
Introduction

R is an open source software environment for statistical computing, and one of its primary
benefits is the vast number of available packages developed for advanced statistics and data
analysis. Within the R programming environment there are several packages designed for

latent variable analysis (including OpenMx, mirt, lava, and sem), but in this guide we will be

looking at a relatively new and user-friendly package called lavaan, throughout which we
assume a basic knowledge of R. KUant Guide #20 is devoted specifically to R beginners.

We illustrate the most salient features of lavaan in this guide. The developer of lavaan also
provides a helpful, readable user’s guide and more technical official software documentation
(see References).

First Steps

If you have not yet installed R, follow this link: http://cran.r-project.org/

Using installation defaults should generally be sufficient for most users.

To install lavaan, open R and type the following command at the prompt:

> install.packages("lavaan")

Select a CRAN mirror when prompted (any in the US should be sufficient). Load the package
by typing the following:

> library(lavaan)

You should see a warning telling you that it is beta software, which you should heed. It is
reliable, but still beta.

Getting Help with lavaan

• Examples are provided on the web site: http://lavaan.ugent.be/

• Examples are also available in the creator’s paper about lavaan, published in the
Journal of Statistical Software (please cite this paper if you publish results analyzed
using lavaan):

http://www.jstatsoft.org/v48/i02

• Find help files in R by typing on the command line: help(package = lavaan)

 KUant Guides
SEM with Lavaan 0.5-15

A guide introducing the R package lavaan for structural

equation modeling.

 Miller, P., Jorgensen, T. D., & Pornprasertmanit, S. (2013)
 www.crmda.ku.edu

Guide No.

KUANT 021.3

http://cran.r-project.org/
http://lavaan.ugent.be/
http://www.jstatsoft.org/v48/i02

A Simple Example

First, we need to read the data into R. In this case, the data file ("posneg.dat") is a full

data file with 6 variables.

Assuming that the data file is in the same working directory as R, we can use the following

commands to store the data matrix in the object "dat" as a data frame, name the variables,

and then verify the results.

> myData <- read.table("posneg.dat", header = FALSE)

> names(dat) <- c("great", "cheerful", "happy", "sad", "down",

"unhappy")

> head(myData)

 great cheerful happy sad down unhappy

1 3.5000 4.0000 4.0000 4.0000 4.0 4

2 2.5000 3.1667 3.0000 3.2123 2.0 3

3 1.8333 2.0000 1.5000 3.0000 3.0 2

4 2.7714 3.0602 2.3639 3.1337 4.0 3

5 3.1667 3.3333 2.8333 3.5000 4.0 4

6 2.3333 2.8333 2.3333 3.0000 2.5 3

As in other syntax guides, we will use the following model as an example. Positive and
negative affect are each latent constructs and are each indicated by three latent variables.

We make the lavaan model statement and store it in the vector PosModel. Note that the

variable names in the model statement correspond to the variable names in our data frame.

Positive

1

Negative

2

11 21 31 42 52 62

y21

q11
q22 q33 q44 q55 q66

Great

1

Unhappy

6

Down

5

Sad

4

Happy

3

Cheerful

2

1* 1*

y11 y22

> PosModel <- "Positive =~ great + cheerful + happy

Negative =~ sad + down + unhappy "

The "=~" means “is loaded by.” To find the fit of this CFA model, call the lavaan function

cfa() and store the results in a vector. In this example, we standardize the latent variances

to equal 1 in order to identify the model (as opposed to the default, which is to fix the first

loading to equal 1). This is specified in the cfa() argument "std.lv = TRUE".

> Results <- cfa(PosModel, data = myData, std.lv = TRUE)

To examine the results, we will use the function summary()

> summary(Results)

lavaan (0.5-9) converged normally after 43 iterations

 Number of observations 380

 Estimator ML

 Minimum Function Chi-square 10.708

 Degrees of freedom 8

 P-value 0.219

Parameter estimates:

 Information Expected

 Standard Errors Standard

 Estimate Std.err Z-value P(>|z|)

Latent variables:

 Positive =~

 great 0.465 0.021 22.474 0.000

 cheerful 0.492 0.021 23.768 0.000

 happy 0.498 0.022 22.870 0.000

 Negative =~

 sad 0.529 0.039 13.477 0.000

 down 0.579 0.044 13.314 0.000

 unhappy 0.626 0.039 16.232 0.000

Covariances:

 Positive ~~

 Negative 0.507 0.047 10.829 0.000

Variances:

 great 0.049 0.005

 cheerful 0.036 0.005

 happy 0.050 0.005

 sad 0.311 0.030

 down 0.388 0.037

 unhappy 0.200 0.030

 Positive 1.000

 Negative 1.000

To include fit measures and the standardized solution, use the fit and standardized

arguments in the summary function:

> summary(Results, fit = TRUE, standardized = TRUE)

lavaan (0.5-9) converged normally after 43 iterations

 Number of observations 380

 Estimator ML

 Minimum Function Chi-square 10.708

 Degrees of freedom 8

 P-value 0.219

Chi-square test baseline model:

 Minimum Function Chi-square 1416.263

 Degrees of freedom 15

 P-value 0.000

Full model versus baseline model:

 Comparative Fit Index (CFI) 0.998

 Tucker-Lewis Index (TLI) 0.996

Loglikelihood and Information Criteria:

 Loglikelihood user model (H0) -1545.377

 Loglikelihood unrestricted model (H1) -1540.023

 Number of free parameters 13

 Akaike (AIC) 3116.754

 Bayesian (BIC) 3167.976

 Sample-size adjusted Bayesian (BIC) 3126.730

Root Mean Square Error of Approximation:

 RMSEA 0.030

 90 Percent Confidence Interval 0.000 0.071

 P-value RMSEA <= 0.05 0.745

Standardized Root Mean Square Residual:

 SRMR 0.018

(continued...)

In summary, the entire model can be run from raw data in the following four commands:

> myData <- read.table("posneg.dat", header = TRUE)

> PosModel <- 'Positive =~ X1 + X2 + X3

 Negative =~ X7 + X8 + X9'

> Results <- cfa(PosModel, data = myData, std.lv = TRUE)

> summary(Results)

Lavaan Model Syntax

Main Operators

With the above principles of the R programming language established, using lavaan is
straightforward. Structural models are specified with regression-like syntax, like normal R
formulas:

 Y1 ~ X1 + X2 + F1 + F2

The "~" operator represents “is regressed on.” The left hand side represents dependent

variable. The right hand side represents independent variables.

Latent variables are defined using the "=~" operator to represent “is loaded by”:

 F1 =~ X4 + X5 + X6

 F2 =~ X7 + X8 + X9

The left hand side represents latent variable. The right hand side represents manifest
variables.

To express the correlation between two residual variances or two factors, use the "~~"

operator to represent “is correlated with”:

 X4 ~~ X5

The order of variables does not matter for this operator. Users may use "X4 ~~ X5" instead.

Intercepts/means are specified by regressing on 1:

 X1 ~ 1

 F1 ~ 1

To build the model in its entirety, simply put enclose all of these statements in quotes " " and

assign it to an object.

Special parameters (such as indirect effects that are products of regression parameters) are

defined by this operator: ":=" (is defined by). For example, the indirect effect of X to Y via M

is the target parameter. First, labels should be imposed on the regression coefficients from
factor X to factor M and from factor M to factor Y. A label is specified by putting an arbitrary
name with an asterisk in front of an independent variable in a regression specification:

M ~ mx*X

Y ~ ym*M

The labels of the regression coefficients from factor X to factor M and from factor M to factor Y

are mx and ym, respectively. Then, the indirect of X on Y via mediator M can be specified

"ymx" like this:

 ymx := ym*mx

Parameters can be constrained using relational operators: "==" (is equal to), "<" (is less

than), and ">" (is greater than).

Free or Fixed Parameters

lavaan provides some defaults option that, sometimes, users may be not aware of it. For
example, the first manifest variable loading is fixed as 1 by default. Therefore, users need to
know how to fix or free parameters. To fix a parameter, users simply put a number with an
asterisk in front of a target variable (use texts for labels, but numbers for actual parameter
values):

> PosModel <- 'Positive =~ 1*V1 + V2 + V3

 Negative =~ 1*V4 + V5 + V6'

To free a parameter, users simply put an NA with an asterisk in front of a target variable:

> PosModel <- 'Positive =~ 1*V1 + NA*V2 + NA*V3

 Negative =~ 1*V4 + NA*V5 + NA*V6 '

For example, a fixed-factor-approach syntax can be specified:

> PosModel <- 'Positive =~ NA*V1 + NA*V2 + NA*V3

 Negative =~ NA*V4 + NA*V5 + NA*V6

Positive ~~ 1*Positive

Negative ~~ 1*Negative

V1 + V2 + V3 + V4 + V5 + V6 ~ NA*1

Positive + Negative ~ 0*1 '

Note that V1 + V2 + V3 + V4 + V5 + V6 ~ NA*1 is a shortcut for freeing six

measurement intercepts at once. Users may specify the intercepts one-by-one.

lavaan actually provides some functions to automatically set the default as a fixed-factor

approach: the "std.lv = TRUE" argument of the cfa function as shown above. The syntax

approach is the most flexible approach to specify models.

Equality Constraints

Equality constraints can be done in many ways. The easiest way is to specify a label on each
parameter estimates. The label can be attached to a target parameter by adding a label with
an asterisk in front of a variable name of target parameter in the syntax:

> PosModel <- 'Positive =~ V1 + Lambda1*V2 + Lambda1*V3

 Negative =~ V4 + V5 + V6 '

The variables with the same labels represent equally constrained parameters. In this case, the
factor loading from the “Positive” factor on Variables 2 and 3 are equally constrained. Users
may fix/free and label parameters simultaneously by specify the target parameter one more
time:

> PosModel <- 'Positive =~ NA*V1 + eq1*V1 + V2 + eq1*V3

 Negative =~ V4 + V5 + V6 '

The factor loading from the “Positive” factor on Variable 1 is free and is equal to the factor
loading from the “Positive” factor on Variable 3.

Multiple Groups

In multiple-group models, researchers may use the concatenate function, c(), to specify

fixed/free parameters or labels in different groups:

> PosModel <- 'Positive =~ V1 + c(eq1, eq1)*V2 + c(eq1, eq1)*V3

 Negative =~ c(1, 1)*V4 + c(0.8, 1.5)*V5 + c(eq2, eq2)*V6 '

If the labels are the same across groups, the parameters are constrained to be equal across
groups. In this example, factor loadings are fixed or constrained as follows:

1. Factor loadings from the “Positive” factor on Variable 2 and 3 in both groups are all
equally constrained.

2. Factor loadings from the “Negative” factor on Variable 4 are fixed as 1 in both groups.
3. Factor loadings from the “Negative” factor on Variable 5 in Groups 1 and 2 are fixed as

0.8 and 1.5, respectively.
4. Factor loadings from the “Negative” factor on Variable 6 are equal across groups.

Categorical Indicators

Constructs defined by indicators which are measured with ordinal categories (e.g., Likert-scale

responses) can be estimated appropriately if the variables are recognized as ordered by R:

> myData <-

read.table("http://www.statmodel.com/usersguide/chap5/ex5.16.dat")

names(myData) <- c("u1","u2","u3","u4","u5","u6","x1","x2","x3","g")

myData$u1 <- ordered(myData$u1)

myData$u2 <- ordered(myData$u2)

myData$u3 <- ordered(myData$u3)

myData$u4 <- ordered(myData$u4)

myData$u5 <- ordered(myData$u5)

myData$u6 <- ordered(myData$u6)

Ordinal factors are defined by indicators using the same syntax as for continuous indicators.
Ordinal factors do not have estimated means/intercepts, but rather thresholds between

categories, which are defined with the vertical bar (or “pike”, | , typically the same key as

Shift+backslash, \). Thresholds are automatically labeled sequentially (e.g., for a 4-category

variable "v1", thresholds would be "v1 | t1", "v1 | t2", and "v1 | t3"). Let’s start

with running an example with single group. u1 through u6 are binary indicators. If all

thresholds in a variable are freely estimated, the latent scale for this variable must be fixed to 1
in both groups in order for the model to be identified, using a special operator for ordinal

variables: "~*~". The fixed latent scale variances as 1 are implemented in lavaan by default.

> model <- ' f1 =~ u1 + u2 + u3

f2 =~ u4 + u5 + u6

mimic model with exogenous predictors

f1 + f2 ~ x1 + x2 + x3

estimating thresholds for all items

u1 | t1

u2 | t1

u3 | t1

u4 | t1

u5 | t1

u6 | t1

fix the latent scale of u3 as 1, which is a default

u3 ~*~ 1*u3 '

> fit <- cfa(model, data = myData, group = "g", group.equal =

c("loadings", "thresholds"))

> summary(fit)

Note that any text to the right of pound sign, #, is ignored in lavaan syntax, just as it is in any

other R syntax. Users can use it to make a comment within a lavaan syntax object.

The model syntax below (adapted from an example in Ch 5 of the Mplus User Guide) is an
example of multiple-group model with categorical variables. The loadings and thresholds are

both constrained to equality across groups “g”, allowing the scale of the ordinal indicators to be

freely estimated in the second group. Only the loading and threshold of the third indicator u3

are freely estimated in both groups (u3|t1) using different labels for the thresholds (u3 |

c(u3a, u3b)*t1) and loadings (f1 =~ c(Lambda3a, Lambda3b)*u3). Because the

threshold is freely estimated in each group, the scale for this variable must be fixed to 1 in both
groups in order for the model to be identified, using a special operator for ordinal variables:

"~*~".

> modelg <- ' f1 =~ u1 + u2 + c(Lambda3a, Lambda3b)*u3

f2 =~ u4 + u5 + u6

mimic

f1 + f2 ~ x1 + x2 + x3

equal thresholds, but free u3|1 in second group

u3 | c(u3a, u3b)*t1

fix scale of u3* to 1 in second group

u3 ~*~ c(1, 1)*u3 '

> fitg <- cfa(modelg, data = myData, group = "g", group.equal =

c("loadings", "thresholds"))

> summary(fitg)

Fitting a Model

The cfa() function has been introduced to fit a confirmatory factor analysis. There are two

more useful functions to fit models: growth() for latent curve model and sem() for structural

equation modeling. Here are some useful arguments of these functions:

 model: The lavaan syntax

 data: The target data to be used

 sample.mean: The vector of sample means (if the data argument is not used)

 sample.cov: The covariance matrix (if the data argument is not used)

 sample.nobs: The number of observations (if the data argument is not used)

 group The variable name of grouping variable

 group.equal: The set of parameters that are equally constrained. For example,

 "loadings" For factor loadings

 "intercepts" For measurement intercepts

 "residuals" and "residual.covariances" For measurement residual

variances or covariances, respectively

 "thresholds" For thresholds of categorical indicators

 "regressions" For latent regressions

 "means" For latent variable means

 "lv.variances" For latent variable variances (or residual variances)

 "lv.covariances" For latent variable covariances (or correlations if all latent

variable variances are 1)

 group.partial: When sets of parameters are constrained to be equal across

groups, this is a list of parameters that should not be constrained to equality. For

example if group.equal = "loadings" is used to constrain all 5 loadings across

groups to equality, but you want the 4th and 5th loadings to be freely estimated across

groups, specify group.partial = c("f1=~x4", "f1=~x5")

 estimator: The method of estimation. "ML" is the default, which is a maximum

likelihood. "MLR" or "MLM" is the scaled statistics for nonnormal data adjustment.

"WLSMV" is used when there are categorical indicators. Ex: estimator = "MLR"

 se, test, bootstrap: Along with estimator, these arguments can be used for

more robust tests of hypotheses in the presence of nonnormal data. See the help page

of the cfa function for details.

 std.lv: If TRUE, the fixed-factor method is used for scale identification. If FALSE, the

manifest variable method is used for scale identification. Ex: std.lv = FALSE

 ordered: List the names of categorical variables: Ex: ordered = c("V1", "V2")

 missing: The method to handle missing data. IMPORTANTLY, the lavaan default is

listwise deletion. The "fiml" estimator should be used for full-information maximum

likelihood. Ex: missing = "fiml"

 Note: Using lavaan with multiple-imputed data is facilitated using the runMI()

function, available in the R package semTools.

 control: Pass options to the nlminb() optimizer. Ex: set convergence criterion or

the number of iterations: control = list(iter.max = 10) # see ?cfa for
details

Extract Outputs

The output is saved in a lavaan object. In the previous example, the Results is a lavaan

object. As shown above, the summary() function can be used to summarize the results.

Here are the useful options of the summary() function:

 standardized: If TRUE, standardized estimates are provided. Ex:
summary(Results, standardized = TRUE)

 fit: If TRUE, fit indices are provided. Ex: summary(Results, fit = TRUE)

 modindices: If TRUE, modification indices are provided. Ex: summary(Results,
modindices = TRUE)

 rsquare: If TRUE, R-squared are provided. Ex: summary(Results, fit = TRUE,
rsquare = TRUE)

Other functions that can be used for the lavaan object:

 inspect: To inspect the lavaan object. Ex: inspect(Results, "coef"). This

code is used to inspect parameter estimates. Here are other useful parts to be
inspected:

o "free" Free parameters

o "sampstat" The statistics of observed variables

o "coef" Parameter estimates

o "se" Standard errors

o "std" Standardized coefficients

o "r2" R-squared

o "mi" Modification indices

o "fit" Fit indices

 predict: To provide the factor scores. Ex: predict(Results)

 residuals: To provide differences between observed sample covariances and those

implied by the model. Ex: resid(Results)

 anova: To provide a model comparison statistics between two nested models. Ex:
anova(lessConstrainedModel, moreConstrainedModel)

 parameterEstimates: Another way to provide the summary of the model. The

fraction missing information is provided using this function, as are p values for
hypothesis tests using bootstrapped SEs or for special parameters defined using the

":=" operator. Ex: parameterEstimates(Results)

Notable Limitations

lavaan is still beta software, and does not yet support everything other dedicated software
packages for SEM do. This includes support for Bayesian analyses, discrete latent variables
(e.g., for latent profile or latent class analyses), item-response (IRT) models, and
hierarchical/multilevel data sets (although some options are available using the package

lavaan.survey).

References

R Development Core Team. (2012). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of

Statistical Software, 48(2), 1–36. Retrieved from http://www.jstatsoft.org/v48/i02/

User’s Guide: http://users.ugent.be/~yrosseel/lavaan/lavaanIntroduction.pdf
Official Reference: http://cran.r-project.org/web/packages/lavaan/lavaan.pdf

http://www.r-project.org/
http://www.jstatsoft.org/v48/i02/
http://users.ugent.be/~yrosseel/lavaan/lavaanIntroduction.pdf
http://cran.r-project.org/web/packages/lavaan/lavaan.pdf

