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Supplementary Material A: Derivation of the Model Implied Variance of η

In this section, we derive the model implied variance of the latent dependent variable
η. For this derivation, the variances and covariances of the latent predictors and the latent
product terms are required. Such variances and covariances can be specified for given
random variables xi, xj , xk, xl (Bohrnstedt & Goldberger, 1969) by

V (xixj) = µ2
i νjj + µ2

jνii + 2µiµjνij − ν2
ij + 2µiνijj + 2µjνiij + νiijj (A1)

C(xixj , xkxl) = µiµkνjl + µiµlνjk + µjµkνil + µjµlνik − νijνkl

+ µiνjkl + µjνikl + µkνijl + µlνijk + νijkl (A2)
C(xixj , xl) = µiνjl + µjνil + νijl, (A3)

where µ· is the first moment and ν··, ν···, and ν···· are the second to fourth central moments of
the respective variables. If variables are normally distributed, the third central moments are
zero and the fourth central moments are a simple function of the second central moments. In
this case, the calculation of the variances and covariances is straightforward and is derived
for the model specified in Equation (4) for the class-specific standardization (see below),
where normality of the variables can be assumed because the latent classes are extracted
explicitly under this assumption.

If variables are nonnormally distributed, the calculation of the third and fourth central
moments needs a more complex specification. If a mixture of normal distributions is used to
approximate the nonnormal variables’ distribution, the moments can be derived analytically
as follows:

1. Calculate the noncentral class-specific moments based on the assumption of normally
distributed variables within each latent class.
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2. Calculate the noncentral moments of the nonnormally distributed mixture variable.

3. Using these noncentral moments, calculate the central moments of the nonnormally
distributed mixture variable.

1. Noncentral class-specific moments. The second to fourth class-specific non-
central moments µ··, µ···, and µ···· for variables xi,g, xj,g, xk,g, xl,g are given in general as

µij,g = µi,gµj,g + νij,g (A4)
µijk,g = νijk,g + µij,gµk,g + µik,gµj,g + µjk,gµi,g − 2µi,gµj,gµk,g (A5)
µijkl,g = νijkl,g + µijk,gµl,g + µijl,gµk,g + µikl,gµj,g + µjkl,gµi,g − µij,gµk,gµl,g − µik,gµj,gµl,g

− µil,gµj,gµk,g − µjk,gµi,gµl,g − µjl,gµi,gµk,g − µkl,gµi,gµj,g + 3µi,gµj,gµk,gµl,g. (A6)

Under the assumption that the variables are normally distributed within each mixture
component g = 1, . . . , G the central class-specific third and fourth moments are specified
by

νijk,g = 0 (A7)
νijkl,g = νij,gνkl,g + νik,gνjl,g + νil,gνjk,g. (A8)

As a consequence, the noncentral class-specific moments can be calculated using the class-
specific means and (co-)variances of the variables.

2. Noncentral moments of mixture variables. In general, the k-th noncentral
moment of a mixture variable is a weighted sum of the k-th noncentral class-specific moments
(Haas, Mittnik, & Paolella, 2009):

µ(k) =
∑

g

πgµ
(k)
g . (A9)

3. Central moments of mixture variables. Analogous to Equations (A4) to
(A6), the central moments of the mixture variables are then given by

νij = µij − µiµj (A10)
νijk = µijk − µijµk − µikµj − µjkµi + 2µiµjµk (A11)
νijkl = µijkl − µijkµl − µijlµk − µiklµj − µjklµi + µijµkµl + µikµjµl

+ µilµjµk + µjkµiµl + µjlµiµk + µklµiµj − 3µiµjµkµl, (A12)

with the (noncentral) moments µ·, µ··, µ··· and µ···· obtained from Equation (A9).
In the next two subsections, we use these general formulas to derive the model implied

(co-)variances first for the direct and then for the indirect application of a mixture model
with nonlinear effects as specified in Equations (4) and (16).
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Standardization of the Direct Application (Class-Specific Standardization)

Concerning the class-specific standardization in the direct application, the model
implied class-specific variance of ηg for a model that is given in Equation (4) is specified by

V ar(ηg) = φ00g = γgΦ∗gγ ′g + ψg (A13)

with parameter vector γg = (γ1,g, . . . , γ5,g)′ and 5 × 5 class-specific covariance matrix
Cov

(
(ξ1,g, ξ2,g, ξ1,gξ2,g, ξ

2
1,g, ξ

2
2,g)′

)
= Φ∗g for the latent predictor variables and product

terms. The nonredundant elements of Φ∗g are specified using Equations (A1) to (A3)
and moments specified in Equations (A4) to (A8), and using the notation µ·,g = κ·,g and
ν··,g = φ··,g:

φ13,g = κ1,gφ12,g + κ2,gφ11,g

φ23,g = κ1,gφ22,g + κ2,gφ12,g

φ33,g = κ2
1,gφ22,g + κ2

2,gφ11,g + 2κ1,gκ2,gφ12,g + φ11,gφ22,g + φ2
12,g

φ14,g = 2κ1,gφ11,g

φ24,g = 2κ1,gφ12,g

φ34,g = 2κ2
1,gφ12,g + 2κ1,gκ2,gφ11,g + 2φ11,gφ12,g

φ44,g = 4κ2
1,gφ11,g + 2φ2

11,g

φ15,g = 2κ2,gφ12,g

φ25,g = 2κ2,gφ22,g

φ35,g = 2κ2
2,gφ12,g + 2κ1,gκ2,gφ22,g + 2φ22,gφ12,g

φ45,g = 4κ1,gκ2,gφ12,g + 2φ2
12,g

φ55,g = 4κ2
2,gφ22,g + 2φ2

22,g,

since

ν1111,g = 3φ2
11,g

ν1112,g = 3φ11,gφ12,g

ν1122,g = φ11,gφ22,g + 2φ2
12,g

ν1222,g = 3φ22,gφ12,g

ν2222,g = 3φ2
22,g.

Standardization of the Indirect Application

For the indirect application, a global standardization is based on the covariance matrix
of the mixture variables. For a model such as one specified in Equation (16), the model
implied variance of η is given by

V ar(η) = φ00 = γΦ∗γ ′ + ψ (A14)
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with γ = (γ1, . . . , γ5)′ and 5× 5 covariance matrix Φ∗ for the latent predictor variables and
product terms. The (co-)variances (φ11, φ12, φ22) and means (κ1, κ2) of the latent predictors
are specified in Equation (17) and (18). The remaining nonredundant elements of Φ∗ are
given by:

φ13 = κ1φ12 + κ2φ11 + ν112

φ23 = κ1φ22g + κ2φ12 + ν122

φ33 = κ2
1φ22 + κ2

2φ11 + 2κ1κ2φ12 − φ2
12 + 2κ1ν122 + 2κ2ν112 + ν1122

φ14 = 2κ1φ11 + ν111

φ24 = 2κ1φ12 + ν112

φ34 = 2κ2
1φ12 + 2κ1κ2φ11 − φ11φ12 + 3κ1ν112 + κ2ν111 + ν1112

φ44 = 4κ2
1φ11 − φ2

11 + 4κ1ν111 + ν1111

φ15 = 2κ2φ12 + ν122

φ25 = 2κ2φ22 + ν222

φ35 = 2κ2
2φ12 + 2κ1κ2φ22 − φ22φ12 + 3κ2ν122 + κ1ν222 + ν1222

φ45 = 4κ1κ2φ12 − φ11φ22 + 2κ1ν122 + 2κ2ν112 + ν1122

φ55 = 4κ2
2φ22 − φ2

22 + 4κ2ν222 + ν2222.

The derivation of the third and fourth central moments is conducted with the steps described
above.

1. The third and fourth noncentral class-specific moments (cf. Equations (A5) to
(A8)) are given by

µ111,g = κ3
1,g + 3κ1,gφ11,g

µ112,g = κ2
1,gκ2,g + κ2,gφ11,g + 2κ1,gφ12,g

µ122,g = κ2
2,gκ1,g + κ1,gφ22,g + 2κ2,gφ12,g

µ222,g = κ3
2,g + 3κ2,gφ22,g

and

µ1111,g = 3φ2
11,g + κ4

1,g + 6κ2
1,gφ11,g

µ1112,g = 3φ11,gφ12,g + κ3
1,gκ2,g + 3κ1,gκ2,gφ11,g + 3κ2

1,gφ12,g

µ1122,g = φ11,gφ22,g + 2φ2
12,g + κ2

1,gκ
2
2,g + κ2

2,gφ11,g + 4κ2,gκ1,gφ12,g + κ2
1,gφ22,g

µ1222,g = 3φ22,gφ12,g + κ3
2,gκ1,g + 3κ1,gκ2,gφ22,g + 3κ2

2,gφ12,g

µ2222,g = 3φ2
22,g + κ4

2,g + 6κ2
2,gφ22,g,

respectively, with class-specific means (κ1,g, κ2,g) and (co-)variances (φ11,g, φ22,g, φ12,g).

2. The noncentral moments of the mixtures can be calculated as the weighted sum
of the class-specific moments using Equation (A9).
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3. The central moments of the mixture variables are then given by (cf. Equations
(A11) to (A12))

ν111 = µ111 − κ3
1 − 3κ1φ11

ν112 = µ112 − κ2
1κ2 − κ2φ11 − 2κ1φ12

ν122 = µ122 − κ2
2κ1 − κ1φ22 − 2κ2φ12

ν222 = µ222 − κ3
2 − 3κ2φ22

and

ν1111 = µ1111 − 4µ111κ1 + 3κ4
1 + 6κ2

1φ11

ν1112 = µ1112 − 3µ112κ1 + 3κ3
1κ2 + 3κ1κ2φ11 + 3κ2

1φ12 − µ111κ2

ν1122 = µ1122 − 2µ112κ2 − 2µ122κ1 + 3κ2
1κ

2
2 + κ2

2φ11 + 4κ1κ2φ12 + κ2
1φ22

ν1222 = µ1222 − 3µ122κ2 + 3κ3
2κ1 + 3κ1κ2φ22 + 3κ2

2φ12 − µ222κ1

ν2222 = µ2222 − 4µ222κ2 + 3κ4
2 + 6κ2

2φ22,

respectively.
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Supplementary Material B: Illustration of a Standardization with
Group-Specific Variances and Pooled Variances

Table B1
Fictitious example for the standardized relationship between shoe size (shoe) and body height
(height) for male and female subjects (g = 1, 2) in two studies (s = 1, 2).

Study 1 (S = 1) Study 2 (S = 2)
Male (G = 1) Female (G = 2) Male (G = 1) Female (G = 2)

P (G = g) 0.75 0.25 0.25 0.75
E(shoe|G = g, S = s) 9.00 7.00 42.51 40.11
V (shoe|G = g, S = s) 0.50 0.45 0.72 0.65
E(height|G = g, S = s) 69.41 63.86 1.76 1.62
V (height|G = g, S = s) 20.07 19.27 0.01 0.01
E(shoe|S = s) 8.50 8.50 40.71 40.71
V (shoe|S = s) 1.24 1.24 1.75 1.75
E(height|S = s) 68.02 68.02 1.66 1.66
V (height|S = s) 25.65 25.65 0.02 0.02
β 3.17 3.93 0.07 0.08
β• 0.50 0.60 0.50 0.60
β◦ 0.70 0.86 0.69 0.86

Note. E(·) – expected value; V (·) – variance; β – unstandardized regression coefficient; β• – stan-
dardized regression coefficient based on within class variances; β◦ – standardized regression coefficient
based on pooled variances.

The following fictitious example concerning the relationship between shoe size and
body height illustrates the differences between a within class standardization and a stan-
dardization based on pooled variances. Table B1 includes (fictitious) means and variances
for male and female subjects in two different studies. In study 1, the mean shoe size for
men and women were E(shoe|G = 1, S = 1) = 9 and E(shoe|G = 2, S = 1) = 7 (Amer-
ican sizes) with (plausible) variances of V (shoe|G = 1, S = 1) = .50 and V (shoe|G =
2, S = 1) = .45. In study 2, the same information concerning the means and variances
were used, but they were transformed to the German shoe size system (German shoe size
≈ 31.71 + 1.20 · American shoe size). The average body heights in study 1 were assumed
to be E(height|G = 1, S = 1) = 69.41 and E(height|G = 2, S = 1) = 63.86 inches for
men and women, respectively, with variances of V (height|G = 1, S = 1) = 20.07 and
V (height|G = 2, S = 1) = 19.27 (McDowell, Fryar, Ogden, & Flegal, 2008). Again, the
same information about the means and variances held in study 2, but were transformed
from inches to the metric system. Finally, we assumed that reasonable correlations between
shoe size and body height were .5 for men and .6 for women. The only substantive difference
between the two studies was that in study 1 75% of the subjects were male and in study 2
only 25% were male.

Based on these assumptions, the sample means (E(shoe|S = s), E(height|S = s))
and variances (V (shoe|S = s), V (height|S = s)) for each study were calculated as well
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as the unstandardized regression coefficients (β), and finally, the standardized regression
coefficients based on the within variances (β•)1 and the pooled variances (β◦)2.

The unstandardized regression coefficients were different across groups and different
across studies. The within group standardized regression coefficients were the same in the
respective groups of both studies (β• = .5 for male and β• = .6 for female subjects).
The standardized regression coefficients can be meaningfully used to compare effects across
studies, that is, it is meaningful to compare, for example, male subjects across studies: For
an increase of 1 SD in shoe size (SD(shoe|G = 1, S = 1) =

√
.50 = .71 in study 1 and

SD(shoe|G = 1, S = 2) =
√
.72 = .85 in study 2) the body height increases by .50 SD

(which is SD(height|G = 1, S = 1) =
√

20.07 = 4.48 feet in study 1 and SD(height|G =
1, S = 2) =

√
.01 = .1 meters in study 2). The same logic applies for female subjects

(G = 2). The standardization based on the within group variances can also be used to
compare different groups within one study; however, it needs to be considered that the
information about differences in variances are not taken into account.

The pooled means and variances depend on the proportions of the two groups. They
can be used, for example, to compare different subgroups within a study in a unified refer-
ence system. For example, in study 1, an increase of 1 SD (based on the pooled variance
SD(shoe|S = 1) =

√
1.24 = 1.11) in shoe size leads to an increase in body height of .70 SD

for male and of .86 SD for female subjects with an SD(height|S = 1) =
√

25.65 = 5.06 for
the body height in both groups. Note that due to the common metric – the pooled variance
– the effect sizes are directly comparable across groups.

The standardization based on the pooled variances also allows one to compare other
parameters based on a common metric. For example, the standardized means based on a
within standardization are E•(shoe|G = 1, S = s) = E•(shoe|G = 2, S = s) = 0 for both
groups and hence differences between the two groups are lost. The standardized means
based on the pooled parameters keep information about the differences in the groups intact
because while the pooled standardized mean is zero (E◦(shoe|S = s) = 0), the group-
specific standardized means are z-values of the form E◦(shoe|G = g, S = s) = [E(shoe|G =
g, S = s) − E(shoe|S = s)]/SD(shoe|S = s) (which are E◦(shoe|G = 1, S = 1) = .44 for
male and E◦(shoe|G = 2, S = 1) = −1.35 for female subjects in study 1).3
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2β◦ = β · SD(shoe|S = s)/SD(height|S = s)
3For a visualization of standardized differences in an empirical data set see Figure 4.


