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Introduction

I In MCMC estimated analysis users specify a number of stochastic chains. The
first step in determining model success is convergence. Convergence occurs
when the random chains reach identical solutions (post burn in). However, the
number of chains used has an effect on estimates of convergence [1]. Looking
through literature, one is hard pressed to find any substantiated recommendation
other than more than one [1]. Although, [2] suggested that multiple chains are
more informative due to the possibility of a single chain finding local maxima as a
solution. While they suggest choosing a chain number greater than one, no
evidence is supplied to suggest a specific number for any given situation.

Objectives

I Explore the relationship between chain number and convergence
decisions
. How does this relationship change in regard to chain length
. How does this relationship change with varying prior specifications

Simulation Design

1. A balanced clustered data set was
simulated N = 900 with 30 groups
yij = 0 + u0j + 0.5x1ij + u1jx1ij + εij

2. An MCMC analysis was conducted using
Stan [3], 3 times, under 3 prior conditions
with 20 chains specified

3. Entire chains were sampled (disregarding
burn-in) in differing amounts (2:10) 1,000
times

4. Each condition (Prior, Chain Number,&
Chain Length) was aggregated and
summarized

I To describe convergence R̂ was computed
under each condition

I To account for convergence on improper
solutions parameter bias was computed for
the fixed effect βx
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Figure 1: Simulated data by group ID

Simulation Conditions

I 9 chain number conditions
. 2 through 10 chains

I 2 chain lengths post burn in.
. 2,000 and 4,000

I 3 prior conditions for βx
. Diffuse, Realistic, Strong and

Incorrect
I 54 total conditions

I All Prior Conditions:
. var(βx) ∼ t(3, 0)
. var(β0) ∼ t(3, 0)
. σ ∼ t(3, 0)
. cov(u) ∼ LKJ(1)

I Diffuse
. βx ∼ unif(−1000, 1000)

I Realistic
. βx ∼ N(0, 1)

I Strong Incorrect
. βx ∼ N(10, 0.1)

The specified model includes both random intercepts and slopes for the effect of
group yij = β0 + u0j + β1x1ij + u1jx1ij + εij

Measuring Performance
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Where: ψ.̄j is the chain mean, ψ.̄. is the grand mean of the chains S2
J summarizes the average squared distance of each

retained draw from the chain mean. j is chain length, while n is the number of chains. W is a summary of within chain
variation while B is a summary of between chain variation

I Convergence was assessed using the popular R̂ statistic [4].
Where R̂ values greater than 1.10 are regarded as non convergent,
an estimate of 1.0 is said to be perfectly mixed. See the above
equation.

I Bias was calculated as the mean squared summed deviation from
the population value. Higher values of bias reflect poor estimates,
while a bias of 0 reflects a perfect estimate.

Results: Convergence & Bias
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Figure 2: Proportion of samples with R̂ > 1.10

Diffuse Realistic Strong Incorrect

2k P
ost B

urn−
in Iterations

4k P
ost B

urn−
in Iterations

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

1.00

1.25

1.50

1.75

1.00

1.25

1.50

1.75

Number of Chains

R̂

Figure 3: R̂ for the overall model
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Figure 4: Bias of βx
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Figure 5: R̂ for βx

Conclusion

I More chains lead to more favorable estimates of model
convergence under all prior conditions
. Under the Diffuse & Realistic conditions the inclusion of more chains provides

more favorable convergence estimates above and beyond the overall iteration
count.

. Under the Strong Incorrect condition, the trend is the same, however, the model
was more likely to reach favorable convergence on improper solutions.

I Increasing the number of chains (between chain samples) leads to
more favorable estimates of convergence as compared to
increasing chain length (within chain samples).
. One Major benefit to between chain information is the ability to run parallel

computation. With little effort we can distribute the MCMC chains across
multiple cores, whereas increasing iteration counts has no added
computational benefit with multi-core processing.

Future Research

I Further simulation studies are needed to better define the benefits
of favoring high chain numbers over post burn-in iteration counts

I Reasonably there are limits to the benefits of between chain
samples over chain length, where are these boundaries? Under
which modeling conditions do they change?
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