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Helfried Moosbrugger, Jana Gäde, and Holger Brandt

Goethe University, Frankfurt, Germany

This article investigates likelihood-based difference statistics for testing nonlinear effects in
structural equation modeling using the latent moderated structural equations (LMS) approach.
In addition to the standard difference statistic TD, 2 robust statistics have been developed in the
literature to ensure valid results under the conditions of nonnormality or small sample sizes: the
robust TDR and the “strictly positive” TDRP. These robust statistics have not been examined in
combination with LMS yet. In 2 Monte Carlo studies we investigate the performance of these
methods for testing quadratic or interaction effects subject to different sources of nonnormality,
nonnormality due to the nonlinear terms, and nonnormality due to the distribution of the pre-
dictor variables. The results indicate that TD is preferable to both TDR and TDRP. Under the
condition of strong nonlinear effects and nonnormal predictors, TDR often produced negative
differences and TDRP showed no desirable power.

Keywords: interaction effects, likelihood-ratio test, Monte Carlo study, nonlinear SEM, robust
difference test, strictly positive difference test

Structural equation modeling (SEM) is a common statisti-
cal tool for modeling relationships between latent variables
that cannot be measured without errors. In SEM, latent
exogenous and endogenous variables are operationalized by
observable indicators, which allow for measurement errors.
Besides the use of linear SEM, nonlinear SEM has gained
more and more attention over the last decade and it has
frequently been used in the context of applied behavioral
and social science research (cf. Kline, 2010; Marsh, Wen,
Nagengast, & Hau, 2012; Moosbrugger, Schermelleh-Engel,
Kelava, & Klein, 2009). Nonlinear SEM enhances ordinary
SEM by adding latent interaction, quadratic terms, or both to
the structural equation.

For the estimation of nonlinear SEM, Klein and
Moosbrugger (2000) developed a maximum likelihood esti-
mation method for the first time, the latent moderated
structural equations (LMS) method. LMS is a distribution-
analytic method that takes the nonnormality of the criterion
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variable (η)1 into account by analyzing its distribution as
a mixture of several conditionally normal distributions (cf.
Klein & Moosbrugger, 2000; see also Kelava et al., 2011).
By this, only the predictor variables, the measurement errors,
and the residual variable (x, ξ , δ, ε, ζ ) are required to follow
a multivariate normal distribution. LMS includes a model
difference test TD for latent interaction effects. Previous sim-
ulation studies suggest that TD might perform well under
ideal simulation conditions (Cham, West, Ma, & Aiken,
2012; Klein, 2000; Klein & Moosbrugger, 2000; Klein &
Muthén, 2007).

Nonlinear terms in nonlinear SEM are generally
nonnormally distributed (cf. Klein & Moosbrugger,
2000; Moosbrugger, Schermelleh-Engel, & Klein, 1997).
Consequently, the latent endogenous variables are typically
not normally distributed either. Also, there might be addi-
tional nonnormality due to nonnormal predictor variables.
Because of these two different sources of nonnormality, the
assumption of multivariate normally distributed indicators

1In the following, we will use the LISREL notation (cf. Jöreskog &
Yang, 1996).
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2 GERHARD ET AL.

could often be violated in nonlinear SEM. This raises the
question as to what degree the standard model difference
test TD still produces reliable results when distributional
assumptions about the predictors are violated.

In the literature, two robust test statistics designed for
nonnormal data have been proposed by Satorra and Bentler
(2001, 2010): the Satorra–Bentler (SB) scaled difference
chi-square statistic TDR and the strictly positive SB scaled
difference chi-square statistic TDRP. Up to the present nei-
ther of these two statistics has been examined for use with
LMS. It is yet unknown if these robust methods have any
benefit for detecting nonlinear effects. The goal of this arti-
cle is to present the theoretical background, the features, and
the application of standard and robust likelihood-ratio tests
for testing single or several nonlinear effects in latent non-
linear SEM. We systematically investigate the standard LMS
difference test TD and the robust difference tests TDR and
TDRP.

In empirical research it is often of special interest to
test not only interaction effects, but also quadratic effects
or several nonlinear effects simultaneously. Because until
now TD has only been investigated for testing interaction
effects, this article focuses on the detection of quadratic
effects and on the detection of quadratic and interaction
effects simultaneously. For this purpose, different types of
nested models were compared in two Monte Carlo studies.
In addition, different sources of nonnormality were simu-
lated. The first Monte Carlo study investigated the influence
of nonnormality due to nonlinear terms and the second
Monte Carlo study investigated the influence of additional
nonnormality due to nonnormally distributed predictors.

In the following, different ways of performing chi-square
difference tests in linear SEM and the specifics of likelihood-
based difference tests for LMS in nonlinear model structures
are outlined.

REVIEW OF STANDARD CHI-SQUARE AND
LIKELIHOOD-BASED DIFFERENCE TEST

To test the significance of parameters of nested models, one
can test a target model against a more restricted baseline
model. In linear SEM, the chi-square difference statistic TD

compares the chi-square values of two nested SEM mod-
els. Nested models are equivalent except for a subset of
free parameters in one model that is fixed in the second
model. In the more restrictive nested model (M0), one or
several parameters are fixed to zero. In the less restrictive
model (M1) these additional parameters are estimated. The
difference statistic TD calculates the difference between the
chi-squares χ2

0 and χ2
1 for M0 and M1, and it is chi-square

distributed with dfD = df0 − df1 degrees of freedom (Steiger,
Shapiro, & Browne, 1985):

TD = χ2
D = χ2

0 − χ2
1 . (1)

For nonlinear SEM, it is not possible so far to obtain
reliable chi-square statistics. However, it is possible to test
single or multiple nonlinear effects by a standard likelihood-
ratio test. The difference between the log-likelihood LL0 of
a more restrictive model (M0) and the log-likelihood LL1 of
a less restrictive model (M1) multiplied by –2 is chi-square
distributed (Bollen, 1989; cf. Muthén & Muthén, 2006):

TD = −2(LL0 − LL1). (2)

The number of degrees of freedom for the difference statis-
tic TD is calculated by subtracting the number of estimated
parameters of the more restrictive model (p0) from the num-
ber of estimated parameters of the less restrictive model
(p1): dfD = p1 − p0. Thus, the likelihood-based difference
test TD compares the log-likelihoods of the nested mod-
els, with greater differences reducing the probability that the
more restrictive M0 model is retained.

Previous studies report a good power of TD for detect-
ing interaction effects (Klein, 2000; Klein & Moosbrugger,
2000; Klein & Muthén, 2007). These findings suggest that
TD performs well under ideal simulation conditions. These
studies focused on the detection of interaction effects and
did not consider the detection of quadratic effects or differ-
ent types of nonlinear effects simultaneously. Nevertheless,
it was concluded that standard difference tests might perform
well when the interaction effect is sufficiently large.

Additional support for using the standard likelihood-ratio
test in nonlinear SEM is given by a study of Klein and
Moosbrugger (2000), where the authors took a closer look
at the distribution of TD. In a Monte Carlo study they eval-
uated the distribution of TD for a latent moderated model
with normally distributed predictor variables and sample
size N = 400 and compared it to the theoretical chi-square
distribution. They reported that the distribution of the test
statistic TD did not deviate significantly from the theoretical
distribution.

Robust Chi-Square and Likelihood-Based
Difference Test

The calculation of the robust difference statistic TDR and
the strictly positive test statistic TDRP given by Satorra and
Bentler (2001, 2010) is based on the chi-square values of
model fit for linear SEM. The regular chi-square of model
fit statistic T of a linear structural equation model is calcu-
lated under the assumption that the variables are normally
distributed. If this is not the case, Satorra and Bentler showed
that T is asymptotically distributed as a mixture of chi-square
distributions of 1 df. Therefore a robustified version TR of the
chi-square values was proposed to improve the chi-square
approximation in nonasymptotic and nonnormal applications
(Satorra & Bentler, 1994). TR approximates the expected
chi-square distribution under conditions of nonnormality by
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LIKELIHOOD-BASED DIFFERENCE TESTS IN SEM 3

estimating a correction factor ĉ to adjust the mean and vari-
ance of the chi-square values (Satorra & Bentler, 1994).
For general types of distribution, a corrected statistic TR

was proposed, wherein T is divided by ĉ. The correction
factor ĉ is calculated from the estimated asymptotic covari-
ance matrix of the sample covariances and variances, which
contains information about higher order moments, such as
skewness and kurtosis. The value of ĉ is a function of the
observed multivariate kurtosis and the degrees of freedom
of the model. The chi-square values, which are biased due
to the given nonnormality, are scaled so that the mean of
TR matches again with the degrees of freedom, E(TR) =
df (Satorra, 1990, 1992; Satorra & Bentler, 1994; see also
Curran, West, & Finch, 1996). The robust SB statistic TR has
been well studied under various conditions of nonnormality
and it appears to perform well under nonnormal conditions,
even in small samples (e.g., Chou, Bentler, & Satorra, 1991;
Curran et al., 1996; Hu, Bentler, & Kano, 1992).

The difference between two TR statistics of two nested
models is not chi-square distributed anymore (Satorra,
2000). For such situations Satorra and Bentler (2001) devel-
oped a method to calculate robust chi-square difference tests
by estimating an additional correction factor ĉD that is based
on the correction factor ĉ0 of the M0 model and on the cor-
rection factor ĉ1 of the M1 model, as well as on the degrees of
freedom of the nested models (cf. Satorra & Bentler, 2001):

ĉD = (df0ĉ0 − df1ĉ1)/(df0 − df1). (3)

To obtain the robust chi-square difference statistic TDR, TD

is divided by ĉD:

TDR = TD/ĉD = (χ2
0 − χ2

1 )/ĉD. (4)

The performance of TDR is less well investigated than the
performance of TR. Under nonnormal conditions for linear
SEM models, the robust statistics are recommended for both
the chi-square test of model fit and the chi-square difference
test (Satorra & Bentler, 1994, 2001).

For nonlinear SEM the robust difference test has only
been investigated for product indicator (PI) approaches
(Cham et al., 2012), for which the chi-square values are pro-
vided in the software output. The robust difference tests for
PI approaches are not directly comparable to those for LMS
difference tests. For LMS, chi-square values of fit are not
available. The reason for this lies in the fact that for nonlin-
ear SEM a statistic for a saturated model cannot be computed
in a straightforward manner (Klein & Schermelleh-Engel,
2010). A common misconception about the robust differ-
ence statistic developed by Satorra and Bentler is that this
statistic could only be applied when the chi-square values
of model fit are available. This is not the case because
likelihood values are sufficient for its computation. When
neither the chi-square values of the model fit nor the num-
ber of degrees of freedom for the models are available, it

is suggested to use the robust difference test statistic TDR

by using the log-likelihood values instead of the chi-square
values (Asparouhov & Muthén, 2012; Muthén & Muthén,
2006). For a calculation of the robust likelihood-based differ-
ence test one needs the log-likelihood values (LL0, LL1), the
number of estimated parameters (p0, p1), and the estimated
correction factors (ĉ0, ĉ1) for the nested models. Instead of
using Equation 3 an alternative formula for ĉD is applied
(Asparouhov & Muthén, 2012; Muthén & Muthén, 2006),
which is given by

ĉD = (
p0ĉ0 − p1ĉ1

)
/
(
p0 − p1

)
. (5)

Considering Equations 2 and 5, the likelihood-based TDR

(Asparouhov & Muthén, 2012; Muthén & Muthén, 2006) is
then given by

TDR = TD/ĉD = −2(LL0 − LL1)/ĉD. (6)

In nonlinear SEM, Mplus (Muthén & Muthén, 1998–
2010) provides the log-likelihood values and the correction
factors for the nested models when the MLR (robust max-
imum likelihood) estimation option is used. It is the only
estimation option for nonlinear SEM in Mplus for which the
required correction factors are available when using LMS.
All necessary information for robust difference test statistic
TDR is provided, and it is explicitly recommended to per-
form the robust difference test when using MLR (Muthén &
Muthén, 2010). As the required information is provided and
TDR is recommended, TDR has often been applied in practice
when using MLR (cf. Dimitruk, Schermelleh-Engel, Kelava,
& Moosbrugger, 2007; Hughes & Kwok, 2006; Marshall,
Miles, & Stewart, 2010; Willoughby, Cadigan, Burchinal, &
Skinner, 2008).

When the MLR estimator for nonlinear SEM is used in the
Mplus program, it is tailored in particular for nonlinear SEM.
A maximum likelihood estimator with a numerical integra-
tion algorithm that is based on LMS (Klein & Moosbrugger,
2000) is applied. Theoretically the nonnormality due to the
nonlinear terms is already considered when using LMS for
nonlinear SEM and an additional correction of the difference
statistic might not make much of a difference as long as the
predictor variables and the measurement errors themselves
are normally distributed. However, the use of the correction
formula for the LMS-based test might be of practical value
when LMS is applied under less than optimal conditions
where the distributional assumptions are violated. The use-
fulness of such a robustified version of the LMS difference
test has not been examined yet.

Strictly Positive Robust Chi-Square and
Likelihood-Based Difference Tests

Under certain conditions, the robust chi-square difference
test might produce a negative TDR value in linear SEM
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4 GERHARD ET AL.

(Bryant & Satorra, 2012; Satorra & Bentler, 2010). Negative
chi-square values are improper and cannot be used. A neg-
ative TDR occurs when ĉD is negative. This is the case
when df0ĉ0 − df1ĉ1 < 0, as the denominator df0 − df1 in
Equation 3 is always positive. To solve this problem, a new
adjustment of the correction method has been developed, the
strictly positive robust difference statistic TDRP (Satorra &
Bentler, 2010). TDRP has been recommended whenever neg-
ative difference values appear for the TDR (Asparouhov &
Muthén, 2012).

The idea of TDRP is to estimate a third model M10, which
has the same model structure as M1, but with the parameter
estimates that occurred in the restricted M0 model held fixed.
The auxiliary model M10 can be seen as a nonoptimized ver-
sion of M1 (Asparouhov & Muthén, 2012). For the strictly
positive chi-square difference test, M10 is estimated to obtain
a new correction factor ĉ10. The correction factor ĉ10 is then
used instead of ĉ1 (cf. Equation 3) for a calculation of the
strictly positive correction factor ĉDP:2

ĉDP = (df0ĉ0 − df1ĉ10)/(df0 − df1). (7)

The formula for the strictly positive difference statistic TDRP

is then given by

TDRP = TD/ĉDP. (8)

The structure of M10 is the same as for M1, but the parameter
estimates of M10 have not been optimized for convergence
and are identical with the parameter estimates of M0.

The strictly positive difference test could be applied for
nonlinear SEM as well to avoid negative differences. If the
chi-square values and the number of degrees of freedom
are not available, as is the case for LMS, an alternative
likelihood-based formula was proposed by Asparouhov and
Muthén (2012). Similar to Equation 7, and instead of ĉ1 in
Equation 5, the correction factor ĉ10 of the nonoptimized
Ml model is used to calculate the strictly positive correction
factor ĉDP by

ĉDP = (
p0ĉ0 − p1ĉ10

)
/ (p0 − p1) . (9)

The strictly positive approach ensures that ĉ10 is greater than
ĉ0, and that the difference values are positive. The likelihood-
based TDRP is then given by

TDRP = TD/ĉDP = −2(LL0 − LL1)/ĉDP. (10)

The strictly positive difference test has not been examined
for nonlinear SEM yet.

2For further details concerning the calculation of strictly positive dif-
ference test statistics in different SEM software packages, see Bryant and
Satorra (2012).

RESEARCH QUESTIONS

In the following we want to address whether TD is a suit-
able method for detecting single nonlinear effects or different
nonlinear effects modeled simultaneously. Furthermore, as
the multivariate distribution of the variables in nonlinear
SEM is always nonnormal, the question arises if a robust
test statistic might lead to an improvement in detecting
nonlinear effects compared to the standard TD. From the
theoretical point of view, one might suggest that a cor-
rection of TD for difference tests in nonlinear SEM is
not necessarily required. As the nonlinearity of the data is
inherent in both likelihood values of the compared mod-
els, the difference of these likelihoods might compensate
the bias due to the nonnormality caused by nonlinear
terms.

Using the LMS approach, the nonnormality in the data
due to the nonlinear terms is already considered and a
robust statistic might not be necessary as long as the pre-
dictor variables themselves are normally distributed. In view
of these considerations, another important issue relates to
possible additional nonnormality due to the predictor vari-
ables. There is some evidence that a severe violation of
the normality assumption for the predictor variables might
inflate the Type I error of standard LMS difference test-
ing in nonlinear SEM (Cham et al., 2012; Klein, 2000;
Klein & Moosbrugger, 2000). As in psychological and social
science research, nonnormal predictors and small samples
are not uncommon (cf. Micceri, 1989), so the question
arises, what improvements might be achieved when per-
forming robust likelihood-based difference tests under these
nonnormal conditions. The robust TDR might result in nega-
tive differences. There are no extensive simulation studies
on this problem, but it has been noted in the context of
linear SEM that this problem occurs especially in small sam-
ples or when the more restrictive model is highly incorrect
(Satorra & Bentler, 2010). As negative difference values
have already been reported in linear SEM, the strictly pos-
itive robust difference TDRP is examined in this article,
too.

Until now, neither the performance of TDR nor the perfor-
mance of TDRP has been investigated in combination with
LMS. It is unknown under what conditions the TDR or
the TDRP might have an advantage over the standard test
statistic TD. To investigate the robustness of TD, TDR, and
TDRP under conditions relevant for empirical research, an
extensive and comparative simulation study appears nec-
essary. Therefore, for this article two Monte Carlo studies
were conducted. The first study focused on nonnormality
due to the nonlinear terms, where the size of the non-
linear effects was varied. The second study focused on
additional nonnormality due to nonnormally distributed
predictors, where the degree of nonnormality of the pre-
dictor variables was varied. The following questions are
addressed:
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LIKELIHOOD-BASED DIFFERENCE TESTS IN SEM 5

1. What type of likelihood-based difference test (TD,
TDR, and TDRP) is most effective in detecting nonlinear
effects?

2. Are these tests practically useful for detecting
quadratic effects, interaction effects, or even both
nonlinear effects simultaneously?

3. Is the performance of these tests influenced by the size
of the nonlinear effects?

4. Is the performance of these tests influenced by addi-
tional nonnormality of the predictor variables?

METHOD

Two Monte Carlo studies were conducted with the aim
of investigating the performance of standard and robust
likelihood-based difference tests. Study 1 investigates the
influence of nonlinear effect size and sample size on the per-
formance of TD, TDR, and TDRP. Study 2 investigates the
influence of the distribution of the predictor variables on the
performance of the different test statistics. For both studies
the same population models were used for data generation
and the same model difference tests were performed. The
data were analyzed with the LMS approach under Mplus.
In the following, first, we introduce the model comparisons
for difference testing; and second, we present the particular
design for the two studies.

Model Comparisons

The same nested structural equation models were used
throughout in Study 1 and Study 2. The first model (MLQI)
was a nonlinear model with two linear (L), one quadratic (Q),
and one interaction (I) term:

η1 = α + γ11ξ1 + γ12ξ2 + ω11ξ
2
1 + ω12ξ1ξ2 + ζ . (11)

where η1 is the latent endogenous variable, ξ 1 and ξ 2 are
the latent exogenous predictor variables, ζ is the disturbance
term, and γ 11 and γ 12 are the linear effect parameters; ξ 2

1 is
the latent quadratic term, ω11 is the quadratic effect parame-
ter, ξ 1ξ 2 is the latent interaction term, ω12 is the interaction
effect parameter and α is the intercept. The linear effect
parameters were γ 11 = γ 12 = .30 in all conditions. The size
of ω11 and ω12 was varied in the first study. Each latent vari-
able (ξ 1, ξ 2, and η1) had three indicator variables, all of them
with factor loadings of .80, and the correlation between ξ 1

and ξ 2 was set to φ12 = .30. The variances of the latent vari-
ables were all set to 1.0. The MLQI model is displayed in
Figure 1.

The second model (MLQ) was a nonlinear model with two
linear (L) and one quadratic effect (Q):

η1 = α + γ11ξ1 + γ12ξ2 + ω11ξ
2
1 + ζ . (12)

FIGURE 1 Nonlinear structural equation model MLQI containing two lin-
ear effects (γ 11, γ 12), one quadratic effect (ω11), and one interaction effect
(ω12). The reliabilities of the indicator variables were set to .64. The sizes
of the nonlinear effects were varied in Study 1.

MLQ is nested in MLQI, because it only differs from MLQI in
setting the interaction effect ω12 to zero.

The third model (ML) was a linear model with two linear
effects (L):

η1 = γ11ξ1 + γ12ξ2 + ζ . (13)

ML is nested in MLQ and also in MLQI, because both nonlin-
ear effects (ω11, ω12) are set to zero.

The three nested models allow for the following model
difference tests: (a) model with linear and quadratic effects
compared to the linear model (MLQ vs. ML); (b) model
with linear, quadratic, and interaction effects compared to
the model with linear and quadratic effects (MLQI vs. MLQ);
and (c) model with linear, quadratic, and interaction effects
compared to the linear model (MLQI vs. ML).

Depending on the kind of analysis (Type I error or power
analysis) the respective true population model differs. For
power analysis M1 is the true model and M0 is the misspec-
ified model. For Type I error analysis M0 is the true model.
For the different population models the model difference
tests are listed with regard to the kind of analysis in Table 1.

TABLE 1
Population Models and the Model Difference
Tests for Type I Error and Power Analyses

Population Model Type I Error Power

MLQI MLQI vs. MLQ

MLQI vs. ML

MLQ MLQI vs. MLQ MLQ vs. ML

ML MLQI vs. ML

MLQ vs. ML

Note. ML = linear model; MLQ = model with linear and quadratic
effects; MLQI = model with linear, quadratic, and interaction effects. The
respective population model is shown in bold type.
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6 GERHARD ET AL.

Study 1: Nonnormality Due to Nonlinear Terms

Study 1 was designed to examine the influence of
nonnormality due to nonlinear terms on the test statistics.
The performance of the likelihood-based TD, TDR, and TDRP

was investigated. The sizes of the additional nonlinear effects
in the less restrictive models (M1) were varied. Overall, there
were five effect size conditions for each model compari-
son: In model comparison (a) between MLQ and ML, the
quadratic effect ω11 was set at .00, .15, .20, .25, and .30.
A quadratic effect of .30 accounts for 18% unique variance
in η1. In model comparison (b) between MLQI and MLQ, the
interaction effect ω12 was set at .00, .20, .25, .30, and .40.
An interaction effect of .40 here accounts for 17.5% unique
variance in η1. As only the size of the additional effect of M1

(the interaction effect) was varied, the quadratic effect was
held constant, ω11 = .25. In model comparison (c) between
MLQI and ML, both nonlinear effects were varied correspond-
ingly; the quadratic effect ω11 was set again at .00, .15, .20,
.25, and .30; the interaction effect ω12 was set at .00, .20,
.25, .30, and .40. The underlying population model differs,
depending on whether the focus is on Type I error rate (ωij =
.00) or on power (ωij > .00). The latent predictor variables
ξ 1 and ξ 2 were normally distributed in the first study.

In all model comparisons the sample size N was set at
200, 400, and 800. In consideration that three model com-
parisons, five effect size conditions, and three sample size
conditions were realized, altogether a design with 5 · 3 · 3 =
45 difference tests was conducted in the first study.

The normally distributed data were generated with the
PRELIS 2.8 software (Jöreskog & Sörbom, 2006). For each
condition R = 500 replications were performed and the
data were analyzed with Mplus (Muthén & Muthén, 1998–
2010) using the LMS method. For TD, TDR, and TDRP, the
Type I error rate was investigated. The proportion of data
sets in which the M1 models incorrectly fitted the data sig-
nificantly better (α = 5%) than the true M0 models was
identified. Furthermore, the percentage of unusable negative
difference values was calculated, and the power to detect
nonlinear effects was investigated by identifying the propor-
tion of data sets in which the M1 models correctly fitted the
data significantly better than the M0 models.

Study 2: Nonnormality Due to Nonnormal Predictor
Variables

Study II was designed to examine the influence of additional
nonnormality due to nonnormally distributed predictor vari-
ables. Two distribution conditions were chosen:3 (a) ξ 1 and
ξ 2 were generated with a slight deviation from normality,
where skewness of ξ 1 is S1 = 1 and kurtosis is K1 = 5, and

3Note that it is not possible to choose arbitrary combinations of
skewness and kurtosis. When the skewness is unequal to zero, the distribu-
tion is not symmetric anymore and a minimum value of kurtosis is required.

skewness of ξ 2 is S2 = 1 and kurtosis is K2 = 3; (b) ξ 1 and
ξ 2 were generated with a severe deviation from normality,
where S1 = S2 = 2 and K1 = K2 = 7.

In addition to the distribution of the predictor variables,
the sample size was varied as well, and N = 200 and
N = 400 were tested. As the influence of the nonlinear effect
sizes was already investigated in Study 1, here ω11 and ω12

were just varying depending on whether Type I error (ωij =
.00) or power (ωij > .00) was analyzed. Thus, in each model
comparison two effect sizes were realized: In comparison (a)
between MLQ and ML, the quadratic effect ω11 was set at
.00 and .25; in comparison (b) between MLQI and MLQ, the
interaction effect ω12 was set at .00 and .30 and the quadratic
effect was again held constant ω11 = .25; and in comparison
(c) between MLQI and ML, the nonlinear effects were varied
correspondingly, ω11 was set at .00 and .25, and ω12 was set
at .00 and .30. As the focus of this article is on the influ-
ence of nonlinearity on difference testing, we chose strong
nonlinear effects for the less restrictive population models to
gain more knowledge on the effects of noticeable nonlinear-
ity. Overall, three model comparisons, two sample sizes, two
effect sizes, and two distribution conditions were realized,
resulting in a design with 3 · 2 · 2 · 2 = 24 difference tests
for each testing procedure.

For nonnormal latent data generation, a two-step
approach was performed. In the first step the data of the
latent variables (latent predictor and error variables) were
generated using the EQS program (Bentler, 2005) to ensure
that the generated data met the assumed model parameters.
In the second step the observable indicator variables were
calculated from the previously generated latent variables, a
procedure that is recommended for nonnormal data gener-
ation by Mattson (1997). For each condition 500 data sets
were generated, and the performance of TD, TDR, and TDRP

was investigated.

RESULTS

For the likelihood-based TD, TDR, and TDRP we report (a) the
Type I error rate, (b) the proportion of data sets with unus-
able negative difference values, and (c) the power to detect
nonlinear effects.

Study 1: Nonnormality Due to Nonlinear Terms

The following results relate to the investigation of the influ-
ence of nonlinear effect size on the different likelihood-based
difference statistics for models with normally distributed
predictor variables.

Hence, the values of the kurtosis were chosen considering the possible val-
ues if a rather slight (S = 1) or a stronger (S = 2) skewness is given (cf.
Werner, 2002).
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LIKELIHOOD-BASED DIFFERENCE TESTS IN SEM 7

TABLE 2
Type I Error Rates (%) for TD, TDR, and
TDRP as a Function of Sample Size (N)

MLQ vs. ML MLQI vs. MLQ MLQI vs. ML

ω11= .00 .25 .00
Method N ω12= — .00 .00

TD 200 4.8 5.4 6.0
400 4.4 4.2 4.0
800 4.2 6.2 4.4

TDR 200 7.4 7.2 8.0
400 5.8 7.4 5.4
800 5.0 8.0 6.2

TDRP 200 2.0 2.6 1.6
400 3.4 4.2 3.0
800 3.2 6.0 4.0

Note. ML = linear model; MLQ = model with linear and quadratic
effects; MLQI = model with linear, quadratic, and interaction effects; ω11 =
quadratic effect; ω12 = interaction effect. The respective population model
is shown in bold type.

Type I error. In Table 2 the percentage of data sets is
listed in which M1 incorrectly fitted the data significantly
better than M0 (α = 5%). The Type I error rates in the
simulation were close to the nominal 5% level for TD, TDR,

and TDRP.
TD yielded a Type I error rate between 4% and 6.2%, the

Type I error rate for TDR ranged from 5% to 8%, and the Type
I error rate for TDRP ranged from 1.6% to 6%. The influence
of sample size on Type I error was small. The occurrence
of negative difference values was uncritical in these analyses
(0% for TD and TDRP; 0%–0.4% for TDR; these data sets were
excluded from the calculation of Type I error rates).

Negative difference values. When the population
model was M1, TDR frequently produced negative differ-
ences. This problem occurred notably when the nonlinear
effect size of M1 was large. TD as well as TDRP did
not produce any negative difference values. Table 3 gives
the percentage of data sets with negative TDR values for
the various model difference tests as a function of effect
size and sample size. The percentage of negative TDR val-
ues increased with increasing nonlinear effect size. When
the additional nonlinear effects of M1 were small (ω11 =
.15, ω12 = .20) the problem of negative difference values
was uncritical (0%–2.2%), whereas it increased consider-
ably (23.0%–88.8%) when these effects were strong (ω11

= .30, ω12 = .40). Thus, under the most critical simula-
tion condition, close to 90% of the TDR values could not be
used.

The influence of sample size on negative differences
was less consistent. Under the condition of small nonlinear
effects, an increasing sample size produced less negative dif-
ference values, whereas the risk of negative difference values
increased with increasing sample size under the condition of
strong nonlinear effects.

The type of model comparison influenced the risk of
receiving negative difference values as well. The comparison
between the quadratic model and the linear model MLQ ver-
sus ML produced fewer negative difference values than the
comparison between the full nonlinear model and the linear
model MLQI versus ML, with a maximum of 28.2% negative
values in the former case and 88.8% negative values in the
latter case.

Power. The power of TD increased with increasing
sample size and increasing effect size, whereas the power
of TDR and TDRP decreased when nonlinear effect sizes were
strong. Table 3 shows the results of the power analyses for
the different model difference tests. The power of TD, TDR,
and TDRP is given as a function of effect size and of sample
size. We report the percentage of data sets in which M1 fitted
the data significantly better than M0.

The stronger the nonlinearity, the poorer TDR and
especially TDRP performed, when compared to the well-
performing TD. The power of TD increased with increasing
nonlinear effect size and increasing sample size. This pat-
tern could be observed across all model comparisons. Only
when both the effect size and the sample size were small,
a desirable power of 80% could not be reached under all
conditions.

For TDR the pattern was different: Initially the power
also increased with increasing effect size, but when the
nonlinear effects were strong the power decreased again,
caused by data sets with negative difference values.4 The
influence of the sample size on the power of this test was
similar to the influence of sample size on negative dif-
ference values shown earlier. When the effect sizes were
small, the power increased with increasing sample size,
and when the effect sizes were large, the power decreased
with increasing sample size. In addition, the power of TDR

was lowest in the model comparison MLQI versus ML (min
= 11.2%), when the nested linear model was severely
misspecified.

For TDRP an interesting pattern could be observed. When
the sample size was large (N ≥ 400) and the nonlinear effects
were small, this test showed a substantial power. But even
though this test showed no negative difference values at all,
its power was low when the sample size was small, when the
nonlinear effects were strong, or both. These problems were
aggravated in model comparison MLQI versus ML, where
the power of TDRP was 0.0% when nonlinear effects were
strong.

4Note that the data sets that produced negative difference values were
not excluded from this analysis for two reasons: First, in some cases, a
large amount of negative difference values occurred, so that exclusion would
cause comparability problems between the different methods (e.g., 500 data
sets of TD and TDRP vs. 56 data sets of TDR); second, the difference values
have to be comparably large to detect nonlinear effects reliably, therefore
negative values cannot be ignored as they are causing the low power of TDR.
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8 GERHARD ET AL.

TABLE 3
Power (%) of TD, TDR, and TDRP and Negative TDR Values (%, in brackets) as a Function of Nonlinear Effect Size and Sample Size (N)

MLQ vs. ML MLQI vs. MLQ MLQI vs. ML

ω11= .15 .20 .25 .30 .25 .25 .25 .25 .15 .20 .25 .30
Method N ω12= — — — — .20 .25 .30 .40 .20 .25 .30 .40

TD 200 72.0 90.0 98.4 99.8 61.2 79.6 93.0 100.0 96.6 100.0 100.0 100.0
400 95.0 99.8 100.0 100.0 90.8 98.8 100.0 100.0 100.0 100.0 100.0 100.0
800 99.8 100.0 100.0 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

TDR 200 71.4 87.4 86.6 71.6 63.2 79.0 82.6 70.8 95.4 91.8 75.6 38.8
(1.2) (4.2) (11.2) (28.2) (1.2) (4.2) (10.4) (29.0) (2.2) (8.2) (24.4) (61.2)

400 93.4 96.6 91.0 74.2 91.4 97.2 93.2 69.6 99.6 94.8 73.2 23.4
(0.4) (2.4) (9.0) (25.8) (0.0) (2.0) (6.8) (30.4) (0.4) (5.2) (26.8) (76.6)

800 99.8 99.8 93.8 73.6 99.6 99.2 97.0 77.0 99.6 96.4 72.0 11.2
(0.0) (0.2) (6.2) (26.4) (0.0) (0.8) (3.0) (23.0) (0.4) (3.6) (28.0) (88.8)

TDRP 200 31.4 41.8 38.0 22.6 45.0 64.0 78.6 64.8 50.8 26.6 6.0 0.0
400 86.4 90.4 76.0 41.4 86.8 98.4 100.0 94.0 90.4 43.2 4.0 0.0
800 99.8 100.0 92.4 51.2 99.6 100.0 100.0 99.8 98.4 51.6 1.4 0.0

Note. ML = linear model; MLQ = model with linear and quadratic effects; MLQI = model with linear, quadratic, and interaction effects; ω11 = quadratic
effect and ω12 = interaction effect. The respective population model is shown in bold type.

Study 2: Nonnormality Due to Nonnormal Predictor
Variables

The following results relate to the investigation of the influ-
ence of nonnormally distributed predictor variables on the
different statistics.

Type I error. For nonnormally distributed predictors,
the Type I error rate for TDR was greatly increased. Under
the condition of severe deviation from normality, the Type I
error rate for TD was also inflated. Table 4 shows Type I error
rates for TD, TDR, and TDRP for the various model difference
tests. The occurrence of negative differences was uncritical
in this analysis (0% for TD and TDRP, 0% to 2.2% for TDR;
these data sets were excluded).

For TD the Type I error rates ranged from 4% to 10.4%.
They increased when there was a severe deviation from nor-
mality for the predictor variables. The Type I error rates for
comparison MLQI versus MLQ were lower than for MLQI ver-
sus ML, which, in turn, were lower than for MLQ versus ML.
The Type I error rates for TDR increased even more steeply
when the predictor variables were nonnormal. When the pre-
dictor variables showed a severe deviation from normality,
the Type I error rate for TDR was between 10.8% and 18.6%.
The Type I error rates for TDRP were then small (1.6%–7.8%)
and often too conservative.

Negative difference values. In the power analyses
TDR frequently produced negative difference values when

TABLE 4
Type I Error Rates (%) for TD, TDR, and TDRP as a Function of Deviation From Normality and of Sample Size (N)

MLQ vs. ML MLQI vs. MLQ MLQI vs. ML

ω11= .00 .25 .00
ω12= — .00 .00

Method N
Slightly

Nonnormal
Severely

Nonnormal
Slightly

Nonnormal
Severely

Nonnormal
Slightly

Nonnormal
Severely

Nonnormal

TD 200 7.4 10.2 6.0 5.8 6.8 8.0
400 6.0 10.4 4.6 4.0 5.0 8.6

TDR 200 14.0 17.2 11.2 10.8 16.4 18.6
400 12.2 18.4 9.0 10.6 11.6 16.8

TDRP 200 2.2 3.0 3.2 2.4 2.6 2.6
400 5.4 7.8 3.0 4.0 2.0 5.2

Note. ML = linear model; MLQ = model with linear and quadratic effects; MLQI = model with linear, quadratic, and interaction effects;
ω11 = quadratic effect and ω12 = interaction effect. The respective population model is shown in bold type. Condition “slightly nonnormal”:
Skewness for ξ1 and ξ2 is S1 = S2 = 1; kurtosis is K1 = 5 and K2 = 3. Condition “severely nonnormal”: S1 = S2 = 2 and K1 = K2 = 7.
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LIKELIHOOD-BASED DIFFERENCE TESTS IN SEM 9

TABLE 5
Power (%) of TD, TDR, and TDRP and Negative TDR Values (%, in Brackets) as a Function of

Deviation From Normality and of Sample Size (N)

MLQ vs. ML MLQI vs. MLQ MLQI vs. ML

ω11= .25 .25 .25
ω12= — .30 .30

Method N
Slightly

Nonnormal
Severely

Nonnormal
Slightly

Nonnormal
Severely

Nonnormal
Slightly

Nonnormal
Severely

Nonnormal

TD 200 99.8 99.8 83.4 84.4 100.0 100.0
400 100.0 100.0 99.2 99.8 100.0 100.0

TDR 200 16.0 19.6 65.0 53.0 11.2 12.8
(83.4) (80.2) (22.6) (34.2) (88.8) (87.2)

400 5.6 6.2 73.2 52.4 3.4 3.2
(94.4) (93.8) (26.0) (47.2) (96.6) (96.8)

TDRP 200 4.4 11.0 59.6 52.4 0.4 1.4
400 3.6 10.6 94.6 94.4 0.0 0.2

Note. ML = linear model; MLQ = model with linear and quadratic effects; MLQI = model with linear, quadratic, and interaction effects;
ω11 = quadratic effect and ω12 = interaction effect. The respective population model is shown in bold type. Condition “slightly nonnormal”:
skewness for ξ1 and ξ2 is S1 = S2 = 1; kurtosis is K1 = 5 and K2 = 3. Condition “severely nonnormal”: S1 = S2 = 2 and K1 = K2 = 7.

there was any deviation from normality. As in Study 1, TD

and TDRP did not produce any negative differences. Table 5
contains the percentage of negative TDR values for the model
difference tests for the different distribution conditions with
varying sample size.

TDR has no benefit for nonlinear models, as the prob-
lem of negative differences, which was already observed
in Study 1, was aggravated when the predictor variables
showed any deviation from normality. When the latent pre-
dictor variables showed a slight deviation from normality,
TDR produced 22.6% to 96.6% negative values. When the
deviation from normality was severe, the problem of neg-
ative differences became more serious in comparison MLQI

versus MLQ. In comparisons MLQ versus ML and MLQI versus
ML the percentage of negative differences was already high
under the condition of slight deviation from normality and
it remained constant under the condition of severe deviation
from normality. The comparison MLQI versus ML yielded the
most negative differences. Under the most critical simula-
tion condition, close to 97% of the data sets showed negative
TDR values, and only 3% of the data sets produced usable
results.

Power. The power of TD exceeded 83% across all con-
ditions, whereas the power of TDR and TDRP was very low
when the predictor variables did not follow a normal distri-
bution. Thus, only TD was able to identify nonlinear effects
correctly. Table 5 shows the power of TD, TDR, and TDRP for
the different simulation conditions and sample sizes.

TD was robust against deviation from normality. In model
comparison MLQI versus MLQ, the power was approxi-
mately 84% when the predictor variables were nonnormally
distributed and sample size was small. Under the other
conditions the power of TD exceeded 99%.

The power of TDR decreased when the predictor variables
were nonnormal. This was due to negative difference values.
Under the condition of severe deviation from normality, the
power of TDR ranged between 3.2% and 53.0%, depending
on the type of model difference test. To compare, the power
of TDR was between 73.2% and 93.2% when the predictor
variables were normally distributed (cf. Table 3). The
power of TDR was again most critical in model comparison
MLQI versus ML, where TDR identified nonlinear effects in
merely 12.8% of the cases (N = 200) and ineffective with
a power of 3.2% for N = 400 under the condition of severe
nonnormality.

TDRP reached a desired power of 80% in model compar-
ison MLQI versus MLQ only, when sample size was at N =
400. The other model comparisons yielded adverse results:
When the data showed slight or severe deviation from nor-
mality, the power of TDRP was between 3.6% and 11.0% in
comparison MLQ versus ML, and between 0% and 1.4% in
comparison MLQI versus ML.

DISCUSSION AND OUTLOOK

In two Monte Carlo studies we examined the performance of
likelihood-based model difference tests TD, TDR, and TDRP

for LMS in models with a quadratic or both a quadratic
and an interaction effect. The robustness of TD, TDR, and
TDRP against different sources of nonnormality was investi-
gated. In the first study the robustness against nonnormality
due to the nonlinear model structure was investigated. The
second study focused on the robustness against additional
nonnormality due to nonnormally distributed predictors. Our
results show that under the conditions examined, TD is
preferable to both TDR and TDRP.
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10 GERHARD ET AL.

TD performed well under ideal conditions (Study 1). The
nonlinear effects were reliably detected in most conditions.
Thus, TD appeared not only suited for the detection of
interaction effects, but also for the detection of quadratic
or multiple nonlinear effects simultaneously. However, it
should be noted that, when the expected nonlinear effects
were small, sample size needed to be large enough to ensure
sufficient power.

TD showed robustness against nonnormal latent predictor
variables to a large extent across most conditions (Study 2).
However, when the predictor variables had a severe deviation
from normality and the test was executed at a 5% nomi-
nal Type I error level, the Monte Carlo Type I error rate
was inflated up to 10% when a model with a quadratic
effect was compared to a linear model. When predictor
variables are nonnormally distributed, their third centered
moments are nonzero, which implies that the nonlinear terms
(quadratic and interaction terms) are correlated with the
linear predictors. Although predictor variables in nonlin-
ear SEM are generally centered, which reduces nonessential
multicollinearity (cf. Aiken & West, 1991), multicollinearity
due to nonnormally distributed predictors still remains. Such
a correlation might lead to spurious interaction or quadratic
effects and thus could inflate Type I error rates (cf. Klein,
Schermelleh-Engel, Moosbrugger, & Kelava, 2009).

In the comparisons involving a model with both a
quadratic and an interaction effect, an interesting pattern was
observed: When the baseline model was quadratic and the
comparison model included both nonlinear effects, the Type I
error rates were close to their nominal alpha levels. However,
when the baseline model was a linear model the Type I error
rates were slightly inflated (up to 8%). To avoid spurious
interaction effects, it is recommended to use the quadratic
model for a baseline model (cf. Klein et al., 2009). The inclu-
sion of the quadratic term (or even two quadratic terms)
in the baseline model can considerably reduce the vari-
ance increment of the interaction term (cf. Ganzach, 1997;
Lubinski & Humphreys, 1990; Klein et al., 2009). Therefore
it is preferable to first test the model with both interaction and
quadratic effects against a linear model and—when nonlin-
earity is detected in the data—the model with an interaction
and a quadratic effect against a quadratic model.

When TDR was used, several problems occurred during
application. TDR often produced unusable negative differ-
ence values, which has been already reported for linear SEM
(Bryant & Satorra, 2012; Satorra & Bentler, 2010). This
problem occurred especially when there were large nonlin-
ear effects in the data, and the problem was aggravated when
the latent predictors were nonnormally distributed. Then, the
percentage of negative values exceeded 90% in some studies.
The risk of Type I error also increased considerably when
the predictor variables did not follow a normal distribution.
TDR appeared neither robust against nonnormality caused
by a nonlinear model structure nor against nonnormality
caused by nonnormal predictor variables. In the context of

linear SEM, it has been noted that negative differences occur
especially when the more restrictive model is highly incor-
rect (Satorra & Bentler, 2010). This is in accordance with
the result that most of the negative differences occurred in
our comparison when a nested misspecified linear baseline
model was tested against a true population model with an
interaction and a quadratic effect.

Using TDRP, the occurrence of negative difference values
could be avoided, but in turn this test statistic led to other
problems. Under the condition of normally distributed latent
predictor variables, TDRP got smaller with increasing non-
linear effect size, and the power of TDRP decreased. Small
samples also affected the power of this test significantly,
even when the nonlinear effect size was small. As for TDR,
the comparison between a true model with two nonlinear
effects and a linear baseline model resulted in most unfa-
vorable results. When the nonlinear effect sizes were very
strong in this comparison, this test had virtually no statisti-
cal power, regardless of sample size. This means that TDRP

is vulnerable to highly misspecified nested models in combi-
nation with strong nonlinear effect sizes, just as is the TDR.

Additional nonnormality due to the predictor variables also
influenced this test significantly, as was the result in Study
2. See, for example, MLQ versus ML with N = 400 (cf.
Table 3 and Table 5), where the power decreased from 76%
to only 11% caused by a severe deviation from normality.
Here again, there is no advantage for using TDRP for detect-
ing nonlinear effects, but rather a disadvantage compared to
the uncorrected TD.

Altogether, the standard test statistic TD is the most
practically useful method, albeit when further research is
still necessary to evaluate the Type I error inflation under
conditions of nonnormal predictor variables.

As we used the distribution analytic method LMS, the
results presented in this article have limitations due to the
chosen analysis approach. The nonnormality caused by the
nonlinear terms is explicitly considered by distribution ana-
lytic methods and therefore LMS is a powerful method for
analyzing nonlinear structural equation models. But LMS
is just one possible approach to estimate nonlinear mod-
els. We did not investigate the PI approaches (e.g., Jöreskog
& Yang, 1996; Marsh, Wen, & Hau, 2004; Moosbrugger
et al., 2009), where products of the indicators are formed as
a measurement model of the latent nonlinear term. In com-
parison to these PI approaches, the applied LMS approach
does not need separate indicators for the latent nonlinear
terms and it has less distributional assumptions. Hence,
results of the presented simulation studies cannot be gen-
eralized to PI approaches. It is possible that PI approaches
could lead to different results. Cham et al. (2012) inves-
tigated the robust SB chi-square difference test for PI
approaches. The authors reported inflated Type I error rates
and concluded that the robust difference test is unnecessary.
Negative difference values occurred in the PI approaches
as well, but the authors did not report their frequencies.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 T

ue
bi

ng
en

] 
at

 0
0:

44
 2

3 
O

ct
ob

er
 2

01
4 



LIKELIHOOD-BASED DIFFERENCE TESTS IN SEM 11

The PI approaches might benefit from the strictly posi-
tive difference test, which has not been examined for these
approaches yet.

FUNDING

This research was supported by Grant No. SCHE
1412–1/1 from the German Research Foundation (DFG).

REFERENCES

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and
interpreting interactions. Thousand Oaks, CA: Sage.

Asparouhov, T., & Muthén, B. (2012). Computing the strictly positive
Satorra–Bentler chi-square test in Mplus (Mplus Web Notes No. 12).
Retrieved from http://www.statmodel.com/examples/webnotes/SB5.pdf

Bentler, P. M. (2005). EQS 6.1. for Windows [Computer software]. Encino,
CA: Multivariate Software.

Bollen, K. A. (1989). Structural equations with latent variables. New York,
NY: Wiley.

Bryant, F. B., & Satorra, A. (2012). Principles and practice of scaled differ-
ence chi-square testing. Structural Equation Modeling, 19, 372–398.

Cham, H., West, S. G., Ma, Y., & Aiken, L. S. (2012). Estimating latent
variable interactions with nonnormal observed data: A comparison of four
approaches. Multivariate Behavioral Research, 47, 840–876.

Chou, C. P., Bentler, P. M., & Satorra, A. (1991). Scaled test statistics and
robust standard errors for non-normal data in covariance structure analy-
sis: A Monte Carlo study. British Journal of Mathematical and Statistical
Psychology, 44, 347–357.

Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test
statistics to nonnormality and specification error in confirmatory factor
analysis. Psychological Methods, 1, 16–29.

Dimitruk, P., Schermelleh-Engel, K., Kelava, A., & Moosbrugger,
H. (2007). Challenges in nonlinear structural equation modeling.
Methodology, 3, 100–114.

Ganzach, Y. (1997). Misleading interaction and curvilinear terms.
Psychological Methods, 2, 235–247.

Hu, L., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance
structure analysis be trusted? Psychological Bulletin, 112, 351–362.

Hughes, J. N., & Kwok, O. (2006). Classroom engagement mediates
the effect of teacher–student support on elementary students’ peer
acceptance: A prospective analysis. Journal of School Psychology, 43,
465–480.

Jöreskog, K., & Sörbom, D. (2006). PRELIS (Version 2.8) [Computer
software]. Chicago, IL: Scientific Software International.

Jöreskog, K. G., & Yang, F. (1996). Nonlinear structural equation models:
The Kenny–Judd model with interaction effects. In G. A. Marcoulides
& R. E. Schumacker (Eds.), Advanced structural equation modeling (pp.
57–87). Mahwah, NJ: Erlbaum.

Kelava, A., Werner, C. S., Schermelleh-Engel, K., Moosbrugger, H., Zapf,
D., Ma, Y., Cham, H., Aiken, L. S., & West, S. G. (2011). Advanced
nonlinear latent variable modeling: Distribution analytic LMS and QML
estimators of interaction and quadratic effects. Structural Equation
Modeling, 18, 465–491.

Klein, A. G. (2000). Moderatormodelle: Verfahren zur Analyse von
Moderatoreffekten in Strukturgleichungsmodellen [Moderator models:
Method for the analysis of moderator effects in structural equation
models]. Hamburg, Germany: Dr. Kovac.

Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation
of latent interaction effects with the LMS method. Psychometrika, 65,
457–474.

Klein, A. G., & Muthén, B. O. (2007). Quasi maximum likelihood estima-
tion of structural equation models with multiple interaction and quadratic
effects. Multivariate Behavioral Research, 42, 647–673.

Klein, A. G., & Schermelleh-Engel, K. (2010). Introduction of a new mea-
sure for detecting poor fit due to omitted nonlinear terms in SEM. AStA
Advances in Statistical Analysis, 94, 157–166.

Klein, A. G., Schermelleh-Engel, K., Moosbrugger, H., & Kelava, A.
(2009). Spurious interaction effects. In T. Teo & M. S. Khine (Eds.),
Structural equation modeling in educational research: Concepts and
applications (pp. 13–28). Amsterdam, The Netherlands: Sense.

Kline, R. B. (2010). Principles and practice of structural equation modeling
(3rd ed.). New York, NY: Guilford.

Lubinski, D., & Humphreys, L. G. (1990). Assessing spurious “moderator
effects”: Illustrated substantively with the hypothesized (“synergistic”)
relation between spatial and mathematical ability. Psychological Bulletin,
107, 385–393.

Marsh, W. H., Wen, Z., & Hau, K.-T. (2004). Structural equation models
of latent interactions: Evaluation of alternative estimation strategies and
indicator construction. Psychological Methods, 9, 275–300.

Marsh, W. H., Wen, Z., Nagengast, B., & Hau, K.-T. (2012). Structural equa-
tion models of latent interactions. In R. H. Hoyle (Ed.), Handbook of
structural equation modeling (pp. 436–458). New York, NY: Guilford.

Marshall, G. N., Miles, J. N. V., & Stewart, S. H. (2010). Anxiety sensitiv-
ity and PTSD symptom severity are reciprocally related: Evidence from
longitudinal study of physical trauma survivors. Journal of Abnormal
Psychology, 1, 143–150.

Mattson, S. (1997). How to generate non-normal data for simulation
of structural equation models. Multivariate Behavioral Research, 32,
355–373.

Micceri, T. (1989). The unicorn, the normal curve, and other improbable
creatures. Psychological Bulletin, 105, 156–166.

Moosbrugger, H., Schermelleh-Engel, K., Kelava, A., & Klein, A.
G. (2009). Testing multiple nonlinear effects in structural equation
modeling: A comparison of alternative estimation approaches. In T. Teo
& M. S. Khine (Eds.), Structural equation modeling in educational
research: Concepts and applications (pp. 103–135). Rotterdam, The
Netherlands: Sense.

Moosbrugger, H., Schermelleh-Engel, K., & Klein, A. (1997).
Methodological problems of estimating latent interaction effects.
Methods of Psychological Research Online, 2, 95–111.

Muthén, B. O., & Muthén, L. K. (2006). Chi-square difference testing using
the Satorra–Bentler scaled chi-square [Weblog post]. Retrieved from
http://www.statmodel.com/chidiff.shtml

Muthén, L. K., & Muthén, B. O. (1998–2010). Mplus (Version 6.1)
[Computer software]. Los Angeles, CA: Authors.

Muthén, L. K., & Muthén, B. O. (2010). Mplus user’s guide. Los Angeles,
CA: Authors.

Satorra, A. (1990). Robustness issues in structural equation modeling: A
review of recent developments. Quality & Quantity, 24, 367–386.

Satorra, A. (1992). Asymptotic robust inferences in the analysis of mean
and covariance structures. Sociological Methodology, 22, 249–278.

Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample anal-
ysis of moment structures. In D. D. H. Heijmans, D. S. G. Pollock,
& A. Satorra (Eds.), Innovations in multivariate statistical analy-
sis: A festschrift for Heinz Neudecker (pp. 233–247). Dordrecht, The
Netherlands: Kluwer Academic.

Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics
and standard errors in covariance structure analysis. In A. von
Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications
for developmental research (pp. 399–419). Thousand Oaks, CA:
Sage.

Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test
statistic for moment structure analysis. Psychometrika, 66, 507–514.

Satorra, A., & Bentler, P. M. (2010). Ensuring positiveness of the scaled
difference chi-square test statistic. Psychometrika, 75, 243–248.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 T

ue
bi

ng
en

] 
at

 0
0:

44
 2

3 
O

ct
ob

er
 2

01
4 

http://www.statmodel.com/examples/webnotes/SB5.pdf
http://www.statmodel.com/chidiff.shtml


12 GERHARD ET AL.

Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the multivariate
asymptotic distribution of sequential chi-square statistics. Psychometrika,
50, 253–264.

Werner, C. S. (2002). Robustheit der LMS-Methode zur Analyse
latenter Moderatormodelle bei systematischer Verletzung der
Verteilungsvoraussetzungen [Robustness of LMS for the analysis
of latent moderator models to systematic violations of distributional

assumptions] (Unpublished diploma thesis). Goethe University, Frankfurt
Germany.

Willoughby, M., Cadigan, J., Burchinal, M., & Skinner, D. (2008). An
evaluation of the psychometric properties of and criterion validity of
the Religious Social Support Scale. Journal for the Scientific Study of
Religion, 47, 147–159.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 T

ue
bi

ng
en

] 
at

 0
0:

44
 2

3 
O

ct
ob

er
 2

01
4 


	Abstract
	REVIEW OF STANDARD CHI-SQUARE AND LIKELIHOOD-BASED DIFFERENCE TEST
	Robust Chi-Square and Likelihood-Based Difference Test
	Strictly Positive Robust Chi-Square and Likelihood-Based Difference Tests

	RESEARCH QUESTIONS
	METHOD
	Model Comparisons
	Study 1: Nonnormality Due to Nonlinear Terms
	Study 2: Nonnormality Due to Nonnormal Predictor Variables

	RESULTS
	Study 1: Nonnormality Due to Nonlinear Terms
	Study 2: Nonnormality Due to Nonnormal Predictor Variables

	DISCUSSION AND OUTLOOK
	FUNDING
	REFERENCES

