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ON THE EXACT COVARIANCE OF PRODUCTS 
OF RANDOM VARIABLES* 

GEORGE W. BOHRNSTEDT 

The University of Minnesota 

ARTHUR S. GOLDBERGER 

The University of Wisconsin 

For the general case of jointly distributed random variables x and 
y, Goodman [3] derives the exact variance of the product xy. For the 
special case where x and y are stochastically independent, he pro- 
vides a simpler expression for the exact variance. We offer a weaker 
set of assumptions which suffices to yield the simpler expression. We 
then extend Goodman's analysis to present the exact covariance of 
two products xy and uv, and sketch several specializations and appli- 
cations. 

1. THE VARIANCE OF A PRODUCT L ET x and y be jointly distributed random variables with expectations E(x) 
and E(y), variances V(x) and V(y), and covariance C(x, y). Consider the 

product xy; by definition its variance is 

V(xy) = E[xy - E(xy)]2. (1) 

Let Ax=x-E(x) and Ay=y-E(y), and write 

xy = [Ax + E(x)][Ay + E(y)] (2) 
= (Ax)(Ay) + (Ax)E(y) + (Ay)E(x) + E(x)E(y). 

Take expectations to give 

E(xy) = E[(Ax)(,Ay)] + E(x)E(y) = C(x, y) + E(x)E(y), (3) 

so 

xy - E(xy) = (Ax)(Ay) + (Ax)E(y) + (Ay)E(x) - C(x, y). (4) 

Square and take expectations to find 

V(xy) = E2(x)V(y) + E2(y)V(x) + E[(Ax)2(Ay)2] 

+ 2E(x)E[(Ax) (Ay) 2] + 2E(y)E[(Ax) 2(Ay) J (5) 
+ 2E(x)E(y)C(x, y) - C2(X, y), 

since V(y) = E(Ay)2 and V(x) =E(Ax) 2. This is the result obtained by Goodman 
([3], p. 712, equation (18)). Although his derivation drew on the assumption 
that E(x) and E(y) are non-zero, it must be apparent from Goodman's ([3], p. 
709) remark that "some of the results ... do not require this assumption" and 
from the form of equation (18) that his result was (correctly) intended to apply 
even if E(x) = 0 and/or E(y) = 0. 

* Work on this paper was in part supported by grants from the Office of Education (OE-5-10-292) and from the 
Graduate School of the University of Wisconsin. We are grateful also to the referees and editor for instructive criti- 
cisms of earlier versions, the first of which was distributed in April, 1968 as Social Systems Research Institute Work- 
shop Paper SFM 6810. 
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Some specializations of the general formula (5) are of interest. If x and y are 
bivariate normally distributed then third moments vanish and E[(Ax)2(Ay)2] 
= V(x) V(y) +2C2(x, y)-see Anderson ( [1], p. 39)-whence (5) reduces to 

V(xy) = E2(x)V(y) + E2(y)V(x) + 2E(x)E(y)C(x, y) (6) 
+ V(x)V(y) + C2(x, y). 

If x and y are uncorrelated so that C(x, y) = 0, then (5) reduces to 

V(xy) = E2(x)V(y) + E2(y)V(x) + E[(Ax)2(Ay) 2] 
+ 2E(x)E[(Ax)(Ay)21 + 2E(y)E[(Ax)2(Ay)]. 

A somewhat stronger form of independence is "expectation-independence." 
We say that y is expectation-independent of x if and only if the conditional ex- 
pectation of y, E(y I x), is the same for all values of x-see Goldberger ( [2 1, pp. 
10-11) and Lord and Novick ([71, pp. 225-227) where the same concept is in- 
troduced in different terminology. In that event, E(y Ix) = E(y) for all x, so 
that E(Ay Ix) = 0 for all x, whence 

E[(Ax)r(Ay)] = E {E[(Ax)r(Ay) I x]} = E,[(Ax) tE(Ay I x)] = O 

for every integer r. As consequences, we have not only uncorrelatedness, 
C(x, y) = E [(Ax) (Ay)] = 0 when y is expectation-independent of x, but also 
E[(Ax) 2(Ay)] = 0. We conclude that under this condition (5) specializes to 

V(xy) = E2(x)V(y) + E2(y)V(x) + E[(Ax)2(Ay)2] + 2E(x)E[(Ax)(Ay) 2]. (8) 

Now suppose that y is variance-independent (i.e. homoskedastic), as well as 
expectation-independent, of x. With V(y f x) =constant for all x, and E(y f x) 
=E(y) for all x, it follows that 

V(y) = V[E(y I x)] + Ex[V(y I x)] V(y I x) = E[(Ay)2 I x] for all x, 

whence 

E[(Ax) r(Ay) 2] = Es{E[(AX)r(Ay)2I X]]} =E { (Ax) rIE [(Ay) 21 X]} = V(y)E(Ax)r 

for every integer r. As consequences, we have 

E[(Ax)(Ay) 2] = V(y)E(Ax) = 0 and 

E[(Ax)2(Ay)2] = V(y)E[(Ax)2] = V(y)V(x). 

Inserting these into (8) we conclude that if y is expectation- and variance-in- 
dependent of x, then (5) specializes to 

V(xy) = E2(x)V(y) + E2(y)V(x) + V(x)V(y). (9) 

Equation (9) is identical with Goodman's ([31, p. 709) equation (2), which 
was established under the assumption that x and y were stochastically iimde- 
pendent. We see that expectation- and variance-independence of either variable 
with respect to the other suffice to produce the same simplification for V(xy) as 
does stochastic independence. A considerable weakening of assumptions is 
involved: stochastic independence of course requires that all conditional mo- 
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ments of both variables, not merely two conditional moments of one variable, be 
constant. 

Actually, even the conjunction of expectation- and variance-independence is 
unnecessary. A necessary and sufficient condition for V(xy) to reduce to (9) is 
obtained by equating to zero the difference between the right-hand sides of our 
(5) and (9). The referee who called our attention to this pointed out that the 
same device could have been used on Goodman's (18) and (2). 

2. THE COVARIANCE OF PRODUCTS 

We now turn to the main subject of the paper. Let x, y, u, and v be jointly 
distributed random variables. Consider the two products xy and uv; by defini- 
tion their covariance is 

C(xy, uv) = E[xy - E(xy)][uv - E(uv)]. (10) 

Let Ax=x-E(x), Ay=y-E(y), Au=u-E(u), and Avv=v-E(v). Multiply the 
expression for xy - E(xy) of (4) by the corresponding expression for uv - E(uv), 
and take expectations. Typical terms in the product include (Ax) (Au)E(y)E(v) 
whose expectation is C(x, u)E(y)E(v), and (Ax)E(y)C(u, v) whose expectation 
is 0. The result is 

C(xy, uv) = E(x)E(u)C(y, v) + E(x)E(v)C(y, u) + E(y)E(u)C(x, v) 

+ E(y)E(v)C(x, u) + E[(Ax) (Ay) (Au) (Av) ] 
+ E(x)E[(Ay)(Au)(Av)] + E(y)E[(Ax)(Au) (Av)] (11) 
+ E(u)E [(Ax) (Ay) (Av) ] + E(v)E [(Ax) (Ay) (Au)] 
- C(x, y)C(u, v). 

This is our formula for the covariance of products of random variables. It 
may be specialized in a variety of ways, as several examples should suffice to 
suggest. If we set x = u and y = v, then (11) reduces to the variance formula (5), 
as it should since C(xy, xy) = V(xy). If we set u = 1 so that E(u) = 1 and Au = 0, 
then (11) yields 

C(xy, v) = E(x)C(y, v) + E(y)C(x, v) + E[(Ax)(Ay)(Av)]. (12) 

Under multivariate normality all third moments vanish, while E[(Ax)(Ay) 
(Au) (Av) ]=C(x, y)C(u, v) +C(x, u)C(y, v) +C(x, v)C(y, u)-see Anderson 
([1], p. 39)-in which case (11) reduces to 

C(xy, uv) = E(x)E(u)C(y, v) + E(x)E(v)C(y, u) + E(y)E(u)C(x, v) 

+ E(y)E(v)C(x, u) + C(x, u)C(y, v) + C(x, v)C(y, u). 

We note that the conventional asymptotic approximation procedure-see 
Kendall and Stuart ([6], p. 232)-would yield for the covariance of xy with uv, 

C*(xy, uv) = E(x)E(u)C(y, v) + E(x)E(v)C(y, u) + E(y)E(u)C(x, v) 

+ E(y)E(v)C(x, u), 

where C*(. , .) denotes an approximate covariance. Note that (14) is the sum of 
the first four terms on the right of (11), so that the error involved in using the 

This content downloaded  on Mon, 7 Jan 2013 05:42:45 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1442 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1969 

approximation C*(xy, uv) rather than the exact C(xy, uv) is the sum of the last 
six terms in (11). Under multivariate normality, the error is that given by the 
sum of the last two terms in (13). 

The consequences of various degrees of independence in terms of simplifying 
C(xy, uv) can be obtained by the methods of Section 2. We cite only one: If the 
pair (x, y) is expectation-independent and covariance-independent of the pair 
(u, v), then (11) reduces to C(xy, uv) =0. 

3. DISCUSSION 

Product variables occur naturally in regression contexts to capture non- 
additive (i.e., interaction) effects. An examination of the results above makes it 
clear that zero-order correlations involving product variables may not be 
scale-free in the sense of being invariant with respect to linear transformations 
of the underlying variables. For, variances and covariances of product vari- 
ables involve the expectations as well as the central moments of the underlying 
variables. 

Product variables may also arise in classical test score theory, if the product 
of two scores happens to be the relevant variable. The reliability of a variable 
is defined as the correlation between two parallel measurements on it; under 
classical assumptions this reduces to the ratio of the variance of the true vari- 
able to the (ordinary) variance of its measures-see Gulliksen ([5], pp. 13-14). 
Under similar assumptions, the reliability of a product variable will reduce to a 
similar ratio of variances. Again, our results will make it clear that the reliabil- 
ity of the product may not be scale-free with respect to linear transformations 
of its components. 

In a second paper, Goodman [4] extended his analysis to cover the variance 
of the product of K variables, and a similar extension for the covariance might 
be desirable here. However, for such higher-dimension problems the enumera- 
tion involved is tedious. A more efficient scheme, which works with symmetric 
functions and partitions, is given in Kendall and Stuart ([6], Chapter 12). 
Indeed some readers may find that scheme more attractive even for our low- 
dimension problem. 
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