
Page 1 of 13

This guide is designed to introduce brand new users of R to its basic functionality. It will cover
installation and loading of packages; importing data; working with vectors, data frames, and
functions; and summarizing data in tables and figures. It will not cover statistical analyses or
more advanced topics such as simulating data, creating user-defined functions, or using

control-flow operators such as for loops or if logic.

Introduction to R

R is an open source software environment for statistical computing. One of the primary
advantages to using R for statistical computing is that it is highly extensible—not only can you
create your own functions and packages, but the R community as a whole builds and
maintains thousands of such packages. For example, there are several packages designed for
latent variable analysis including lavaan, OpenMx, ltm, and sem.

Another primary advantage for using R is that it is a programming language designed for
statistical analysis. Using a programming language allows for very low-level customization (the
analytical process tends to feel “hands on”) but can also increase the learning curve. In this
guide we will examine the very basics of the R language, which are necessary to use the many
packages for data analysis in R.

First Steps

If you have not yet installed R, find it at this link: http://cran.r-project.org/

Using installation defaults should generally be sufficient for most users.

To install packages (for instance, lavaan), open R and type this at the command prompt:

> install.packages(“lavaan”)

Select a CRAN mirror such as University of Kansas when prompted (any in the same continent
as your computer should be sufficient). Load the package by typing the following:

 > library(lavaan)

The R Programming Language

Typically, it is best to learn programming languages by actually programming. So as you read
through this guide, do the examples and play around by trying different things on your own.
(Note: Type out the examples yourself, as copy/pasting from a PDF to the R terminal may not
result in the expected plain-text format of certain characters, such as quotation marks.)

 KUANT Guides
Introduction to R

A guide for the absolute beginner: R installation,

programming, and data handling.

Miller, P., & Jorgensen, T. D. (2013)

 Harr, K.S. & Geldhof, G.J. (2009)

crmda.ku.edu

Guide No.

KUANT 20.2

http://cran.r-project.org/

Page 2 of 13

Have some fun! You will find cited at the end of the guide several resources I’ve found helpful
(including a reference card). The following links are also basic introductions, but more
thorough and extensive than what is provided here:

http://scc.stat.ucla.edu/page_attachments/0000/0141/10S-basicR.pdf
http://www.stat.auckland.ac.nz/~stat782/downloads/01-Basics.pdf

The R Environment

R is primarily an interpreted language, which means that syntax is executed and run through
an interpreter (in this case the R console window) rather than compiled into machine code.
Because you work in R by simply typing in commands and having them evaluated, it is best to
use a text editor to save your commands so you can run, review, and change your code as
necessary.

The RGui interface contains a basic text editor which you can open by selecting “New Script”
under the “File” menu. From the text editor, you can evaluate lines of your code by hitting Ctrl-
R.

The R Interpreter

In interpreted languages, what you type in at the prompt gets evaluated as a computation.
When starting R, you are greeted with some text describing the version information, citation
instructions, and instructions for help. Below that is the prompt: “>”

 >

Expressions typed for computation at the prompt get evaluated immediately. To see this, type

the simple mathematical expression 2 + 3 into the interpreter:

 > 2 + 3

 [1] 5

The result returned is 5. In this guide, expressions typed by the user will be in italics, while the
result returned by evaluating the expression will be un-italicized. Anything following the pound
symbol (or hash mark) “#” is a comment and is not evaluated.

R Programming Fundamentals

Vectors
Programming languages are built around data, and doing operations on that data. In many
programming languages, data is stored in variables—just think of them as boxes. Each box
has a name, and you access the contents of the box by referencing its name. In R, the basic
data storage device is a vector, which can contain any number of values. You can think of a
vector as a stack of boxes, each of which you can access by referencing its name.

http://scc.stat.ucla.edu/page_attachments/0000/0141/10S-basicR.pdf
http://www.stat.auckland.ac.nz/~stat782/downloads/01-Basics.pdf

Page 3 of 13

A vector can be named any sequence of characters. To assign to (store things in) a vector,

you use the assignment key “<-”, which is obviously 2 characters: “<” and “-“ (less than and

dash).

The following are examples of creating vectors and storing things in them. Access the value
you stored by typing the name of the vector you created into the interpreter.

 > A <- 3

 > A

 [1] 3

 > B12 <- “a string”
> B12

 [1] “a string”

Vectors can also store lists of values.

 > x <- c(1, 2, 3)
 > x

 [1] 1 2 3

 > y <- c(“one”, ”two”, ”three”)

 > y

 [1] “one” “two” “three”

You can access individual items in lists using indexing.

 > x[1]
 [1] 1

 > y[2]

 [1] “two”

Data Frames
The second primary way you store data in R is the data frame, which is an object with rows
and columns (a list of vectors). The rows are observations, the columns are variables. You
can build a data frame by first creating several individual vectors and then combining them. In
the following example, we create three different vectors of lists and then combine them into a
data frame.

 > x <- 1:3 # Creates a vector of integers from n1:n2, count by 1

 > y <- seq(from = 4, to = 6, by = 1) # another vector from 4:6

 > z <- rep(7, times = 3) # a vector of 3 sevens

 > grp <- c(0, 1, NA) # “NA” indicates a missing value

 > dat <- data.frame(x, y, z, grp) # put each vector in a column

 > dat

 x y z grp

1 1 4 7 0

2 2 5 7 1

3 3 6 7 NA

Page 4 of 13

If each row is an observation and each column a variable, then observation 1 has a score of 1
on x, 4 on y, and 7 on z Later we will create data frames by reading a file, and describe how to
do some basic operations on them.

Functions
In R, functions are the way you get work done. Often, they take a value, do something to it,

and return a new value. They have the general form function_name(argument(s)). R

has many built in functions:

 > range(x) # range (min and max) of values in a vector

 [1] 1 3

 > sum(x) # sum of all values in a vector

 [1] 6

 > prod(x) # product of all values in one vector

 [1] 6

As you saw, the function applied itself to all the values in the vector. This also works for data
frames:

 > sum(dat)

 [1] NA

The sum() function returns a missing value (NA) because there are missing values in the data

frame. To remove those missing values and calculate the sum of all observed values, include

the na.rm (NA-remove) argument:

 > sum(dat, na.rm = TRUE)

 [1] 43

Functions typically have a large number of arguments that allow you to specify in more detail
how the function runs, and what output it produces. To see these options for a function, type a
question mark in front of the function name:

 > ?mean

Setting the Working Directory
Using R requires you to think in a fundamentally different way about working with your files.
Instead of opening a script or reading in data by browsing to that file, you can actually tell R to
work within that directory itself. Essentially, you can think about it as moving R to your files
instead of moving your files to R. To do this, first find your current working directory.

> getwd() # notice backslashes in Windows are changed to forward
[1] “C:/Users/Username/Documents”

Then set your new working directory (say, where you have your data files & R scripts), e.g.:

Page 5 of 13

> setwd(“C:/Users/Username/Documents/My_Project”)
> setwd(“E:/SEM/Project_1”) # on Windows, must change “\” to “/”

Now you can open files by name in this directory rather than by file path. To show a list of
filenames in the current directory you can use the following function:

> dir()

Reading Data into R
To read in data, you will use one of the following functions. Each takes a filename as one of
the arguments, and returns a data frame object.

 > dat <- read.table(“file”) # Reads any file in table format

 > PosNeg <- read.csv(“file”, header = TRUE) # Reads a *.csv file

If you don’t have a header (i.e., no variable names), set header = FALSE. The read.csv()

function (CSV stands for “comma-separated values) is simply the read.table() function

with the argument sep = “,” instead of the default sep = “ ” (a space). If your data is

separated by a tab instead of a space, set sep = “\t” or use the read.delim() function:

 > myData <- read.delim(“filename”)

All these functions have important options, including sep, quote, row.names,

na.strings, and skip. Particularly important is the option na.strings, which tells R

what to interpret missing values as. For instance, if the value −999 means it is a missing

value, specify the argument na.strings = “-999”. See how to use these options by typing

 > ?read.table

For ease of use, stick to text files or *.csv, and use excel to convert file formats when
necessary. Once you have read in your data, you can work with your data frame with some of
the following functions/methods. This is an important step that helps you verify that the data
were read in correctly.

 > names(dat) # or colnames(dat) for names of variables

 > head(dat, 10) # view the first 10 lines of the data.frame

 > summary(dat) # a statistical summary of each variable

It may be necessary or desirable to change the default names of the variables in the data
frame after it has been read in. To do this, first create a vector of variable names –

 > varnames <- c(“name1”,”name2”,”name3”,”name4”,”name5”,”name6”)

Then assign this vector of variable names to the variable names of the data frame. To do this,
we get the original column names, and assign to it the new vector we created.

Page 6 of 13

 > colnames(myData) <- varnames

 > head(myData)

 name1 name2 name3 name4 name5 name6

1.00000 0.61251 0.61733 -0.00204 -0.17237 -0.18014

0.61251 1.00000 0.65757 -0.11445 -0.27750 -0.25120

Summarizing Data in Tables and Figures
To plot univariate or bivariate categorical data, you can print a table or frequencies/counts.

Just specify the two vectors you want to describe. Here is a univariate table of a variable “u1”

with 3 categories (coded 0, 1, and 2):

 > myData <- read.table(

"http://www.statmodel.com/usersguide/chap3/ex3.12.dat")

> names(myData) <- c("u1","u2","u3","x1","x2","x3")

> table(myData$u1)

 0 1 2

199 113 188

Here is a bivariate table of variables “u1” & “u2” with 3 and 2 categories, respectively:

> table(myData$u1, myData$u2)

 0 1

 0 161 38

 1 61 52

 2 42 146

To add marginal counts to the table, save the table as an object, then use the addmargins()

function:

> myTable <- table(myData$u1, myData$u2)

> addmargins(myTable)

 0 1 Sum

 0 161 38 199

 1 61 52 113

 2 42 146 188

 Sum 264 236 500

You can also see percentages instead of counts by using the prop.table() function:

> prop.table(myTable)

 0 1

Page 7 of 13

 0 0.322 0.076

 1 0.122 0.104

 2 0.084 0.292

To specify row percentages or column percentages, specify the first or second dimension of
the table:

> prop.table(myTable, 1)

 0 1

 0 0.8090452 0.1909548

 1 0.5398230 0.4601770

 2 0.2234043 0.7765957

> prop.table(myTable, 2)

 0 1

 0 0.6098485 0.1610169

 1 0.2310606 0.2203390

 2 0.1590909 0.6186441

The aggregate() function can be used to make a table of continuous measures (e.g., mean

or standard deviation) in each level of one or more categorical variables:

> aggregate(x1 ~ u1, data = myData, mean)

 u1 x1

1 0 -0.70744944

2 1 0.03680895

3 2 0.84773632

> aggregate(x1 ~ u1 + u2, data = myData, sd)

 u1 u2 x1

1 0 0 0.8881932

2 1 0 0.6171643

3 2 0 0.6392670

4 0 1 0.7372694

5 1 1 0.6219115

6 2 1 0.8917143

A corresponding boxplot can be made using boxplot() function:

> boxplot(x1 ~ u1 + u2, data = myData)

Page 8 of 13

An appropriate univariate plot of a continuous variable is a histogram:

> hist(myData$x1, breaks = 30) # “breaks = __” is optional

A bivariate relationship between two continuous variables (e.g., a correlation) can be
represented with a scatterplot:

> plot(x2 ~ x1, data = myData, main = “My Scatterplot”)

Page 9 of 13

Note: A title can be added to any graph with main, and labels can be added to the x and y

axes using xlab and ylab. See ?plot for more options.

Distinguishing Data Frames and Matrices: Choosing Subsets
Matrices are like vectors, but they are 2-dimensional. (It is also possible to have 3 or more
dimensional arrays in R.) Like a vector, every element in a matrix must be of the same type
(e.g., all numeric or all characters). A data frame, on the other hand, is a merely list of vectors,
so each column/vector of a data frame can be a different type (one numeric, one character,
etc.). Because all vectors in a data frame must have the same length, it resembles a matrix in
that it is square (N rows by P columns, where each column in a data frame is really a separate
vector).

In both matrices and data frames, you can access specific rows and columns using brackets
after the name of the object, separating row numbers/names and column numbers/names with

a comma: myData[row, col]. Reading the first four rows of data is the same as using the

head() function:

> head(myData, 4)

 u1 u2 u3 x1 x2 x3

1 1 0 2 0.573051 -0.175230 -1.339954

2 1 1 2 -0.577052 0.425472 0.179867

3 0 0 0 -0.694153 -0.766538 0.455033

4 0 0 0 -0.817974 -1.559255 0.579605

> myData[1:4,]

 u1 u2 u3 x1 x2 x3

1 1 0 2 0.573051 -0.175230 -1.339954

2 1 1 2 -0.577052 0.425472 0.179867

3 0 0 0 -0.694153 -0.766538 0.455033

4 0 0 0 -0.817974 -1.559255 0.579605

Page 10 of 13

Notice that leaving the columns space empty means that you select all columns (likewise if you
leave the rows space empty). You can select rows or columns by specifying the appropriate
numbers or the corresponding names:

> myData[1:4, c(1:3, 6)]

 u1 u2 u3 x3

1 1 0 2 -1.339954

2 1 1 2 0.179867

3 0 0 0 0.455033

4 0 0 0 0.579605

> myData[1:4, c("u1", "u2", "u3", "x3")]

 u1 u2 u3 x3

1 1 0 2 -1.339954

2 1 1 2 0.179867

3 0 0 0 0.455033

4 0 0 0 0.579605

Data frames (but not matrices) are also lists (i.e., a list of column vectors), so their columns
can also be selected using the dollar sign after the object name. (Note that only one column at
a time can be specified this way)

> head(myData$x1)

[1] 0.573051 -0.577052 -0.694153 -0.817974 0.463916 -0.096545

Logical vectors can be used to specify rows that match certain criteria. Logical vectors consist
of values that are either TRUE or FALSE (in all caps). For example, to see whether each

value of “x1” is positive:

> myData$x1 >= 0

 [1] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE

 [11] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

 ...

[491] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE

To compare two values, the possible commands are

 == equal

 != not equal

 > greater than

 < less than

 >= greater than or equal to

 <= less than or equal to

 A %in% B test whether each element in vector A is one of the elements in vector B

Page 11 of 13

We can conduct logical tests using Boolean operators:

 & and (T & T = T ; T & F = F ; F & T = F ; F & F = F)

 | or (T | T = T ; T | F = T ; F | T = T ; F | F = F)

 ! not (!T = F ; !F = T)

You can place a vector of logical values corresponding to some criterion (say, only levels 0
and 1 of the variable “u1”) in the rows bracket, and for every Nth element that is TRUE, that Nth
row will be selected:

> # the 5th, 7th, 8th, and 10th rows are FALSE

> myData$u1 %in% c(0, 1)

 [1] TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE ...

> # the 5th, 7th, 8th, and 10th rows are omitted

> myData[myData$u1 %in% c(0, 1),]

 u1 u2 u3 x1 x2 x3

1 1 0 2 0.573051 -0.175230 -1.339954

2 1 1 2 -0.577052 0.425472 0.179867

3 0 0 0 -0.694153 -0.766538 0.455033

4 0 0 0 -0.817974 -1.559255 0.579605

6 0 0 1 -0.096545 -0.352276 0.253673

9 0 0 0 0.761720 -1.901134 -2.223851

11 1 1 0 -0.295120 0.881524 0.966334

...

Add the additional condition that values of “x1” are positive:

> myRows <- myData$u1 %in% c(0, 1) & myData$x1 >= 0

> myData[myRows,]

 u1 u2 u3 x1 x2 x3

1 1 0 2 0.573051 -0.175230 -1.339954

9 0 0 0 0.761720 -1.901134 -2.223851

21 0 0 2 0.446963 0.080041 -0.838566

30 1 0 3 0.361164 0.628857 -0.597038

List of Functions/Operators

Name Description Example Usage
install.packages() Installs packages install.packages("packageName")

library() Loads packages library(packageName)

c()

list()
Builds a vector
Builds a list

x <- c(1, 2, 3)

y <- list(1:3, 1, 2, 3)

data.frame() Builds data frame from
variables/vectors

myData <- data.frame(x, y, z)

Page 12 of 13

: Creates a vector with
values from x : y

x <- 1:3

[1] 1 2 3

range()

Returns the min and
max elements in a
vector

range(x)

[1] 1 3

sum()

Calculates the sum of
elements in a vector

sum(x)

[1] 6

mean() Calculates the mean of
the elements in a
vector

mean(x)

[1] 2

prod()

Calculates the product
of elements in a vector

prod(x)

[1] 6

cor()

Calculates correlations
of 2 vectors or all data

cor(x, y) # two vectors

cor(myData) # all variables

getwd() Returns the current
working directory

getwd()

“C:/User/Specific/Path”

setwd() Sets the current
working directory

setwd(“c:/mypath/data”)

dir()

Returns files in the
current working
directory

dir()

? Launches the
documentation for a
function

?mean

read.table()

read.csv()

read.delim()

Read data from files
(in or relative to the
current working
directory)

myData <- read.table(“x.dat”)

myData <- read.csv(“x.csv”)

myData <- read.delim(“x.dat”)

names()

colnames()
Returns the names of
variables in a data
frame

names(myData)

colnames(myData)

colnames()

Can also assign the
column names

newNames <- c(“x1”,“x2”,“y”)

colnames(myData) <- newNames

head()

tail()
Returns the first or last
N (e.g., 6 or 10) rows
in a data frame

head(myData, n = 10)

tail(myData, 6)

summary()

aggregate()
Calculates summary
statistics for variables
in a data frame

summary(data)

aggregate(y ~ group, data =

myData, mean)

Relational

Operators

comparison of values
in vectors

x < y x > y

x <= y x >= y

x == y x != y

x %in% y

Binary Arithmetic

Operators
Perform arithmetic on
numeric

x + y x - y

x * y x / y

x ^ y OR x**y (power)

Page 13 of 13

x %% y (modulo)

x %/% y (integer division)

Logical Operators Boolean tests of logical
values

!x

x & y

x | y

Extractors

Extract elements of a
matrix or a data frame

x[i] (for 1-dimensional vectors)

x[i, j]

x$j (only for data.frames)

Plot Functions

Create figures plot(y ~ x)

hist(y)

boxplot(y ~ x)

Frequency and

Contingency Tables

View tables of
counts/percentages of
categorical variable(s)

table(x)

addmargins(table(x))

prop.table(table(x), 1:2)

References

Crawley, M. J. (2007). The R Book. West Sussex, England: John Wiley & Sons, Ltd.

Hornick, K. (2009). The R FAQ. Retrieved from http://CRAN.R-project.org/doc/FAQ/R-
FAQ.html

 R Development Core Team (2009). R: A language and environment for
 statistical computing. R Foundation for Statistical Computing,
 Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Short, T. (2004, 11 07). R Reference Card. Retrieved 07 2010, from http://cran.r-
project.org/doc/contrib/Short-refcard.pdf

http://cran.r-project.org/doc/FAQ/R-FAQ.html
http://cran.r-project.org/doc/FAQ/R-FAQ.html

