
Chapter 1

Ordinal Outcomes Regression

Abstract
On January 19, 2019, the environment "chapterabstract" was introduced. This was a fre-
quent request from science-department users, whose advisors wanted the chapters to be
more-or-less directly imported from published article markup.

1.1 Introduction

This is my best effort to succinctly explain the theory behind the ordinal logistic regression
model (with apologies to the probit model).
The main takeaway point is supposed to be this:

The same data leads to different estimates from different programs. That happens
because the ordinal model can be written down in several different ways. None of
them are wrong, but they are different, and as a result the user must be cautious.

Estimates obtained from four different programs are offered in Table 1.1. If we line these up
side by side, we see that estimates from one of the routines for R matches Stata (after chop-
ping off the small differences in the decimals), while SAS appears to provide the “wrong sign”
for the first row and the second procedure for R seems to provide the “wrong signs” for the
second and third rows.
None of these are actually wrong, they are all correct given the model they specified. This the
point at which the student may be tempted to give up. Please don’t. I’ve worked very hard to
clear this up in the following sections.

Table 1.1: Ordinal Regression Results
R: polr R: lrm SAS Stata

b̂1 -0.28 -0.28 0.28 -0.28
ζ̂1 -4.24 4.24 -4.24 -4.24
ζ̂2 -2.32 2.32 -2.32 -2.32

1



fi(ei)

ei

Pr(yi = 1) = Pr(ei ≤ b0 + b1Xi)

Pr(ei > b0 + b1Xi)

b0 + b1Xi

Pr(yi = 0) =

Figure 1.1: Dichotomous Outcome Variable

1.2 Extending the Logit Model to deal with Ordinal Dependent Variables

The easiest way to understand regression with ordinal dependent variables is to extend the “cu-
mulative probability interpretation” of the two category model (?).
In the two category model, yi is 1 with probability

F(b0 +b1Xi) =
∫ b0+b1Xi

−∞

f (ei)dei (1.1)

And, of course, the probability that yi is 0 will be 1−F(b0 + b1Xi). The formula F is a “cu-
mulative distribution function” (CDF), it represents the probability that a random variable ei
will be as small or smaller than b0 + b1Xi. The function f is a “probability density function”
(PDF), which represents the probability that ei is equal to some particular value. This is illus-
trated in Figure 1.1. The “probability density function” f is defined from left to right and the
possible outcomes are divided into two sets by the line drawn at ei = b0 +b1Xi. The area under
the curve on the left side is the probability of getting a “yes” (or 1). The area on the right is
the chance of a “no” (0).
Suppose yi can have 3 values, 0, 1, and 2. (Keep in mind that this model can be written down
in several ways. We tackle my favorite first, and then consider the others.) Leave the predic-
tive part of the model (b0 + b1Xi) the same, but we now introduce two new positive constants
(Π0 and Π1) that divide the space. Considering Figure 1.2, it should be easy to see why some
people call these new parameters “thresholds”.
To summarize the effect of these new thresholds, we write down 1 equation for each possible
outcome. My tendency is to write the thresholds as positive values like so:

yi =


2 i f b0 +b1Xi − ei ≥ Π1
1 i f Π0 ≤ b0 +b1Xi − ei < Π1
0 i f b0 +b1Xi − ei < Π0

(1.2)

Note we don’t really need 3 equations. If we have two, say Pr(yi = 0) and Pr(yi = 1), then the
chance of ending up in the other category is 1−Pr(yi = 0)−Pr(yi = 1).
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Figure 1.2: Ordinal Logit

In order to translate this into a model involving the cumulative probability distribution, re-
arrange so that the random variable ei is by itself.

yi =


2 i f ei ≤ b0 +b1Xi −Π1
1 i f b0 +b1Xi −Π1 < ei ≤ b0 +b1Xi −Π0
0 i f b0 +b1Xi −Π0 < ei

(1.3)

As in the dichotomous case, the probabilities of the various outcomes are calculated by use
of cumulative probability. Rearrange 1.2 to convert these into probabilities of the individual
outcomes.

Pr(yi = 2) = Pr(ei ≤ b0 +b1Xi −Π1) = F(b0 +b1Xi −Π1)
Pr(yi = 1) = Pr(b0 +b1Xi −Π1 ≤ ei < b0 +b1Xi −Π0)

= 1−F(b0 +b1Xi −Π0)−F(b0 +b1Xi −Π1)
Pr(yi = 0) = Pr(b0 +b1Xi −Π0 < ei) = 1−F(b0 +b1Xi −Π0)

(1.4)

Note that any one category can be thought of as a “residual” category after the others have
been assigned their shares. The middle category, yi = 1, is left over if we “chop off” the out-
comes on the left (yi = 2) and the right (yi = 0). We are left with the chance of ending up in
the middle. In that sense, the probability of landing in the middle is equal to 1.0 minus the
chance of a very small amount of random noise (ei ≤ b0 +b1Xi −Π1) and minus the chance of
having a very large random noise (b0 + b1Xi −Π0 < ei). Similarly, the chances of being in the
top category equal 1 minus the chance of ending up in the lower categories.
Any probability distribution can be used for the random error ei, the two most common being
Logistic and Normal. If the Normal is chosen, it is customary to call this a “probit” model and
the symbol for the cumulative distribution is usually Φ().
What if your dependent variable have more categories? Add more thresholds! See the example
in Figure 1.3.
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Figure 1.3: Ordinal Model with More Categories
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