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Misleading Interaction and Curvilinear Terms 

Yoav Ganzach 
Tel Aviv University 

This article examines the relationships between interaction (product) terms and 
curvilinear (quadratic) terms in regression models in which the independent vari- 
ables are correlated. The author uses 2 substantive examples to demonstrate the 
following outcomes: (a) If the appropriate quadratic terms are not added to the 
estimated model, then the observed interaction may indicate a synergistic (offset- 
ting) relationship between the independent variables, whereas the true relationship 
is, in fact, offsetting (synergistic). (b) If the appropriate product terms are not added 
to the equation, then the estimated model may indicate concave (convex) relation- 
ships between the independent variables and the dependent variable, whereas the 
true relationship is, in fact, convex (concave). (c) If the appropriate product and 
quadratic terms are not examined simultaneously, then the observed interactive or 
curvilinear relationships may be nonsignificant when such relationships exist. The 
implications of these results for the examination of interaction and quadratic effects 
in multiple regression analysis are discussed. 

Hypotheses about interaction effects between con- 
tinuous variables are frequently examined in psycho- 
logical research using multiple regression analysis 
(e.g., Aiken & West, 1991; Jaccard, Turrisi, & Wan, 
1990). However, despite the plethora of  research con- 
cerning these hypotheses, the appropriate methods to 
test them remain a subject of  debate. One issue that 
has received much attention in the recent literature is 
the relationship between interaction and curvilinear 
effects when there is a high multicollinearity between 
independent variables (e.g., Busemeyer  & Jones, 
1983; Lubinski & Humphreys, 1990; Shepperd, 1991; 
MacCallum & Marr, 1995). Using two substantive 
examples, I investigate the outcome of  omitting one 
of  these two nonlinear effects when the true model 
includes both of  them and multicollinearity is high, 
and I discuss the implications of  these examples for 
the process of  fitting nonlinear models to empirical 
data. 

An interaction between two independent variables 
is said to occur when the impact of one independent 
variable on the dependent variable depends on the 
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level of  another independent variable. When there are 
two independent variables, X and Z, and one depen- 
dent variable, Y, interaction is usually conceptualized 
in terms of  the effect of  the product XZ on Y. Note 
that an interaction, as defined above, need not neces- 
sarily be represented by the product of  the indepen- 
dent variables. However, for the sake of  simplicity, in 
the current article I assume that the true interactive 
relationship between two variables is indeed associ- 
ated with their product. 

The existence of  a " t rue"  interaction is usually 
examined by introducing a product term into a linear 
model and observing the value of  133 in the following 
regression equation: 

Y = 13o + 131 x + 132 z + 133 x z "  (1) 

A significant value of  133 indicates the existence of  an 
interaction. A positive value of  133 indicates that the 
true relationship between Y and XZ is positive (a 
positive interaction), whereas a negative value of  133 
indicates that the true relationship between Y and XZ 
is negative (a negative interaction). When X and Z are 
continuous and positively related to Y, a negative in- 
teraction suggests an underlying offsetting relation- 
ship between the two independent variables, whereas 
a positive interaction suggests an underlying syner- 
gistic relationship between them. An offsetting rela- 
tionship implies that the relationship between X and Y 
becomes more positive as the value of Z decreases, 
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whereas a synergistic relationship implies that the re- 
lationship between X and Y becomes more positive as 
the value of Z increases (obviously, this statement is 
symmetric with regard to X and Z). Note that the 
concepts of  offsetting and synergistic relationships are 
meaningful only when the relationship between the 
dependent variable and each of  the independent vari- 
ables is conditionally monotone (does not involve a 
cross-over interaction); that is, when an increase in 
one independent variable results in an increase in the 
dependent variable for every value of  the other inde- 
pendent  variable.  This re la t ionship  character izes  
many psychological  phenomena (Dawes & Corrigan, 
1974). For example, no matter how students score on 
other tests, their mathematical achievement is likely 
to be higher the higher they score on a mathematical 
reasoning test or on a spatial reasoning test. No matter 
how high the education of  the father, the educational 
expectations of  the child are likely to increase with the 
education of the mother. 

Curvilinearity is said to occur when the functional 
relationship between the dependent and the indepen- 
dent variables is negatively accelerated (concave) or 
posit ively accelerated (convex). Such relationships 
are usually examined by adding quadratic terms to a 
linear model and observing the value of  their coeffi- 
cients: 

M i s l e a d i n g  In te rac t ion  T e r m s  

Though the study of  interactions among variables 
using product terms is common enough in the social 
sciences, a number of  problems are associated with 
this method of  analysis. In particular, when there is 
multicollinearity between the independent variables, 
the observed interaction may be spurious; that is, the 
coefficient of  the product term in the regression may 
be significant even when there is no true interaction. 
The reason for this is that when the correlation be- 
tween X and Z increases so does the correlation be- 
tween XZ and X 2, which results in an overlap between 
the variance explained by XZ and the variance ex- 
plained by X 2. Busemeyer and Jones (1983) presented 
an analytic discussion of such "spur ious"  interaction, 
and Lubinski and Humphreys (1990) provided a rel- 
evant substantive example.1 

Even more troubling than spurious interactions are 
misleading interaction terms. A misleading interac- 
tion term occurs when the observed interaction term 
in Equation 1 is positive, while the true interaction is 
negative, or when the observed interaction term is 
negative, while the true interaction is positive (a nega- 
tive suppression situation; see Darlington, 1968; Tzel- 
gov & Henik, 1991). This may happen when, concur- 

Y = 13o + 131 x + 132 z + [33 X2 + [34 z2" (2) 

A significantly negative value of 133 indicates a 
concave relationship between X and Y, whereas a 
significantly positive value indicates a convex rela- 
tionship (similarly, a significantly negative value of 
134 indicates a concave relationship between Z and Y, 
whereas a significantly positive value indicates a con- 
vex relationship). Note that a curvilinear relationship 
as defined above need not necessarily be quadratic. 
However,  for the sake of  simplicity, in the current 
article I assume that a true curvilinear relationship is 
indeed quadratic. 

Finally, note also that the above discussion does not 
distinguish between observed measures and latent 
variables. The distinction between the two is not nec- 
essary for examining the basic issues associated with 
the effect of  model  mispecification. However,  be- 
cause these issues are important in applied research, 
they are discussed in the Discussion section. In par- 
ticular, I discuss the effect of  the level of measure- 
ment and the reliability of  the measurement on the 
outcome of model mispecification. 

1 In the example of Lubinski and Humphreys (1990), ad- 
vanced mathematics measure (labelled C) was regressed on 
mathematical reasoning (labelled M) and on spatial reason- 
ing (labelled S) in three consecutive stages. In the first 
stage, C was regressed on M and S; in the second stage, C 
was regressed on M, S, and MS; and in the third stage, M 
and S were forced into the regression, and M 2, S 2, and MS 
were then entered simultaneously in a stepwise procedure. 
The results of the first stage indicated a strong effect for M 
but no effect for S. The results of the second stage indicated 
a strong effect for M and MS but no effect for S. The results 
of the third stage indicated an effect for M and M 2, and no 
other effects. On the basis of these results, Lubinski and 
Humphreys concluded that the effect of MS was spurious. 
However, this example is problematic because the second 
stage is itself "spurious": It could be concluded a priori 
(even without estimating the models of the third stage) that 
the effect of MS in the second stage is spurious. The reason 
for this is that such an effect could be associated only with 
a crossover interaction, in which there are levels of M for 
which an increase in S leads to a decrease in C. That is, 
given a conditionally monotone relationship between M, S, 
and C, a nonsignificant main effect of S in the first stage 
implies that the interaction cannot be significant. Thus, any 
observed interaction must be spurious. 
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Table 1 
The Effect of the True Interaction Coefficient (b) and the Correlation Between the 
Predictors (r) on the Probability of Obtaining a Significant Misleading Interaction in a 
Misspecified Model 

r 

b 0.0 0.1 0.3 0.5 0.7 

0.1 36/2 (.01) 0/73 (.01) 0/100 (.01) 0/100 (.01) 0/100 (.00) 
0.3 74/0 (.08) 3/34 (.08) 0/100 (.07) 0/100 (.04) 0/100 (.02) 
0.5 97/0 (.20) 31/1 (.20) 0/100 (. 16) 0/100 (. 10) 0/100 (.04) 
0.8 100/0 (.39) 90/0 (.38) 0/89 (.33) 0/100 (.22) 0/100 (.10) 
1.0 100/0 (.50) 100/0 (.49) 3/34 (.43) 0/100 (.30) 0/100 (. 15) 
1.2 100/0 (.58) 100/0 (.58) 32/3 (.52) 0/100 (.39) 0/100 (.20) 
1.5 100/0 (.69) 100/0 (.69) 100/0 (.63) 0/39 (.50) 0/100 (.27) 
2.0 100/0 (.80) 100/0 (.79) 100/0 (.75) 100/0 (.64) 100/0 (.40) 

Note. The model that was estimated was Y = 130 + 13iX + 132 z + 133XZ, whereas the true model was Y 
= X + Z + X 2 + Z 2 - bXZ + E. Five hundred simulations (each with n = 1,000) were conducted for 
each b-r pair. For each of the 48 pairs, the number to the left of the slash represents the percentage of 
simulations in which the sign of 133 was correct (significantly negative, p < .01) and the number to the 
right of the slash represents the percentage of simulations for which the sign of 133 was incorrect 
(significantly positive). The numbers in parentheses are the mean squared partial correlations of the 
product term, controlling for the other terms of the true model. 

ren t  wi th  a t rue in t e rac t ion ,  there  exis ts  a t rue 
curvi l inear  relat ionship be tween  dependent  and inde- 
pendent  variables,  as well  as a mult icol l inear i ty  be- 
tween the independent  variables,  and the analyst  mis-  
specif ies  the mode l  by  no t  i n c l u d i n g  cu rv i l i nea r  
terms. In particular,  an observed negat ive interact ion 
term can occur when, concurrent  with a true posit ive 
interaction,  there is also a true concave trend; and an 
observed posit ive interact ion term will occur when, 
concurrent  with a true negat ive interaction, there is 
also a true convex trend. In this case, when the mul-  
t icoll ineari ty be tween X and Z increases, so does the 
correlat ion be tween XZ and the quadratic terms. This 
results in an increasing amoun t  of  the variance being 
shared by the product  term and the quadratic terms. 

As an example,  consider  the fol lowing s imulat ion 
in which n = 1,000; X, Z, and E (an error term) are 
normal ly  distr ibuted with a mean  of  0 and standard 
deviat ion of 1, the correlat ion be tween X and Z i~ .7, 
and the true value of  Y is g iven by Y = X + Z + X 2 
+ Z 2 - XZ + E (that is, the true interaction is nega- 
tive). In each of  500 such simulations,  the regression 

Y = 130 + 13~X + 132 Z + 133XZ yielded a signif icantly 
posit ive coefficient  for XZ. 2 In other words, not in- 
c luding the appropriate quadratic terms in the regres- 
sion would  have led to the conclus ion  that the rela- 
t ionship be tween X and Z is synergistic,  when,  in fact, 
the true relat ionship is offsetting. 3 Table  1 shows the 
effect of  the true interact ion coefficient  and the cor- 
relation be tween the predictors on the probabil i ty of  

obta ining a mis leading interact ion in a misspecif ied 
model.  It demonstrates  that this probabil i ty  is high 
over a large range of  correlations and a large range of  
differences be tween  the effect size of  the product  and 
quadratic terms. 

M i s l e a d i n g  C u r v i l i n e a r  T e r m s  

The mult icol l inear i ty  be tween XZ and the quadratic 
terms may also lead to concluding  the existence of 
mis leading curvi l inear  terms. Misleading curvilinear 

terms may occur when  the observed curvi l inear  rela- 
t ionships be tween  the dependent  variables and the in- 
dependent  variable are concave,  whereas the true re- 
lat ionships are convex;  or when  these relationships 
are convex,  whereas the true relationship are concave.  
This may happen when, concurrent  with true curvi- 
l inear  relationships,  there is a (true) interaction, as 
well as a mult icoll ineari ty,  be tween the two indepen-  
dent  variables, and the analyst  misspecifies the model  
by not  including the product  term. As a result, when 

2 The significance levels in the simulations are .01. 
3 The role of multicollinearity in producing these results 

becomes apparent if one notes that when the correlation 
between X and Z is O, XZ is orthogonal both to X 2 and Z 2. 
Thus, in this case, there is no shared variance between the 
multiplicative term and the curvilinear terms. On the other 
hand, when the correlation between X and Z approaches 1, 
the unshared variance is very small. 
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the multicollinearity between X and Z increases, more 
variance is shared by the product term and the qua- 
dratic terms. 

As an example, consider a simulation similar to the 
one discussed above (i.e., the same distributions and 
correlation of  the independent variables) except that 
the true value of Y is given by Y = X + Z + .7X 2 + 
.7Z 2 - 2XZ + E. In each of  500 such simulations, the 
regression Y = [30 + 13t X + [32 Z + [33 X2 + [34 Z2 

yie lded  s ignif icant ly negative coefficients  for X 2 
and Z z. That is, not including the appropriate product 
term in the regression would have led to the conclu- 
sion that the curvilinear relationships between the de- 
pendent variables and the independent variable are 
concave, whereas the true relationships are convex. 
As Table 2 shows, this effect occurs over a large 
range of  correlations and a large range of  differences 
between the effect size of  the product and quadratic 
terms. 

R e c i p r o c a l  S u p p r e s s i o n  Ef fec t s  

There may be instances in which both true curvi- 
linear and true interactive relationships occur, but nei- 
ther the curvilinear terms nor the interaction terms are 
significant when estimated alone (a reciprocal sup- 
pression situation, as in Conger, 1974; Tzelgov & 
Henik, 1991). 

As an example, consider yet another simulation, 
with the same distributions and correlation of  the in- 
dependent variables as the previous simulations, in 

which the true value of  Y is given by Y = X + Z + 
X 2 + Z 2 - 2XZ + 6E. In only 3% of  500 such simu- 

lations did the regression Y = 130 + 131X + 132Z + 
133XZ yield a significant (negative) coefficient for XZ, 
and in only 1% of  these simulations did the regression 
Y = 13o + [31X + 132 Z + 133 X2 + 134 Z2 yield significant 
(positive) coefficients for X 2 and Z 2. On the other 

hand, the regression Y = 13o + [31X + 132 Z + 133 X2 + 
134 Z2 + 135XZ yielded a significant negative coeffi- 
cient of XZ in 96% of  these simulations, and a sig- 
nificant positive coefficient of  X 2 and Z 2 in 87% of  
these simulations. 

O r g a n i z a t i o n  o f  the  A r t i c l e  

The article focuses on issues associated with mis- 
leading interaction and curvilinear terms, using infor- 
mation derived from two widely used databases in the 
context of  two substantive issues: the impact of  par- 
ents '  education on their chi ldren 's  academic expecta- 
tions and the integration of  information in clinical 
judgments.  The first section of  the article demon- 
strates a misleading interaction term in a simple case 
in which there are only two independent variables. 
The second section demonstrates misleading curvilin- 
ear terms and reciprocal suppression in a more com- 
plex case, involving 11 independent variables. Fi- 
nally, in the last section I discuss the implications of 
these demonstrations for the examination of  interac- 
t ion and quadrat ic  effects in mul t ip le  regression 
analysis. 

Table 2 
The Effect of  the True Quadratic Coefficient (b) and the Correlation Between the 
Predictors (r) on the Probability of  Obtaining a Significant Misleading Curvilinear Terms 
in a Misspecified Model 

r 

b 0.0 0.1 0.3 0.5 0.7 

0.1 39/2 (.02) 1/38 (.02) 0/97 (.02) 0/100 (.01) 0/100 (.01) 
0.3 94/0 (.15) 42/1 (.15) 0/94 (.13) 0/100 (.09) 0/100 (.4) 
0.5 100/0 (.33) 96/0 (.33) 4/24 (.29) 0/100 (.22) 0/100 (.11) 
0.7 100/0 (.49) 100/0 (.49) 70/0 (.45) 0/60 (.35) 0/100 (.20) 
0.9 100/0 (.62) 100/0 (.61) 100/0 (.56) 53/0 (.48) 0/14 (.29) 
1.5 100/0 (.81) 100/0 (.81) 100/0 (.78) 100/0 (.72) 100/0 (.53) 

Note. The model that was estimated was Y = 13o + 131X + 132Z + 133X 2 + 134 z2, while the true model was 
Y = X + Z + bX 2 + bZ 2 - 2XZ + E. Five hundred simulations (each with n = 1,000) were conducted 
for each b-r pair. For each of the 48 pairs, the number to the left of the slash represents the percentage 
of simulations in which the sign of 133 was correct (significantly positive, p < .01) and the number to the 
fight of the slash represents the percentage of simulations for which the sign of 133 was incorrect 
(significantly negative). The numbers in parentheses are the mean squared partial correlations of a 
quadratic term, controlling for the other terms in the true model. 
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Table 3 
Intercorrelations Among the NLSY Variables 

Variable 1 2 3 4 5 

1. Educational expectations (EE) 
2. Mother's education (ME) .38 - -  
3. Father's education (FE) .40 .67 - -  
4. ME 2 -.05 -.46 -.28 - -  
5. FE 2 .02 -.24 -.24 .53 
6. FE x EE -.03 -.37 -.25 .83 

Note. NLSY = National Longitudinal Survey of Youth. 

.76 

Parents '  Education and Chi ldren 's  Educational  
Expectations: The National  Longitudinal  

Survey of  Youth (NLSY) Data  

Data 

The data were taken from the NLSY (Center for 
Human Resource Research, 1995), conducted with a 
probability sample of 12,686 persons (with an overs- 
ampling of African Americans, Hispanics, and eco- 
nomically disadvantaged Whites) born between 1957 
and 1964. Three variables from the 1979 survey were 
used in the current analysis: (a) the educational ex- 
pectations of the youths, expressed in terms of the 
number of years they expect to complete; (b) the high- 
est grade achieved by the father; and (c) the highest 
grade achieved by the mother. In the analysis, I used 
all the 7,748 children who were living with both par- 
ents at the age of 14 (meaning that both parents were 
likely to be present at home at about the time the 
educational expectations were measured) and whose 
father's education, mother's education, and educa- 
tional expectations were available. All independent 
variables were centered around their mean. Table 3 
presents the intercorrelations among the variables and 
their quadratic and product terms. 

Theory 

There is much evidence suggesting that judgments 
are highly interactive: The impact of an input variable 
on judgment may depend on its rank vis4t-vis the 
other variables which serve as input for the judgment 
(Birnbaum & Stenger, 1981; Ganzach, 1993, 1994; 
Weber, 1994). Quite often, this tendency toward in- 
teractivity in judgment is associated with optimism. 
For example, in predicting academic success of fellow 
students, undergraduates tend to assign a larger 
weight to the more positive information (Ganzach & 
Krantz, 1991). Thus, the theory underlying the current 
analysis is that the education of the parent with the 

higher level of schooling exerts more influence on the 
child's educational expectations than the education of 
the parent with less schooling. In other words, the 
theory predicts an offsetting relationship between the 
education of the father and the education of the 
mother. When the level of education of one parent is 
high, the educational expectations of the child will be 
relatively high, even if the level of education of the 
other parent is low. 

Analysis 

Our theory suggests a negative interaction between 
father's education and mother's education. Nonethe- 
less, when regressing educational expectations on fa- 
ther's education, mother's education and a product 
term, the coefficient of the interaction is significantly 
positive, 4 which-----contrary to the theory--may sug- 
gest a synergistic relationship. The results of this re- 
gression are given in part 2 of Table 4 (part 1 of this 
table presents the details of the linear regression). 

However, when the quadratic terms of father's edu- 
cation and mother' s education are added to the regres- 
sion, the expected interactive relationship between 
parents' education is revealed. The coefficient of the 
product term is significantly negative, suggesting an 
offsetting relationship between father's education and 
mother's education. The details of this regression are 
given in part 3 of Table 4. 

The results also indicate a convex (positively ac- 
celerated) relationship between mother's education 
and educational expectations, as well as a convex re- 
lationship between father's education and educational 
expectations: Both quadratic coefficients are positive, 
and both are significantly different from 0. The reason 
for this pattern is that for less than 12 years of edu- 

a The significance level in the empirical examples are 
.0001. 
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Table 4 
Regression Models of Educational Expectations 

G A N Z A C H  

Terms Estimated regression model R 2 

Linear 

Linear + interaction 

Linear + interaction + quadratic 

EE = 14.006 + . 1 4 8 ,  ME + . 1 5 9 ,  FE .183 
(.024) (.010) (.008) 

EE = 13.866 + .185 * ME + . 1 5 9 ,  FE + .017 • M E ,  FE .197 
(.027) (.011) (.008) (.001) 

EE = 13.708 + .191 * ME + .167 • FE - .012 * M E *  FE + .014 * FE 2 + .018 * ME 2 .208 
(.031) (.011) (.008) (.003) (.002) (.002) 

Note. Numbers in parentheses are standard errors of the estimate. EE 
education; ME = mother 's  education. 

cation, the relationship between parents' education 
and the child's educational expectations is only 
slightly positive, whereas for more than 12 years it is 
much more positive. This differential relationship be- 
tween parents's education and educational expecta- 
tions may be associated with the fact that below a 
normative level of 12 years of education, a change in 
parents' education is relatively less indicative of their 
attitudes toward education than above this threshold 
level, and therefore is more predictive of the child's 
educational expectations. 

Finally, to illustrate the joint effect of both the cur- 
vilinear and the interactive relationships of parents' 
education, Figure 1 displays a plot of mean educa- 

14.5 

u) 
Z _o 

14 ,,o, 
Q. 
,x 

0 13.5 

121 
w 

13 

• LOW MOTHER EDUCATION i 

-e- H GH MOTHER EDUCATION I 

/ 

/ ,  
/ / "  

/ 
/ /  , /  /" / 

/ 
/ 

/ 
/ 

/, 

/ / i  

/ 
/ 

12.5 J I t I I I 
6 7 8 g 10 11 12 13 14 

FATHER'S EDUCATION 

Figure 1. M e a n  e d u c a t i o n a l  e x p e c t a t i o n s  as a f u n c t i o n  o f  

f a t h e r ' s  e d u c a t i o n ,  s e p a r a t e l y  for  h i g h  l e v e l s  o f  m o t h e r ' s  

e d u c a t i o n  (12  or  m o r e  yea r s )  and  l o w  l e v e l s  o f  m o t h e r ' s  

e d u c a t i o n  (11 y e a r s  or  less) .  ( O n l y  l e v e l s  o f  f a t h e r ' s  edu-  

c a t i o n  for  w h i c h  the re  w e r e  e n o u g h  a v a i l a b l e  o b s e r v a t i o n s  

for  e a c h  o f  the  t w o  l e v e l s  o f  m o t h e r ' s  e d u c a t i o n  a p p e a r  in  

the  g raph . )  

= educational expectations; FE = father 's 

tional expectations against father's education, sepa- 
rately for high levels of mother's education (12 or 
more years) and low levels of mother's education (11 
years or less). (Only levels of father's education for 
which there were enough available observations for 
each of the two levels of mother's education appear in 
the graph.) The convexity of the curves demonstrates 
the curvilinear relationship for both levels of mother's 
education; the increased distance between the curves 
when the value of mother's education decreases dem- 
onstrates the offsetting relationship between father's 
education and mother's education. For example, when 
father's education is low, the difference between the 
educational expectations of the children of mothers 
with high and low education is about .9 years, 
whereas when father's education is high, this differ- 
ence is only .4 years. 

Clinical Judgment:  Meeh l ' s  Data 

Data 

The data were collected by Paul Meehl in the 
1950s. They included judgments of 861 patients, di- 
agnosed as being either neurotic or psychotic, on the 
basis of their Minnesota Multiphasic Personality In- 
ventory (MMPI) profiles (their scores on the 11 scales 
of the MMPI). The judgments were made on an 1 l- 
step forced normal distribution from 1 (least psy- 
chotic) to 11 (most psychotic). Note that because the 
patients were diagnosed either as psychotics or as 
neurotics, low rating on this scale implies a judgment 
of high likelihood of neurosis. The evaluations were 
obtained from 13 clinical psychologists and 16 clini- 
cal psychology trainees (see Meehl, 1959, for a de- 
tailed description of the data). 

One aspect of the stimuli that is particularly impor- 
tant to the current study is that the MMPI scales of the 
861 profiles have a clear dimensional organization. 
One dimension is associated with the four neurotic 
scales of the MMPI; another with five psychotic 
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scales; and the third dimension is associated with two 
scales that identify defensiveness, or lying, in test 
taking. These dimensions are likely to have played an 
important role in the process by which the clinicians 
used the MMPI profiles in their diagnostic judgments 
in Meehl's experiment (Ganzach, 1995). 

Theory 

Several studies have investigated nonlinear rela- 
tionships in the judgments of Meehl's data (Wiggins 
& Hoffman, 1968; Goldberg, 1971; Einhorn, 1974; 
Ganzach, 1995), and most of them did indeed find 
such relationships. (Even Goldberg, 1971, who dis- 
putes the eadier conclusions of Einhorn, 1970, 1971, 
concerning nonlinearity in judgment, concludes that 
there are nonlinear relationships in these data; see pp. 
467-468.) Among these studies, only Wiggins and 
Hoffman used product and quadratic terms. They 
found that for 8 of the 29 judges, a model that in- 
cludes such terms gives a better fit to the data than a 
model that includes only linear terms (see Wiggins & 
Hoffman, 1968, Table 3, p. 75). However, their find- 
ings shed no light on the issue discussed in the current 
article, because they neither report the signs of the 
interaction and the curvilinear terms, nor do they pro- 
vide any theory about the pattern of the signs of these 
terms. 

Recently, I analyzed the interactive relationships in 
the judgments of Meehl's data on the basis of various 
versions of the scatter model (Ganzach, 1995). The 
hypotheses underlying these analyses were as follows: 
(a) In Hypothesis 1, there are two important informa- 
tion integration processes associated with the judg- 
ments in Meehl' s experiment: the integration of inter- 
d imension informat ion and the integrat ion of 
intradimension information. (b) In Hypothesis 2, the 
integration of the intradimension information is off- 
setting. First, the interaction between two psychotic 
scales, P and P', is such that the relationship between 
the judgment of psychosis and P becomes more posi- 
tive as the value of P' decreases (obviously, this re- 
lationship is symmetric with regard to P and P'; that 
is, it holds when P is replaced by P', and P' is replaced 
by P). Second, the interaction between two neurotic 
scales, N and N',  is such that the relationship between 
the judgment of neurosis and N becomes more posi- 
tive as the value of N' decreases. However--because 
the actual judgment scale in the experiment ranges 
from least psychotic (i.e., neurotic) to most psy- 
chot ic- th is  interaction implies that the relationship 
between the judgment of psychosis and N become 

more negative as the value of N' decreases. (c) In 
Hypothesis 3, the integration of the interdimension 
information is offsetting vis-a-vis the judgment of 
psychosis. That is, the interaction between a psychotic 
scale, P, and a neurotic scale, N, is such that the 
relationship between the judgment of psychosis and P 
becomes more positive as the values of N decreases 
(this relationship is symmetric with regard to N and P). 

These hypotheses are derived from the assumption 
that the various information integration processes are 
influenced by confirmatory biases (Klayman & Ha, 
1987; Snyder & Campbell, 1980), that lead to an in- 
crease in the weight of confirmatory information. 
First, the integration of the intradimension informa- 
tion is influenced by a dimension-dependent bias. The 
more neurotic the cue, the larger its weight compared 
with the other cues of the neurotic dimension; and the 
more psychotic the cue, the larger its weight in com- 
parison with the other cues of the psychotic dimen- 
sion. Second, the integration of the interdimension 
information is influenced by the judgment psychosis 
being determined primarily by the psychotic dimen- 
sion (Ganzach, in press-a), and by the tendency of 
present information to have a larger impact on deci- 
sion than absent information (Fazio, Sherman, & 
Herr, 1982). 

Analysis 

Predictions. Hypothesis 2 implies a negative in- 
teraction for pairs of psychotic scales because judges 
use the higher of the two scores to judge psychosis, 
and it implies a positive interaction for pairs of neu- 
rotic scales, as judges combine the two neurotic 
scores as evidence against psychosis. Hypothesis 3 
implies a negative interaction for pairs of one psy- 
chotic scale and one neurotic scale. This prediction 
can be derived by representing the psychotic dimen- 
sion as the average of the scores of the psychotic 
scales and the neurotic dimension as the average of 
the scores of the neurotic scales. 5 Using this repre- 
sentation, Hypothesis 3 implies that the coefficient of 
the product (P + P')(N + N')  is negative, which im- 
plies that the coefficients of the neurotic-psychotic 
pairs are also negative. 

A model with linear and product terms. This 

5 Note that for this representation, the scales ought to be 
expressed on similar scales (e.g., standardized scales). In- 
deed, in Meehl's data the MMPI scales are standardized 
(they are represented as test scores). 
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Table 5 
lntercorrelations Among the Product and Quadratic Terms of the Clinical 
Judgment Model 

Term 1 2 3 4 5 6 7 8 9 10 

1. Pi P2 - -  0.80 0.90 0.84 0.87 0.69 0.87 0.91 0.45 0.73 
2. P1 N1 - -  0.83 0.85 0.68 0.83 0.82 0.65 0.82 0.65 
3. P1 N2 - -  0.79 0.90 0.83 0.84 0.79 0.52 0.90 
4. Pz N1 - -  0.88 0.90 0.60 0.88 0.80 0.77 
5. P2 N~ - -  0.85 0.61 0.94 0.51 0.93 
6. N 1 N t - -  0.53 0.71 0.84 0.89 
7. PI 2 - -  0.62 0.37 0.53 
8. P22 - -  0.44 0.76 
9. N12 - -  0.53 

10. N22 

Note. P1 = Paranoia scale; P2 = Schizophrenia scale; Nj = Hysteria scale; N 2 = Psychosthenia scale. 

model included all the linear terms (the 11 MMPI  
scales) and only six product terms. The terms associ- 
ated with two neurotic scales and two psychot ic  
scales. The reason for the l imited number of  product 
terms in the model is that the inclusion of  all 55 
poss ible  product  terms may seriously reduce the 
power of  tests of  significance. The six-product terms 
included in the model corresponded to the two neu- 
rotic scales with the larger beta weights (N 1, the Hys- 
teria scale, and N 2, the Psychosthenia scale, a scale 
that reflects obsess ive-compuls ive  tendencies) and 
the two psychotic scales with the larger beta weights 
(P1, the Paranoia scale, and P2, the Schizophrenia 
scale). Thus, the first regression was: 

4 5 2 

Y = ~ o  + £ e ~ N N i + £ O ~ / p p i  + £ ~ T T  i 
i = l  i = l  i = l  

+ 131 N~ N 2 + [32 P1 P2 + 133 NL P1 + [34 N1 P2 
+ [35 N2 P1 + [36 N2 P2- (3) 

Where Y is the average judgment  of psychosis of  
the 29 clinicians, Pi, Ni, and T i are the ith scale of  the 
psychotic, neurotic, and defensiveness factor, respec- 
tively. (Table 5 presents the intercorrelations between 
the product and quadratic terms that appear in the 
model.) 

Our predictions are that 131 , the coefficient associ- 
ated with the information integration of the neurotic 
dimension, is positive; [32 , the coefficient associated 
with the information integration of  the psychotic di- 

mension, is negative; and [33, [34, [35' and [36' the co- 
efficients associated with the interdimension informa- 
tion integration, are negative. Column 2 of Table 6 
presents the six coefficients and their standard errors. 
The results reveal that only 131 is significant. The 

value of  this coefficient is positive, which is consis- 
tent with the theory. 

A model with linear, product, and quadratic terms. 
In addition to the terms that appeared in Equation 3, 
this model  also included the quadratic terms of  the 
four scales under investigation: 

Table 6 
The Nonlinear Terms in the Regression of  the Judgment 
on the 11 MMPI Scales 

Only product Only Full 
Term terms quadratic model 

PI 2 .0006 .0022* 
(.0002) (.0002) 

P22 -.0004" .0009* 
(.0001) (.0002) 

N12 .0004 -.0000 
(.0001) (.0000) 

N22 .0002 .0005 
(.0001) (.0002) 

P~ x P2 -.0002 -.0023* 
(.0002) (.0003) 

P1 x N 1 -.0002 -.0004 
(.0003) (.0003) 

P1 x N 2 -.0003 -.0000 
(.0o03) (.00o3) 

P2 x N~ -.0005 -.0004 
(.0003) (.0003) 

P2 × N2 -.0002 -.0012" 
(.0002) (.0003) 

N 1 x N 2 .0014" .0013" 
(.0002) (.0003) 

R 2 .807 .802 .830 

Note. Items in parentheses are standard errors. MMP1 = Minnesota 
Multiphasic Personality Inventory; Pj = Paranoia scale; P2 - 
Schizophrenia scale; N I = Hysteria scale; N 2 = Psychosthenia 
scale. 
*p < .0001. 
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4 5 2 

Y=OLo+ ECx~Ni+ EoL~Pi+ E(xTi Ti 
i=l i=l i=l 

+ [31 N1 N2 + [32 P1 P2 + [33 N1 Pl + [34 Nx Pz 
+ [35 N2 P1 + [36 N2 P2 
~/l N2 + ~/2 N2 + ~/3 p2 + "~4 P2 2. (4) 

The results of this model are presented in column 3 
of Table 6. They indicate that out of the six interac- 
tions, three are significant, and their signs are consis- 
tent with the theory that the interaction between N~ 
and N 2 is significantly positive, the interaction be- 
tween P1 and P2 is significantly negative, and the 
interaction between N 2 and P2 is significantly nega- 
tive. Comparison with the results of the model of 
Equation 3 reveals that whereas in a model that did 
not include the quadratic terms only one interaction 
was significant, in a model that did include these 
terms, three interactions were significant. 6 Thus, in 
this example, the quadratic terms suppress the effects 
of the product terms. 

The results of the model of Equation 4 also indicate 
that the coefficients of the quadratic terms of the two 
psychotic scales are positive, which suggests convex 
relationships between these two scales and the judg- 
ment. These relationships are consistent with our 
theory because they imply that the more psychotic a 
cue, the larger its weight. 

Misleading curvilinear terms. A comparison be- 
tween the full model (Equation 4) and a partial model 
that includes only linear and quadratic terms can pro- 
vide a demonstration of misleading curvilinear terms. 
The results of this latter model are presented in col- 
umn 4 of Table 6. While the full model revealed two 
significant quadratic terms, both consistent with the 
theory, the partial model revealed one significant qua- 
dratic term, the quadratic term of Pz, whose sign is, in 
disagreement with the theory, negative. The discus- 
sion above suggests that the observed curvilinear re- 
lationship associated with P2 in the partial model is 
misleadingly concave, and the true convex curvilinear 
relationship emerges only from the full model. 

Discussion: On Estimating Interactions in 
Regression Models When the Independent 

Variables Are Correlated 

This article demonstrates the importance of includ- 
ing quadratic terms when interactions are estimated. 
In particular, it shows that without quadratic terms, a 
nonsignificant interaction may be observed in the 

presence of a strong true interaction, and that an ob- 
served interaction may be positive when the true in- 
teraction is negative (misleading interaction). 

This article also demonstrates the importance of 
including product terms when quadratic terms are es- 
timated, showing that without including product 
terms, observed nonsignificant quadratic terms may 
occur in the presence of true curvilinear relationships. 
It also shows that without product terms, a concave 
relationship may be observed in the presence of a 
strong true convex relationship, and similarly, a con- 
vex relationship may be observed in the presence of a 
strong true concave relationship (misleading curvilin- 
ear terms). 

In an earlier article that dealt with these issues, 
Lubinski and Humphreys (1990) suggested that the 
failure to include quadratic terms when independent 
variables are correlated may lead to Type I error in 
testing hypotheses about interaction. But the current 
research indicates that not including quadratic terms 
may also lead to Type II error. 7 That is, it is possible 
that previous attempts to detect (theoretically mean- 
ingful) interactions in the presence of multicollinear- 
ity failed because researchers did not include qua- 
dratic terms in their equations. Thus, a critical look at 
the results of tests of interaction in the literature 
should take into account that multicollinearity may 
increase both the probability of Type I error, and the 
probability of Type II error. Whether Type I or Type 
II errors are likely to occur depends on the type of 
interaction and the form of the nonlinear relationship 
between independent and dependent variables. Table 
7 presents the conditions in which Type I and Type II 
errors occur when interaction is examined in a model 
that does not include quadratic terms. Type I error 
occurs when the true relationship is quadratic but not 
interactive, and Type II occurs when the true qua- 
dratic relationship is positive (negative) and the true 
interactive relationship is negative (positive). The 

6 Note that the difference between the values of the two 
interactions that were "revealed" in the full model and their 
values in the partial model is quite substantial; the former 
are about 6 to 12 times as high as the latter (compare col- 
umns 2 and 4 of Table 5). 

7 Lubinski and Humphreys (1990) also discuss Type II 
error in detecting interaction effects. But this discussion 
concerns the (un)reliability of the product term and is un- 
related to the issue of the relationship between quadratic and 
product terms in testing for interaction effects. 
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Table 7 
The Conditions in Which Type I and Type H Errors 
Occur When Interaction is Examined in a Model That 
Does Not Include Quadratic Terms 

True quadratic term 
True 

interaction Positive Negative 
term (convex) Zero (concave) 

Positive Type II 
Zero Type I Type I 
Negative Type II 

empty cells in the table, except the central cell, cor- 
respond to the Type I and Type II error when the 
estimated model includes quadratic, but not interac- 
tion, terms. 

A related issue is the small effect size of  interac- 
tions that is usually found in nonexperimental work 
and has distributed many researchers. This small ef- 
fect size may also be partially due to the failure to 
include quadratic terms. For example, in a recent ar- 
ticle, McClel land and Judd (1993) showed that a 
small interaction effect was associated with an inter- 
action that was theoretically as large as it can be (p. 
383). But McClel land and Judd did not include qua- 
dratic terms in their equation. Because there was con- 
siderable multicollinearity in the data, the inclusion of  
these terms may have led to an increase in the inter- 
action effect. Thus, in addition to structural factors 
that lead to difficulties of detecting interactions in 
nonexperimental data (see McClel land & Judd, 1993, 
for a thorough discussion of  these factors), not includ- 
ing quadratic terms may be an additional important 
reason for these difficulties. 

The question whether quadratic terms should be 
introduced into the regression when hypotheses about 
interactions are examined has been receiving a close 
scrutiny lately. Although almost all researchers agree 
that attention should be paid to quadratic terms when 
such hypotheses are examined, the views regarding 
this question range from Lubinski and Humphreys ' s  
(1990) "conserva t ive"  opinion that quadratic terms 
should always be examined using a stepwise method, 
to Shepperd (1991) and Aiken and West  (1991) who 
caution against introducing quadratic terms without 
sufficient theoretical justification. Recently, Cortina 
(1993) suggested an even more conservative approach 
than that of Lubinski and Humphreys '  s. He suggested 
that quadratic terms should be introduced into the 
regression prior to the introduction of product terms; 
that is, that hypotheses about interactions should be 

tested by comparing the incremental variance of a 
model that includes linear, product, and quadratic 
terms over a model that includes linear and quadratic 
terms. 

Although the Cortina argument that this approach 
should be used because there is no loss of  power in 
introducing quadratic terms into the regression is 
problematic (Ganzach, in press-b), there is, in my 
view, merit in the approach itself. There are two main 
reasons for this. First, psychological  theories are usu- 
ally associated with a condit ionally monotone, and 
not with a conditionally linear, relationship between 
independent and dependent variables. 8 For example,  
we expect the chi ld 's  educational expectations to in- 
crease monotonically,  and not necessarily linearly, 
with the education of the parent. Though there are 
numerous forms of  a monotone relationship, a qua- 
dratic function may be a good approximation for 
many of  those which are likely to occur in psycho- 
logical research (Cohen & Cohen, 1983, pp. 225-  
229). 9 Thus, a model that includes quadratic terms is 
a better representation of  underlying theories than one 
that includes only linear terms. Second, psychological 
measurements are usually associated with a mono- 
tone, rather than linear, relationship between the true 
score of the variable and the measure of this variable 
(e.g., Krantz & Tversky, 1971). This may result in sig- 
nificant quadratic terms in a regression even if the true 
relationships are linear (Busemeyer & Jones, 1983). 

In summary, because of  basic considerations con- 
cerning the level of  measurement and the form of  the 

8 For example, Lubinski and Humphreys's (1990) null 
hypothesis was "The genesis of brilliant mathematical ac- 
complishment is simply [the result of] an extraordinary 
level of quantitative ability" (p. 386). This is an hypothesis 
about monotonic, and not about linear, relationships. Nev- 
ertheless the null hypothesis which is tested by Lubinski and 
Humphreys's is a linear hypothesis. It could be argued that 
the spurious interaction that Lubinski and Humphreys's 
demonstrated is simply the result of misinterpretation of the 
null hypothesis. 

9 For example, higher order polynomials are "rarely use- 
ful in behavioral research" (Cohen & Cohen, 1983, p. 229). 
One reason is that linear and quadratic terms are highly 
correlated with other possible nonlinear terms that may ex- 
plain additional variance (e.g., whereas the linear term is 
highly correlated with any terms whose powers is odd, the 
quadratic term is highly correlated with terms whose power 
is even; see Budescu, 1980), thus adding additional nonlin- 
ear terms is not likely to add significantly to the explained 
variance. 
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relationship between independent and dependent vari- 
ables, which are unrelated to any specific multiplica- 
tive theory tested by the researcher, quadratic terms 
should be introduced into the model, even if the 
theory being tested is about interaction. This recom- 
mendation is similar to the recommendation to exam- 
ine linear terms even if the theory being tested is 
multiplicative. For example, Cronbach (1987) argues 
that even if there is a strong interaction hypothesis, 
the product term should be tested only after the linear 
variance has been partialed out: "The reader who 
starts with another presupposition or uncertainty, is 
unlikely to be persuaded that the conclusion from the 
analysis [that consider only an interaction effect], 
whether positive or negative, is valid" (p. 417). Simi- 
larly, readers who start with an uncertainty about the 
linearity of the relationships between independent and 
dependent variables and about the linearity of the re- 
lationships between true scores and observed mea- 
sures are unlikely to be persuaded by tests of interac- 
tion hypotheses that do not partial out curvilinear 
variance. (See also Anderson, 1982, for a related dis- 
cussion regarding tests of multiplicative rules in in- 
formation integration theory.) 

Each of the two studies reported in this paper is a 
good example for the priority that should be given to 
the curvilinear over the interaction terms. In both 
studies the basic underlying theory concerned inter- 
action, rather than curvilinear, relations, though 
strong curvilinear relations were nevertheless found. 
Other examples are presented by Ganzach and Czacz- 
kes (1996), who reanalyzed a number of published 
studies examining hypotheses about interactive rela- 
tionships (e.g., Ganzach, 1995; Ganzach & Czacz- 
kes, 1995). In addition to the interactive relationships 
that were predicted by the theory, they found in many 
of these studies curvilinear relationships that were not 
predicted by the theory (and therefore not examined in 
the original analyses). My previous analysis of 
Meehl's data (Ganzach, 1995) is a case in point. In 
this analysis, no curvilinear terms were included be- 
cause there was no theory suggesting considering 
these terms. Nevertheless, adding curvilinear terms to 
the models used in this previous analysis does in- 
crease the explained variance significantly. 

So far, I have treated the relationship between qua- 
dratic and product terms in the context of perfectly 
reliable variables. In both the substantive examples 
and the subsequent discussion, I have assumed that 
there is no error in the variables. However, when the 
independent variables are measured with error, the 

issue of differential reliability of the product and qua- 
dratic terms arises. In particular, because product 
terms are more reliable than quadratic terms, when the 
correlation between the true scores of the independent 
variables is high, and both quadratic and product 
terms are tested, the estimated model could be multi- 
plicative, even though the true model is quadratic 
(MacCullum & Marr, 1995). This situation also calls 
for a conservative approach of introducing the quadratic 
terms into the regression prior to the product terms. 

There are, of course, costs in introducing quadratic 
terms prior to the introduction of the product terms. 
Loss of power and unstable regression coefficients are 
the most important. These problems may be com- 
pounded by the relatively small sample sizes that are 
usually available--much smaller than the sample 
sizes used in the current article. Further work is nec- 
essary to assess the extent of these problems. 1° How- 
ever, in my view, the practice of examining for cur- 
vilinear relationships when interaction hypotheses are 
tested is particularly important because people in gen- 
eral, and researchers in particular, are both biased 
against curvilinear hypotheses and have a tendency to 
overhypothesize interactive relationships. Elsewhere 
(Ganzach, in press-a), I have demonstrated these phe- 
nomena by comparing models of the judgments to 
models of the corresponding criteria. The results of 
these studies indicated that although the judgments 
are highly interactive, the criteria are not. For ex- 
ample, the interactive effects that characterize clinical 
psychologists' judgment of pathology do not charac- 
terize the actual pathology, and the interactive effects 
that characterize teenagers' educational expectations 
do not characterize their educational attainment.~l In- 

lo Elsewhere (Ganzach, in press-b), I conducted some 
simulations to study the effect of adding quadratic terms on 
the probability of detecting an interaction when the true 
model is multiplicative. These simulations indicate that, for 
the typical situations encountered in psychological research 
(e.g., when the variance attributed to the interaction is 3%, 
the multicollinearity is .3, and the sample size is 200), the 
loss of power is rather small. 

11 On the other hand, curvilinear effects characterize both 
the judgment and the criteria. For example, both the rela- 
tionship between the parents' education and the educational 
expectations of the child, and the relationship between the 
parents' education and the educational attainment of the 
child are convex. Similarly, the curvilinear relationships 
that characterize the judgment of pathology tend also to 
characterize the actual pathology. 
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deed, even a casual examination of  the academic lit- 
erature reveals that biases toward interactive hypoth- 
eses and against curvilinear hypotheses are common 
among researchers in the social sciences: The nonlin- 
ear relationships that are examined in the literature are 
almost always interactive and rarely curvilinear (see 
Cortina, 1993, for a survey of  this phenomenon). This 
may lead not only to Type I error (Lubinski & Hum- 
phreys, 1990), but it also may l ead - - a s  the current 
article demonst ra tes- - to  Type II errors and even mis- 
leading significant results. 
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