88 89.60 0.94 54.80 0.91 74.80 0.85 94.20

TABLE 7
Mean HFI Values, Type I Error Rates (in Percent), and Power (in Percent) as a Function of Sample Size (N) and Skewness of �2 for

Population Model MS�2

Population Model MS�2

η ¼ αþ γ1�1 þ γ2�2

Analysis Model ML

η ¼ αþ γ1�1 þ γ2�2

ML

η ¼ αþ γ1�1

(Centered) Kurtosis of ξ2 0.00 0.50 0.50 0.95 0.00 0.50 0.50 0.95
Skewness of ξ2 0.00 0.30 0.50 0.50 0.00 0.30 0.50 0.50

N M Type I
Error

M Type I
Error

M Type I
Error

M Type I
Error

M Power M Power M Power M Power

300 0.99 5.20 0.99 5.20 0.99 5.00 0.99 4.00 0.99 3.40 0.97 17.20 0.98 14.20 0.96 32.20
500 0.99 4.40 0.99 4.00 0.99 3.00 0.99 3.80 0.99 3.80 0.97 21.40 0.97 21.60 0.95 40.00
800 0.99 5.80 0.99 4.40 0.99 4.00 0.99 4.60 0.99 4.80 0.96 31.20 0.97 26.40 0.94 52.20
1,200 0.99 6.00 0.99 5.20 0.99 3.20 0.99 4.80 0.99 4.60 0.96 39.00 0.96 35.80 0.93 62.80
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the power analysis showed good results. Depending on the
expected nonlinear effect sizes, a sample size greater than 500
is recommended for detecting heteroscedasticity in nonlinear
SEM. In sufficiently large samples, the HFI appears to be a
suitable method for the detection of omitted nonlinear terms in
SEM.

The Type I error analysis showed mostly satisfactory
results, keeping the 5% nominal level in most conditions for
nonlinear effects that are not too strong.When analyzing linear
populationmodels, the 5% error rate was kept in all conditions.
In some conditions, when the target model had large or multi-
ple nonlinear terms, Type I error rates were inflated. Therefore,
we recommend choosing more conservative cutoff values for
models that already include some nonlinear relationships. For
the models tested here, as a rule of thumb, results suggest
reducing the recommended cutoff value of cHFI = .95 by .01
for each significant nonlinear effect already included in the
structural equation model. For example, when testing a model
with a significant quadratic effect for possibly omitted non-
linear terms, a cutoff value of cHFI = .94 seems to work
satisfactorily.

Moreover, we investigated the influence of nonnormal latent
predictor variables in a robustness study with satisfactory
results. Findings revealed that the nonnormally distributed latent
predictors did not influence the Type I error rates. The power to
detect omitted nonnormally distributed predictor terms
depended on the values of the kurtosis: An omitted normally
distributed latent predictor (with kurtosis and skewness of zero)
did not influence the test, resulting in a correct nominal Type I
error level of almost 5%.Omitted nonnormally distributed latent
predictors, comparable to nonlinear terms with large kurtosis
and skewness values, clearly resulted in an increased power.

In the simulation study, nonnormally distributed error
terms resulted in high power rates, which reflects the fact
that the measure might also respond to other sources of
heterogeneity beside nonlinearity.

Therefore, a two-step approach is recommended for
researchers: In a first step, the researcher can assess the
homoscedasticity of a latent model with the HFI measure.
When the residuals are homoscedastic, the HFI value is
close to one and it can be assumed that no strong nonlinear
relationship has been overlooked. If the HFI indicates het-
eroscedastic residuals, the second step entails searching for
the source of heteroscedasticity. If particular nonlinear rela-
tionships are assumed, they can be tested by the likelihood-
based model difference test (TD) for latent nonlinear effects
(Klein & Moosbrugger, 2000). The use of the two robust
statistics developed for conditions of nonnormality and
small samples, the robust TDR and the strictly positive
TDRP (Satorra & Bentler, 2001, 2010), might not be advi-
sable for testing nonlinear effects, as they produce many
negative difference values, low power, or both (Gerhard
et al., 2015). If TD shows a significant result, the nonlinear
terms should be included in the target model. Future
research should examine if the HFI can be used for the

more common application context of detecting heterosce-
dastic residuals in general.

Although the HFI has been shown to detect omitted
nonlinear terms in SEM, this study is limited to the
conditions examined here. To further strengthen the posi-
tion of the HFI within the SEM framework, future
research should investigate the performance of the HFI
in a number of additional conditions, such as higher
model complexity or testing models with more than a
single latent dependent variable. Moreover, the suitability
of the HFI for SEM using PI approaches needs further
testing as well. Future research could also investigate
variants of the HFI measure for models with multiple
indicators of the latent dependent variables. Overall,
based on the simulation findings presented here, we
believe that the HFI offers a promising new method for
determining the heteroscedasticity of the residuals and for
the detection of omitted nonlinear terms in SEM.
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APPENDIX
NONNORMAL DISTRIBUTIONS

Nonnormal Error Term

The nonnormally distributed structural error ζ was generated
as a mixture of X,Nð0; 1Þ and Z,χ2df with df degrees of
freedom:

ζ ¼ σ2ζ c1X þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c21

q Z � dfffiffiffiffiffiffiffiffi
2df

p
� �

; (A:1)

where c1 is a weight parameter and VarðζÞ ¼ σ2ζ . The
(centered) kurtosis and the skewness can be expressed as

KurtðζÞ ¼ 12

df
ð1� c21Þ2 (A:2)

SkewðζÞ ¼ 4ffiffiffiffiffiffiffiffi
2df

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c21

q� �3
: (A:3)

Nonnormal Predictor

The nonnormal predictor was generated as a mixture:

�2 ¼ :40�1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :402

p
c2X þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c22

q Z � dfffiffiffiffiffiffiffiffi
2df

p
� �

; (A:4)

where X,Nð0; 1Þ and Z,χ2df with df degrees of freedom.
Under this condition, the correlation between �1 and �2 is
Φ12 ¼ :40 and the variance of �2 is 1. The formula for the
(centered) kurtosis of �2 is

Kurtð�2Þ ¼ ð1� :402Þ2ð1� c22Þ2
12

df
� 3: (A:5)

The formula for the skewness can be expressed as

Skewð�2Þ ¼ 1� :402
� �3

2 1� c22
� �3

2
4ffiffiffiffiffiffiffiffi
2df

p : (A:6)
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