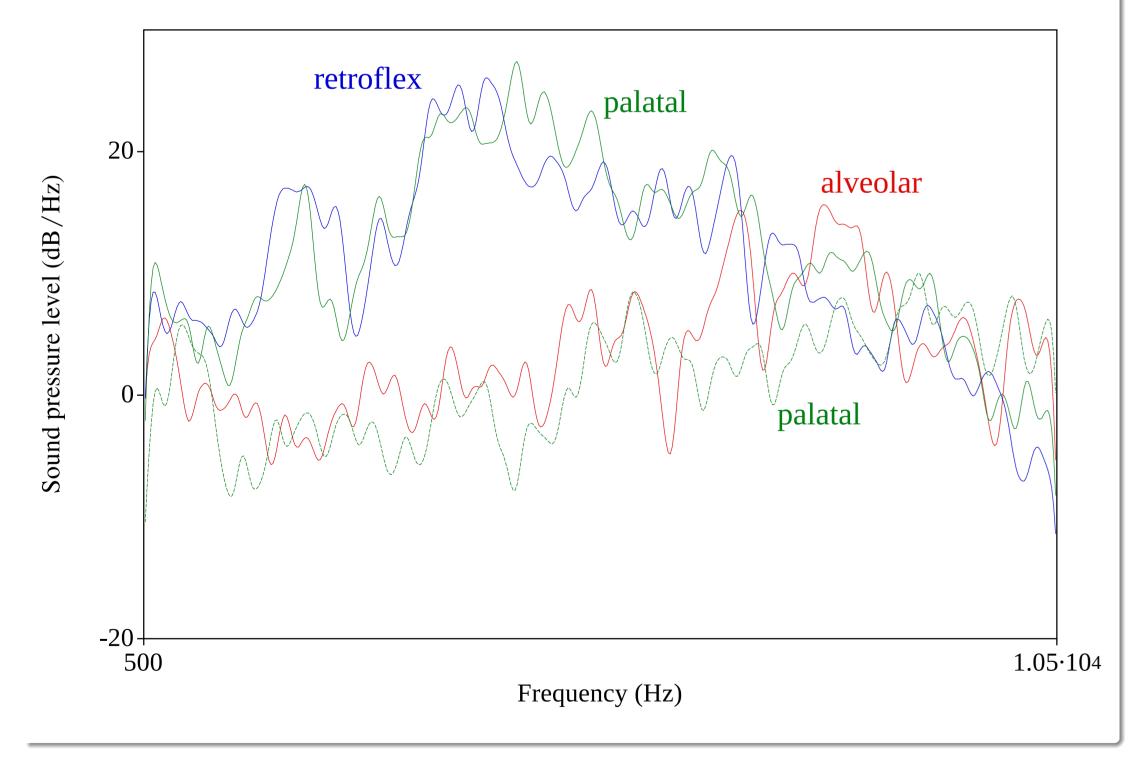
BACKGROUND

- Telugu is a Dravidian language spoken in South India
- Unlike many languages in the region which lost the three-way distinction between alveolar, palatal, and retroflex sibilants present in Sanskrit, Telugu purportedly preserves the contrast¹⁻⁴
- Such dense systems are typologically rare and have been shown (e.g., in Polish and Mandarin) to be acoustically unstable⁵⁻⁷

GOAL OF THE STUDY

We seek to characterize the acoustics of the sibilant contrast system in Telugu, information which is largely absent from the literature.

PARTICIPANTS


- 16 native speakers of Telugu (8 female, 8 male) recorded in Hyderabad at the English and Foreign Languages University
- 14/16 from Telangana (8 of whom were from Hyderabad)

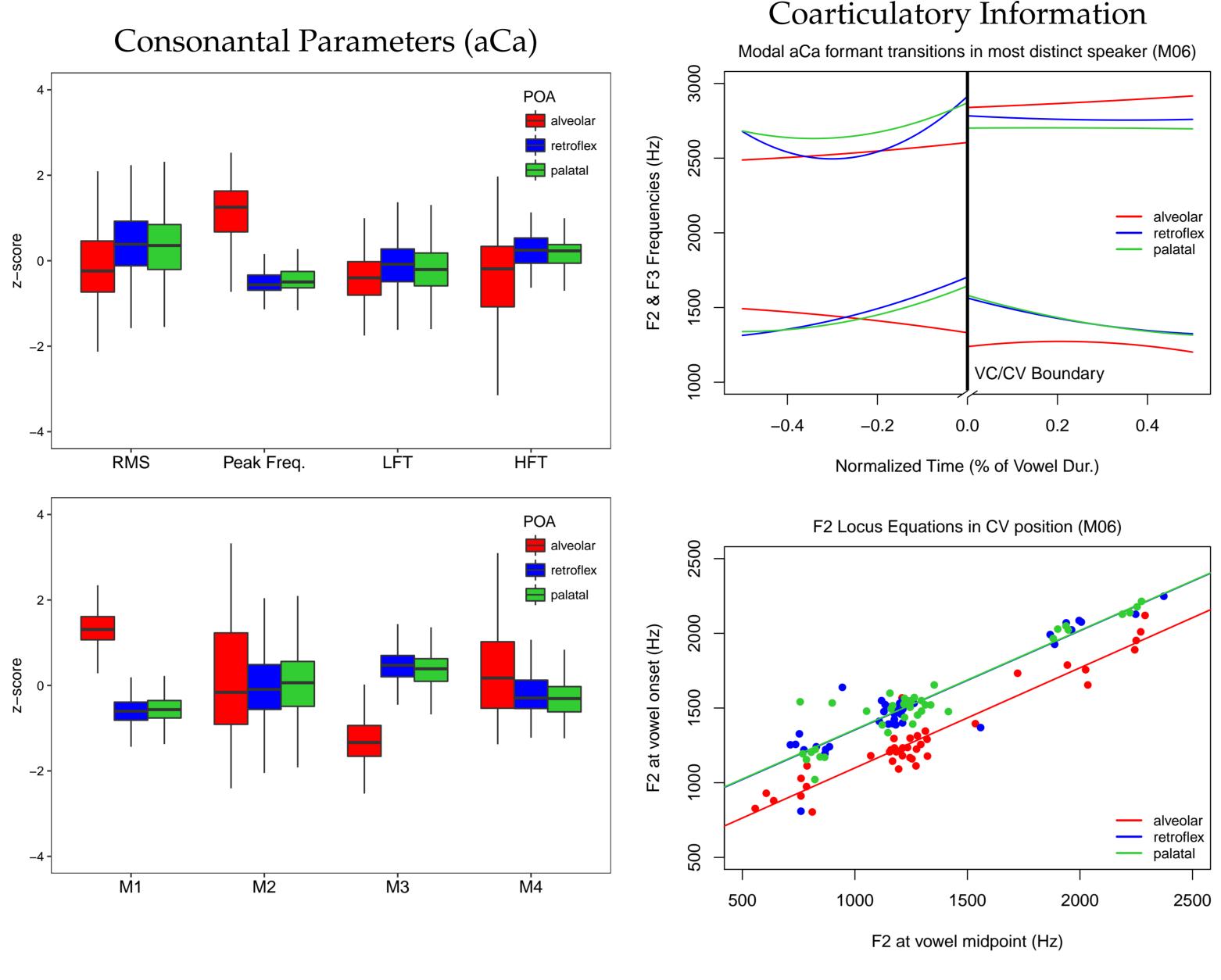
MATERIALS

- 240 stimuli (120 words × 2 reps)
- 3 sibilant fricatives (alveolar, retroflex, palatal)
- 60 word-initial (CV), 60 word-medial/final (VC)
- Critical vowel contexts: 12 /a/, 2 each of /i, e, o, u/
- Half of the /a/-context items have 2nd-order neighbors
- (near-minimal pairs) contrasting in sibilant place; half do not
- We focus in this presentation on studying the contrast in the /aCa/ context, because (1) it is the most common environment in which all three sibilants occur, and (2) word-initial retroflex sibilants are largely limited to English loanwords

SIBILANT SPECTRA

The following are sample spectra from Speaker F01, where the dotted palatal line illustrates the occasional alveolar-like realization observed in many speakers' data.

MEASUREMENTS


- Noise amplitude (RMS)
- Spectral peak frequency (PeakF)
- Spectral tilt below (LFT) and above PeakF (HFT)
- Spectral moments at consonant midpoint (M1–M4)
- F2 and F3 transitions (modeled with coefficients of quadratic polynomial fits to VC/CV transitions; for simplicity the table in the next panel shows F2/F3 at vowel midpoint and offset/onset)

http://redmonc.github.io/dravidian

Distributional factors in Telugu sibilant production

Department of Linguistics, University of Kansas; Lawrence, KS, USA

ACOUSTIC FEATURES

PATTERN OF PALATAL SIBILANT MISCLASSIFICATIONS (%) BY SPEAKER IN THE aCa CONTEXT																
	F01	F02	F03	F04	F05	F06	F07	F08	M01	M02	M03	M04	M05	M06	M07	M08
Alveolar	18.6	0	12.0	0	1.7	0	0	0	0	0	0	0	0	0	15.3	13.8
Retroflex	31.3	38.3	31.9	22.9	28.5	14.1	17.3	23.5	24.6	49.2	38.1	35.8	29.3	33.5	42.2	23.6

CLASSIFICATION RESULTS

Structure of the classification model:

Multinomial logistic regression on the three sibilants in the aCa

> 20 predictors (RMS, PeakF, LFT, HFT, M1–M4, VC/CV F2 and F coefficients), all z-score normalized by speaker

Model patterns in the aCa environment:		alv.	re
Palatal–retroflex model confusions	alv.	96.1	1
predominateModel confusions between alveolar	ret.	0.4	69
and retroflex categories are rare	pal.	3.8	30

Effects of lexical characteristics:

- Model accuracy was significantly higher on items with sibilant-contrast neighbors $(e^{\beta} = 1.386, z = 10.74, p < 0.001)$, controlling for lexical frequency and neighborhood density
- Lexical frequency had a significant negative effect ($e^{\beta} = 0.89, z = -13.09, p < 0.001$), meaning lower frequency words were associated with higher model accuracy in distinguishing sibilant place of articulation

Charles Redmon, Allard Jongman, and Jie Zhang

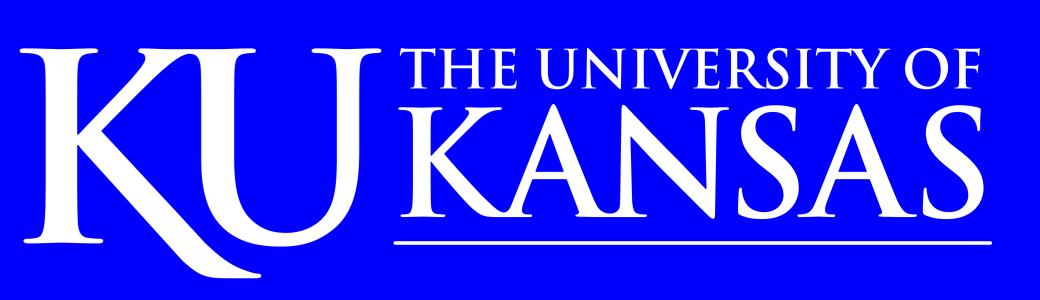
		Sibilant Means					
Param.	$\Delta LL_{Sib.}$	alv.	ret.	pal.			
M1 (Hz)	$477^{*\dagger}$	7047	4450	4594			
M3	329*†	-1.11	0.81	0.68			
PeakF (Hz)	266*	6969	3743	3868			
F2 _{CV} (Hz)	80*	1513	1702	1678			
F2 _{VC} (Hz)	80*	1539	1757	1752			
HFT	27*	-4e-3	-2e-3	-2e-3			
$F2_{V1}$ (Hz)	27*	1405	1332	1416			
RMS (dB)	26*	54.5	56.4	56.2			
F3 _{V2} (Hz)	13*	2877	2759	2791			
$F2_{V2}$ (Hz)	9*	1434	1452	1394			
F3 _{V1} (Hz)	9*	2892	2788	2807			
M2 (Hz)	5*	1835	1732	1771			
M4	4*	2.96	1.69	1.79			
F3 _{VC} (Hz)	3*	2981	2920	2926			
LFT	2	3e-3	4e-3	4e-3			
F3 _{CV} (Hz)	2	2923	2888	2874			

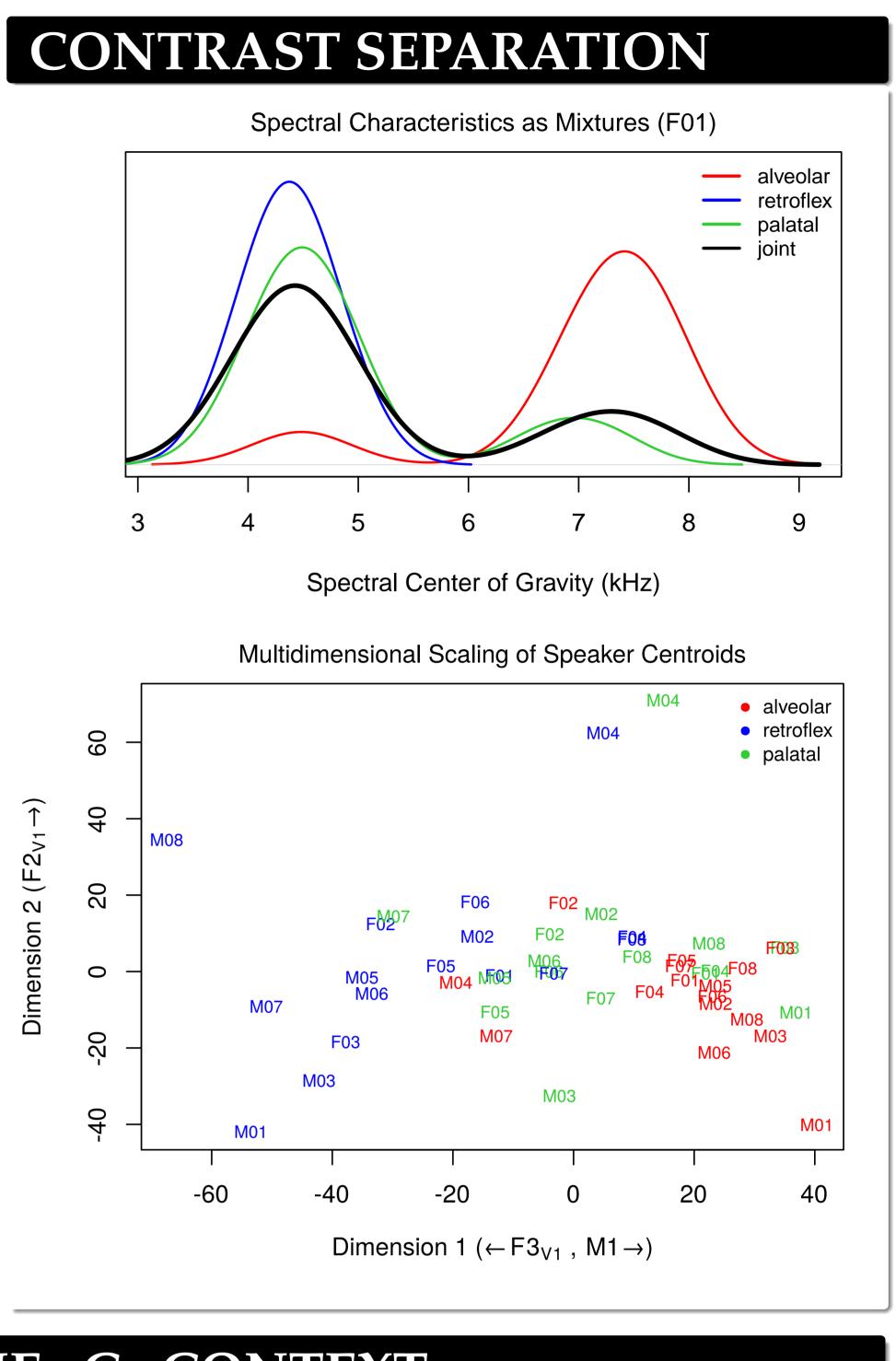
Model: Linear mixed effects regression with Speaker as random intercept significant omnibus effect of sibilant place

[†]all pairwise differences significant

a conte F3 tran		
et.	pal.	
1.2	2.7	
9.2	30.3	
).1	66.2	

DISCUSSION


- categories than three
- pronunciations in school, they are only able to perceive or produce two
- alveolar alternation
- variability in palatal similarity to alveolars and retroflexes


REFERENCES

¹Krishnamurti, B. (2003); ²Masica, C. P. (1993); ³Sjoberg, A. (1962); ⁴Bhaskararao, P., & Ray, A. (2017); ⁵Maddieson, I., & Precoda, K. (1990); ⁶Żygis, M., & Padgett, J. (2010); ⁷Li, M., & Zhang, J. (2017); ⁸Baker *et al.* (2002)

ACKNOWLEDGEMENTS

Thanks to Indranil Dutta and the Phonetics Laboratory at EFLU, Hyderabad for facilitating the recordings, and to the members of the KU Experimental Research Seminar for their helpful feedback.

The present data, combined with the general sparsity of minimal pairs in the Telugu lexicon,⁸ point toward a sibilant system which is more reliably comprised of two

Notably, following the recording many speakers indicated that while they were taught three distinct • Speakers also have an awareness of which dialects are more or less likely to show the palatal \rightarrow

Further examination of item-specific patterns is needed to account for the lexical