Power Analysis

Terrence Jorgensen, Ben Kite, Paul Johnson ${ }^{1}$

${ }^{1}$ Center for Research Methods and Data Analysis

2018
~ $\begin{aligned} & \text { CENTER FOR } \\ & \text { RESEARCH METHODS } \\ & \text { \& DATA ANALYSIS }\end{aligned}$

Outline

(1) Power Framework

- Hypothesis Testing
- Motivation
- Effect Sizes
(2) Cookbook answers
(3) Monte Carlo Power
- Worked Example 1
- Worked Example 2

4 Conclusions

Recall Hypothesis Testing?

- This is mostly about using R (R Core Team, 2017) for power analysis

Outline

(1) Power Framework

- Hypothesis Testing
- Motivation
- Effect Sizes

2 Cookbook answers
(3) Monte Carlo Power

- Worked Example 1
- Worked Example 2

Recall Hypothesis Testing?

- Null Hypothesis Significance Testing (NHST) is a common application in social science
- Frame research hypothesis as
- a "null" hypothesis $\left(H_{0}\right)$ that is assumed true, and is to be rejected, in favor of
- the "alternative" hypothesis $\left(H_{1}\right)$
- Design study (collect data) to test H_{0}
- Logic: Reject H_{0} if data results are unexpected if H_{0} were true
- If you fail to reject H_{0}, that means H_{0} is a plausible explanation for the observed data

Estimate of θ is way out there. Or not

Exciting! New! Different

Just what we expected all along

Examples of H_{0}

- Theory

ElectricityDemand $=\beta_{0}+\beta_{1}$ Wealth $+\varepsilon$

- Hypothesis testing
- Null Hypothesis: Effect of wealth on electricity demand is 7

$$
H_{0}: \beta_{1}=7
$$

- The estimate from data is $\hat{\beta}_{1}=10$
- Question: Is 10 far enough from 7 for H_{0} to be rejected?

"nil" versus "null" hypothesis tests

- Previous example had meaningful null based on experience
- Often we assert simply the null value is 0 , as if to say "variable X does not matter"
- That "nil" hypothesis test is useful when comparing groups
- Example: we build a model in which the expected value of depression in humans is μ.
- Another person says our model is incorrect because it ignored gender differences. They suggest instead there should be two parameters, $\mu_{\text {men }}$ and $\mu_{\text {women }}$.
- To decide, we create a new parameter, $\mu_{d i f f}=\mu_{\text {men }}-\mu_{w o m e n}$ and try to estimate it.
- Set the null, $H_{0}: \mu_{\text {diff }}=0$
- Suppose the estimate is $\hat{\mu}_{\text {diff }}=-5$
- Is the observed difference big enough to convince us that H_{0} is untenable?

Type I and Type II error

- Type I error: the null is true, but our procedure rejects it
- Type II error: the null is false, but our procedure does not reject it
- Many statistical procedures are based on the idea that we accept a certain level of risk- α - in making a Type I error, we will incorrectly reject the null hypothesis
- The acceptable risk, α, depends on field of research and context.
- Social science, often 0.05
- Medical science, sometimes 0.01 or 0.001

What is Statistical Power?

- The chance of making a Type II error is often called β. Unlike α, it is not a parameter we set, so much as problem we incur.

> Power The probability of rejecting the null, if it is FALSE - power is $1-\beta$ AKA (1 - chance of Type II error $)$

- Power concept only makes sense in the context of NHST
- Should power analysis conduct before data collection (avoid post hoc)
- Power is affected by 4 factors
- Rejection criterion (α level)
- Sample size (N)
- Variability anticipated from one sample to another
- Effect size (the degree to which H_{0} is false)

Rejection Rates

Power and Type I concepts are based on the idea of a sampling distribution "under the null hypothesis".

- Type I error rates refer to the probability of rejecting a null hypothesis.
- When the null is FALSE, you'd like to reject it as often as possible (have high power).
- The following R code will show how you can visualize that. adjust N, SD, alpha, and ES (one at a time) to see how they affect power

Rejection Rates

- Plot the sampling distribution under the null hypothesis
- This is based on assumption we've scaled the estimator so that its true standard deviation is 1.0 and true center point is 0

```
x.null <- seq(-4, 4, .1)
dx.null <- dnorm(x.null, m = 0, s = 1)
plot(x.null, dx.null, type = "l", lwd = 2, xlim =
    c(-4, 8), yaxt = "n",
    xlab = "Effect Size (e.g., Mean-Difference
        between Groups)", ylab = "")
## If abs(z) > 1.96, reject the null at alpha =
    . }0
abline(v = qnorm(c(.025, . 975)), lwd = 2, lty =
    "dashed")
## Type I errors occur for observations drawn
    outside the dashed lines
```


Rejection Rates ...

Effect Size (e.g., Mean-Difference between Groups)

Discussion

- Type I errors occur for estimates that are outside the dashed lines
- Power is not a meaningful concept when discussing the sampling distribution under the null

Imagine an Alternate Reality

```
x.null <- seq(-4, 4, .1)
dx.null <- dnorm(x.null, m = 0, s = 1)
plot(x.null, dx.null, type = "l", lwd = 2, xlim =
c(-4, 8), yaxt = "n",
    xlab = "Effect Size (e.g., Mean-Difference
        between Groups)", ylab = "")
## If abs(z) > 1.96, reject the null at alpha =
    . }0
abline(v = qnorm(c(.025, . 975)), lwd = 2, lty =
    "dashed")
## Type I errors occur for observations drawn
outside the dashed lines
x.8 <- x.null + 0.80
dx.8 <- dnorm(x.8, m = 0.80)
lines(x.8, dx.8, lwd = 2, col = "red")
```


Imagine an Alternate Reality ...

Effect Size (e.g., Mean-Difference between Groups)

Discussion

- The red line is the "true" sampling distribution, as it occurs under a hypothesized alternative
- The red sampling distribution overlaps with the black (null) distribution to a considerable extent. Under the red, the null is rejected more often, but it is not rejected with extremely high probability.
- Most would say this is an "under-powered study".

In a World Where . . .

Effect sizes are much larger (Gigantic by Cohen's standards)

```
x.null <- seq(-4, 4, .1)
dx.null <- dnorm(x.null, m = 0, s = 1)
plot(x.null, dx.null, type = "l", lwd = 2, xlim =
    c(-4, 8), yaxt = "n",
    xlab = "Effect Size (e.g., Mean-Difference
        between Groups)", ylab = "")
## If abs(z) > 1.96, reject the null at alpha =
    . }0
abline(v = qnorm(c(.025, . 975)), lwd = 2, lty =
    "dashed")
## Type I errors occur for observations drawn
    outside the dashed lines
x.25 <- c(x.null + 2.5)
dx.25 <- dnorm(x.8, m = 2.5, s = 1)
lines(x.25, dx.25, lwd = 2, col = "red")
```


In a World Where

Effect Size (e.g., Mean-Difference between Groups)

Discussion

- If we assume the true effect is massive, then the power analysis will say we have great power.
- Critics will say we are proposing a ridiculously huge difference between groups

In a World Where ...

Standard error of sampling distribution is smaller

```
x.null <- seq(-4, 4, .1)
dx.null <- dnorm(x.null, m = 0, s = 0.5)
plot(x.null, dx.null, type = "l", lwd = 2, xlim =
    c(-4, 8), yaxt = "n",
    xlab = "Effect Size (e.g., Mean-Difference
        between Groups)", ylab = "")
## If abs(z) > 1.96, reject the null at alpha =
    . }0
abline(v = qnorm(c(.025, . 975), m = 0, s = 0.5),
    lwd = 2, lty = "dashed")
## Type I errors occur for observations drawn
    outside the dashed lin
x.1 <- c(x.null + 1)
dx.1 <- dnorm(x.8, m = 1, s = 0.5)
lines(x.1, dx.1, lwd = 2, col = "red")
```


In a World Where

Effect Size (e.g., Mean-Difference between Groups)

Discussion

- Rather than supposing that the effect size gets bigger and bigger (which is frowned upon)
- Best idea is to suppose the standard error can be "shrunken" by using larger and larger sample sizes.

Motivation for Power Analysis

- Required by funding agencies that award research proposals
- How many cases are required to reject your H_{0} ?
- Funding agencies (and dissertation advisors) want to make sure we aren't wasting time and money
- Think backwards
- Imagine a completed study, with data
- MUST write down the actual model to be estimated
- With "made up data" of size N , using carefully chosen population parameters, how often is a "significant" effect detected?
- If not, how large must N be to detect the effect at least as often as a minimum threshold?

Real-Life Research Example

Researcher collects data on $\mathrm{N}=10$ people to find out whether tobacco causes cancer

- Statistical procedure says there's no relationship, so we can't reject H_{0} of no relationship
- Suppose the effect of tobacco on cancer risk is actually present, but we missed it by not collecting enough data (Type II error)
- 80% is a customary threshold for "enough" power
- We should design experiments so power ≥ 0.8
- You wish
- error variance would be small
- Effect must be "large"
- You may need to dial up the sample size otherwise.
- A bigger sample almost always increases chances of finding a "significant" result (i.e., of rejecting H_{0})

Effect Sizes

- "Effect Size" is a term coming from education and psychological research. It is motivated by the desire to reduce limitations of "apples and oranges" comparisons
- "Raw Effect Sizes" are the parameter estimate minus the null hypothesized value
- Regression slopes ($\hat{\beta}-\beta_{\text {null }}$)
- Mean-differences between groups ($\hat{u}_{\text {group } 1}-\hat{\mu}_{\text {group } 2}$)
- Attempts to "standardize" effect sizes across studies usually rely on standard errors, e.g.,
- Divide difference by SE for a t statistic

Effect Sizes

- Effect Size $=$ magnitude of difference between a parameter estimate and its H_{0} value, eg $\hat{\mu}-\mu$
- APA and some funding agencies suggest/require "standardized" effect sizes
- Seeking a number that is generic across contexts
- Supposed to represent "practical" significance, but effects in units of SD or proportions are not always intuitive or useful
- Cohen (1988) pioneered the most frequently used criteria for describing effect sizes and estimating power among social scientists

How do Effect Sizes Matter in Power Analysis?

- Researchers are pressured to change the way they think about the eventual analysis
- Rather than saying "the difference between people from the North and South is 7 units"
- they are expected to say "in standardized effect size units, the difference between people from the North and South is 0.4 units"
- The power calculation has to be scaled into the standardized effect sizes
- Presumably, by putting expected differences into terms of standardized effect sizes, a project reviewer can look at the anticipated difference and say "that is unrealistically large".

Outline

- Power Framework
- Hypothesis Testing
- Motivation
- Effect Sizes
(2) Cookbook answers
(3) Monte Carlo Power
- Worked Example 1
- Worked Example 2

4 Conclusions

G Power

G*Power (http://www.gpower.hhu.de/en.html)

- Cookbook works with regression, correlation, t test, ANOVA, ANCOVA, MANOVA, MANCOVA
- Some generalized linear models (Poisson or logistic regression)
- Contingency tables ($\chi^{2}, \mathrm{McNemar}$'s test)
- Proportion tests
- The user's manual on the website is easy to read (pictures and easy instructions)
- But... G*Power only covers fairly simple cases.
- "Standardized" effect sizes aren't intuitive.
- When you need to know the power simultaneously for several tests/parameters in a single model, then Monte Carlo methods become necessary where analytical methods break down.

Multilevel Models

- PINT (http://www.stats.ox.ac.uk/~~snijders/ multilevel.htm\#progPINT)
- Uses analytical approximation, 2-level models only
- Faster than a simulation, perhaps more analytically meaningful
- MLPowSim (http://www.bristol.ac.uk/cmm/software/mlpowsim)
- Writes an R file with which one can do an MC Power simulation, after
- User runs a program-builder program that quizzes the user about
- design, predictors, parameters
- Has been "beta software" for 7 years, will probably never be "done"
- Only available for Windows

WebPower

WebPower (http://webpower.psychstat.org/wiki/)

- Correlation, regression
- Proportion/Mean differences
- Mediation
- Multilevel and Longitudinal modeling
- Structural equation modeling
- Fairly new, may have bugs

Zhang, Z., \& Yuan, K.-H. (2018). Practical Statistical Power Analysis Using Webpower and R (Eds). Granger, IN: ISDSA Press.

Mplus Software Suite

For SEMs (and more), see CRMDA Guide 12: Monte Carlo Simulation in Mplus Monte Carlo Simulation in Mplus (other guides http://crmda.ku.edu/guides-index)

- Mplus is primarily SEM software (not free), but it can also be used for anything that can be framed as a
- Linear model (t test, ANOVA, regression)
- Generalized linear model (Poisson or logistic regression)
- Multilevel / mixed-effects model
- Just need to know how to write model in Mplus syntax

R package "pwr"

- As usual,
- if you don't have pwr, install with install.packages("pwr").
- Review the help page with help(package $=p w r$)
library (pwr)

Normative standards in pwr

- Cohen offered opinions about realistic norms for small, medium and large effects in various kinds of statistical models.

```
cohen.ES(test = "t", size = "large") # Cohen's D
```

```
Conventional effect size from Cohen (1982)
    test = t
    size = large
effect.size=0.8
```

```
cohen.ES(test = "t", size = "medium")
```

```
Conventional effect size from Cohen (1982)
    test = t
    size = medium
effect.size=0.5
```

cohen.ES(test $=$ "t", size = "small")

Normative standards in pwr ...

```
Conventional effect size from Cohen (1982)
    test = t
    size = small
effect.size = 0.2
```

cohen.ES(test = "r", size = "large") \# Pearson's r (correlation)

```
Conventional effect size from Cohen (1982)
    test = r
    size = large
effect.size = 0.5
```

cohen.ES(test $=$ "r", size $=$ "medium")

```
Conventional effect size from Cohen (1982)
    test = r
    size = medium
effect.size = 0.3
```


Normative standards in pwr ...

```
cohen.ES(test = "r", size = "small")
```

```
Conventional effect size from Cohen (1982)
    test = r
    size = small
effect.size=0.1
```

cohen.ES(test = "anov", size = "small") \# Cohen's f_squared

```
    Conventional effect size from Cohen (1982)
        test = anov
        size = small
    effect.size=0.1
```

cohen.ES(test = "f2", size = "small") \# Cohen's f_squared
Conventional effect size from Cohen (1982)
test $=\mathrm{f} 2$
size $=$ small
effect.size $=0.02$

Approximate Power Guesses for Simple Stats

```
## Find power for a given sample size, effect size, and alpha level
pwr.r.test(n = 30, r = .1, sig.level = .05)
```

```
approximate correlation power calculation (arctangh transformation)
    n = 30
    r = 0.1
    sig.level = 0.05
        power = 0.08208191
alternative = two.sided
```

```
## A priori power analysis: Find sample size required for a given
## level of power, alpha, and effect size
pwr.r.test(power = . 80, r = . 1, sig.level = .05)
```

```
approximate correlation power calculation (arctangh transformation)
        n = 781.7516
            r = 0.1
    sig.level = 0.05
        power = 0.8
alternative = two.sided
```


Approximate Power Guesses for Simple Stats ...

```
## Do the same with Cohen's D for a t test
pwr.t.test(n = 30, d = .2, sig.level = .05)
```

```
Two-sample t test power calculation
    n = 30
    d = 0.2
    sig.level = 0.05
        power = 0.1186794
alternative = two.sided
```

NOTE: n is number in *each* group

```
pwr.t.test(power = . 80, d = . 2, sig.level = .05)
```


Approximate Power Guesses for Simple Stats ...

```
    Two-sample \(t\) test power calculation
        \(\mathrm{n}=393.4057\)
        \(\mathrm{d}=0.2\)
    sig.level \(=0.05\)
        power \(=0.8\)
alternative \(=\) two.sided
```

```
NOTE: n is number in *each* group
```

```
NOTE: n is number in *each* group
```

```
## repeat without the requirement for equal group sizes
pwr.t2n.test(n1 = 20, n2 = 12, d = .2, sig.level = .05)
```

```
t test power calculation
    n1 = 20
    n2 = 12
    d = 0.2
        sig.level = 0.05
        power = 0.08280013
alternative = two.sided
```

pwr.t2n.test(power $=.8, \mathrm{n} 1=40, \mathrm{~d}=.5$, sig.level $=.05$)

Approximate Power Guesses for Simple Stats ...

```
t test power calculation
    n1 = 40
    n2 = 153.0969
    d = 0.5
    sig.level = 0.05
        power = 0.8
    alternative = two.sided
```


Outline

-

Power Framework

- Hypothesis Testing
- Motivation
- Effect Sizes

2 Cookbook answers
(3) Monte Carlo Power

- Worked Example 1
- Worked Example 2

Monte Carlo Power Analysis

- A Monte Carlo study where:
- The outcome of interest is statistical power
- The main manipulated factor is N
- Useful because analytical methods only cover simple cases
- Power $=$ the proportion of samples in a condition for which H_{0} was rejected
- Can manipulate other factors
- Effect size, alpha, variability, missing data, etc.

Explore the Two-Group Simulation

- In the Monte Carlo lecture, we developed a series of functions that can estimate the H_{0} rejection rates for a problem with normally distributed data in which two groups are observed.
- We developed an idiom to describe the group
- Sample size: N
- Mean: M
- Standard Deviation: SD

tPowerSim

Here is how we might fit the various functions together more tightly

```
##' Monte Carlo simulation for 2 group t test
##' @param conds = a conditions data frame
##' @param var.equal: should the t.test use the equal variance
##' assumption or the Welch corrected calculation (if FALSE).
##' Note default TRUE is different from R base.
##' @return a matrix summarizing rejection rates
tPowerSim <- function(conds, var.equal = TRUE){
    ## Creates data by parsing N, M and SD strings
    getTdata <- function(rep, N, M, SD) {
            Nvec <- as.numeric(unlist(strsplit(N, ":")))
            Mvec <- as.numeric(unlist(strsplit(M, ":")))
            SDvec <- as.numeric(unlist(strsplit(SD, ":")))
            dat <- data.frame(first = c(rep(0, times = Nvec[1]),
                                    rep(1, times = Nvec[2])))
            dat$IQ <- rnorm(sum(Nvec), m = Mvec[(dat$first + 1)],
                    sd = SDvec[(dat$first + 1)])
            dat$IQ <- round(dat$IQ)
            attr(dat, "rep") <- rep
            attr(dat, "parms") <- c(N = N, M = M, SD = SD)
            dat
    }
    ## conducts T test, keeps only p value
```


tPowerSim ...

```
conductTtest <- function (dframe, y = "IQ", x = "first",
        var.equal){
        t.test(formula(paste(y, "~", x)),
        data = dframe, var.equal = var.equal)$p.value
}
## orchestrates the data pull, analysis, and summary
runOneSim <- function(rep, N, M, SD, var.equal){
        dframe <- getTdata(rep, N = N, M = M, SD = SD)
        reslt <- conductTtest(dframe, var.equal = var.equal)
        parms <- attr(dframe, "parms")
        dframe2 <- data.frame(rep = attr(dframe, "rep"),
                        pvalue = reslt,
                            reject.05 = if (reslt <= 0.05) 1 else 0,
                            reject.1 = if (reslt <= 0.10) 1 else 0,
                            N = parms["N"], M = parms["M"], SD =
                            parms["SD"])
    dframe2
}
# Reads the condition matrix, runs one row from it
runOneCondition <- function(i, conds, var.equal){
    x <- conds[i, ]
        result.list <- lapply(1:x$nReps, runOneSim,
                        N = x$N, M = x$M, SD = x$SD, var.equal
                                = var.equal)
        do.call("rbind", result.list)
```


tPowerSim ...

```
    }
    # Run all of the rows in the condition matrix
    listofresults <- lapply(1:NROW(conds), runOneCondition, conds,
        var.equal = var.equal)
    stackedResults <- do.call(rbind, listofresults)
    output <- aggregate(stackedResults[, c("reject.05", "reject.1")],
        by = list(N = stackedResults$N, SD =
                                stackedResults$SD, M = stackedResults$M),
            mean)
    names(output) <- c("N", "SD", "M", "reject.05.mean",
        "reject.1.mean")
    output
}
```


Input is a conds matrix

```
cond.N <- c("30:30", "40:20")
cond.SD <- c("10:20", "15:15", " \(20: 10 ")\)
cond.M <- c("100:100") \# for now, mean-difference
    \(=0\)
conds <- expand.grid(nReps \(=1000, S D=\) cond.SD,
    \(N=\) cond. \(N, M=\) cond. \(M\),
                                    stringsAsFactors = FALSE)
head (conds)
```

	nReps	SD	N	M
1	1000	$10: 20$	$30: 30$	$100: 100$
2	1000	$15: 15$	$30: 30$	$100: 100$
3	1000	$20: 10$	$30: 30$	$100: 100$
4	1000	$10: 20$	$40: 20$	$100: 100$
5	1000	$15: 15$	$40: 20$	$100: 100$
6	1000	$20: 10$	$40: 20$	$100: 100$

Example Run

tPowerSim(conds, var.equal = TRUE)

	N	SD	M reject.05.mean	reject. 1.mean	
1	$30: 30$	$10: 20$	$100: 100$	0.060	0.111
2	$40: 20$	$10: 20$	$100: 100$	0.125	0.185
3	$30: 30$	$15: 15$	$100: 100$	0.040	0.090
4	$40: 20$	$15: 15$	$100: 100$	0.041	0.105
5	$30: 30$	$20: 10$	$100: 100$	0.052	0.103
6	$40: 20$	$20: 10$	$100: 100$	0.025	0.049

tPowerSim(conds, var.equal = FALSE)

	N	SD	M reject.05.mean	reject. 1.mean	
1	$30: 30$	$10: 20$	$100: 100$	0.055	0.105
2	$40: 20$	$10: 20$	$100: 100$	0.051	0.100
3	$30: 30$	$15: 15$	$100: 100$	0.034	0.094
4	$40: 20$	$15: 15$	$100: 100$	0.052	0.113
5	$30: 30$	$20: 10$	$100: 100$	0.059	0.111
6	$40: 20$	$20: 10$	$100: 100$	0.038	0.096

tPowerSim(conds, var.equal = TRUE)

Example Run ...

	N	SD	M	reject.05.mean	reject.1.mean
1	$30: 30$	$10: 20$	$100: 100$	0.060	0.111
2	$40: 20$	$10: 20$	$100: 100$	0.125	0.185
3	$30: 30$	$15: 15$	$100: 100$	0.040	0.090
4	$40: 20$	$15: 15$	$100: 100$	0.041	0.105
5	$30: 30$	$20: 10$	$100: 100$	0.052	0.103
6	$40: 20$	$20: 10$	$100: 100$	0.025	0.049

tPowerSim(conds, var.equal = FALSE)

	N	SD	M reject.05.mean	reject.1.mean	
1	$30: 30$	$10: 20$	$100: 100$	0.055	0.105
2	$40: 20$	$10: 20$	$100: 100$	0.051	0.100
3	$30: 30$	$15: 15$	$100: 100$	0.034	0.094
4	$40: 20$	$15: 15$	$100: 100$	0.052	0.113
5	$30: 30$	$20: 10$	$100: 100$	0.059	0.111
6	$40: 20$	$20: 10$	$100: 100$	0.038	0.096

Experiment with That

```
## Play with tPowerSim.
## I just "noodled" around a while
## You can be systematic :)
##
## Power analysis is the study of data group sizes
cond.N <- c("30:30", "40:20", " 100:100")
cond.SD <- c("10:20", "15:15", " 20:10")
cond.M <- c("100:105")
conds <- expand.grid(nReps = 1000, SD = cond.SD, N = cond.N,
                                M = cond.M, stringsAsFactors = FALSE)
tPowerSim(conds, var.equal = TRUE)
```

		N	SD	M	reject.05.mean
	$30: 30$	$10: 20$	$100: 105$	0.234	0.335
1	$40: 20$	$10: 20$	$100: 105$	0.285	0.375
2	$100: 100$	$10: 20$	$100: 105$	0.618	0.716
3	$30: 30$	$15: 15$	$100: 105$	0.226	0.348
4	$40: 20$	$15: 15$	$100: 105$	0.238	0.350
5	$40: 100$	$15: 15$	$100: 105$	0.644	0.774
6	$100: 30$	0.30	$20: 10$	$100: 105$	0.213
8	$30: 30$	$20: 20$	$20: 10$	$100: 105$	0.113

Experiment with That ...

```
tPowerSim(conds, var.equal = FALSE)
```

	N	SD	M	reject.05.mean	reject.1.mean
1	$30: 30$	$10: 20$	$100: 105$	0.218	0.319
2	$40: 20$	$10: 20$	$100: 105$	0.178	0.268
3	$100: 100$	$10: 20$	$100: 105$	0.622	0.724
4	$30: 30$	$15: 15$	$100: 105$	0.220	0.343
5	$40: 20$	$15: 15$	$100: 105$	0.210	0.317
6	$100: 100$	$15: 15$	$100: 105$	0.657	0.751
7	$30: 30$	$20: 10$	$100: 105$	0.220	0.338
8	$40: 20$	$20: 10$	$100: 105$	0.247	0.363
9	$100: 100$	$20: 10$	$100: 105$	0.612	0.726

```
cond.M <- c("100:106")
conds <- expand.grid(nReps = 1000, SD = cond.SD, N = cond.N,
                                M = cond.M, stringsAsFactors = FALSE)
tPowerSim(conds, var.equal = TRUE)
```


Experiment with That ...

	N	SD	M	reject.05.mean	reject.1.mean
1	$30: 30$	$10: 20$	$100: 106$	0.336	0.447
2	$40: 20$	$10: 20$	$100: 106$	0.347	0.446
3	$100: 100$	$10: 20$	$100: 106$	0.753	0.840
4	$30: 30$	$15: 15$	$100: 106$	0.305	0.433
5	$40: 20$	$15: 15$	$100: 106$	0.298	0.412
6	$100: 100$	$15: 15$	$100: 106$	0.784	0.869
7	$30: 30$	$20: 10$	$100: 106$	0.297	0.429
8	$40: 20$	$20: 10$	$100: 106$	0.183	0.299
9	$100: 100$	$20: 10$	$100: 106$	0.746	0.833

```
tPowerSim(conds, var.equal = FALSE)
```

	N	SD	M reject.05.mean	reject.1.mean	
1	$30: 30$	$10: 20$	$100: 106$	0.302	0.425
2	$40: 20$	$10: 20$	$100: 106$	0.232	0.359
3	$100: 100$	$10: 20$	$100: 106$	0.746	0.842
4	$30: 30$	$15: 15$	$100: 106$	0.341	0.459
5	$40: 20$	$15: 15$	$100: 106$	0.272	0.396
6	$100: 100$	$15: 15$	$100: 106$	0.803	0.875
7	$30: 30$	$20: 10$	$100: 106$	0.278	0.396
8	$40: 20$	$20: 10$	$100: 106$	0.344	0.459
9	$100: 100$	$20: 10$	$100: 106$	0.758	0.846

Experiment with That ...

```
cond.N <- c("100:100", "150:150", "150:100", "100:150")
conds <- expand.grid(nReps = 1000, SD = cond.SD, N = cond.N,
M = cond.M, stringsAsFactors = FALSE)
tPowerSim(conds, var.equal = TRUE)
```

	N	$S D$	M reject.05.mean	reject.1.mean	
1	$100: 100$	$10: 20$	$100: 106$	0.734	0.827
2	$150: 150$	$10: 20$	$100: 106$	0.899	0.944
3	$150: 100$	$10: 20$	$100: 106$	0.851	0.906
4	$100: 150$	$10: 20$	$100: 106$	0.821	0.905
5	$100: 100$	$15: 15$	$100: 106$	0.809	0.891
6	$150: 150$	$15: 15$	$100: 106$	0.922	0.955
7	$150: 100$	$15: 15$	$100: 106$	0.875	0.928
8	$100: 150$	$15: 15$	$100: 106$	0.874	0.922
9	$100: 100$	$20: 10$	$100: 106$	0.739	0.837
10	$150: 150$	$20: 10$	$100: 106$	0.908	0.956
11	$150: 100$	$20: 10$	$100: 106$	0.810	0.884
12	$100: 150$	$20: 10$	$100: 106$	0.847	0.905

```
tPowerSim(conds, var.equal = FALSE)
```


Experiment with That ...

	N	SD	M	reject. 05.mean	reject. 1. mean
1	$100: 100$	$10: 20$	$100: 106$	0.763	0.865
2	$150: 150$	$10: 20$	$100: 106$	0.902	0.936
3	$150: 100$	$10: 20$	$100: 106$	0.766	0.851
4	$100: 150$	$10: 20$	$100: 106$	0.883	0.932
5	$100: 100$	$15: 15$	$100: 106$	0.804	0.871
6	$150: 150$	$15: 15$	$100: 106$	0.935	0.968
7	$150: 100$	$15: 15$	$100: 106$	0.865	0.922
8	$100: 150$	$15: 15$	$100: 106$	0.864	0.907
9	$100: 100$	$20: 10$	$100: 106$	0.766	0.852
10	$150: 150$	$20: 10$	$100: 106$	0.885	0.939
11	$150: 100$	$20: 10$	$100: 106$	0.902	0.950
12	$100: 150$	$20: 10$	$100: 106$	0.795	0.874

```
cond.M <- c("100:110")
conds <- expand.grid(nReps = 1000, SD = cond.SD, N = cond.N,
M = cond.M, stringsAsFactors = FALSE)
tPowerSim(conds, var.equal = TRUE)
```


Experiment with That ...

	N	SD	M reject.05.mean	reject. 1. mean	
1	$100: 100$	$10: 20$	$100: 110$	0.998	1.000
2	$150: 150$	$10: 20$	$100: 110$	1.000	1.000
3	$150: 100$	$10: 20$	$100: 110$	0.995	0.998
4	$100: 150$	$10: 20$	$100: 110$	1.000	1.000
5	$100: 100$	$15: 15$	$100: 110$	0.997	0.999
6	$150: 150$	$15: 15$	$100: 110$	1.000	1.000
7	$150: 100$	$15: 15$	$100: 110$	0.999	0.999
8	$100: 150$	$15: 15$	$100: 110$	0.999	0.999
9	$100: 100$	$20: 10$	$100: 110$	0.995	0.998
10	$150: 150$	$20: 10$	$100: 110$	1.000	1.000
11	$150: 100$	$20: 10$	$100: 110$	0.998	1.000
12	$100: 150$	$20: 10$	$100: 110$	0.996	0.999

```
## Play with tPowerSim.
## I just "noodled" around a while
## You can be systematic :)
##
## Power analysis is the study of data group sizes
cond.N <- c("30:30", "40:20", " 100:100")
cond.SD <- c("10:20", "15:15", " 20:10")
cond.M <- c("100:105")
conds <- expand.grid(nReps = 1000, SD = cond.SD, N = cond.N,
```


Experiment with That ...

```
    M = cond.M, stringsAsFactors = FALSE)
tPowerSim(conds, var.equal = TRUE)
```

	N	SD	M	reject.05.mean	reject.1.mean
1	$30: 30$	$10: 20$	$100: 105$	0.234	0.335
2	$40: 20$	$10: 20$	$100: 105$	0.285	0.375
3	$100: 100$	$10: 20$	$100: 105$	0.618	0.716
4	$30: 30$	$15: 15$	$100: 105$	0.226	0.348
5	$40: 20$	$15: 15$	$100: 105$	0.238	0.350
6	$100: 100$	$15: 15$	$100: 105$	0.644	0.774
7	$30: 30$	$20: 10$	$100: 105$	0.213	0.326
8	$40: 20$	$20: 10$	$100: 105$	0.113	0.203
9	$100: 100$	$20: 10$	$100: 105$	0.621	0.725

```
tPowerSim(conds, var.equal = FALSE)
```


Experiment with That ...

	N	SD	M	reject.05.mean	reject.1.mean
1	$30: 30$	$10: 20$	$100: 105$	0.218	0.319
2	$40: 20$	$10: 20$	$100: 105$	0.178	0.268
3	$100: 100$	$10: 20$	$100: 105$	0.622	0.724
4	$30: 30$	$15: 15$	$100: 105$	0.220	0.343
5	$40: 20$	$15: 15$	$100: 105$	0.210	0.317
6	$100: 100$	$15: 15$	$100: 105$	0.657	0.751
7	$30: 30$	$20: 10$	$100: 105$	0.220	0.338
8	$40: 20$	$20: 10$	$100: 105$	0.247	0.363
9	$100: 100$	$20: 10$	$100: 105$	0.612	0.726

```
cond.M <- c("100:106")
conds <- expand.grid(nReps = 1000, SD = cond.SD, N = cond.N,
M = cond.M, stringsAsFactors = FALSE)
tPowerSim(conds, var.equal = TRUE)
```


Experiment with That ...

	N	SD	M	reject.05.mean	reject.1.mean
1	$30: 30$	$10: 20$	$100: 106$	0.336	0.447
2	$40: 20$	$10: 20$	$100: 106$	0.347	0.446
3	$100: 100$	$10: 20$	$100: 106$	0.753	0.840
4	$30: 30$	$15: 15$	$100: 106$	0.305	0.433
5	$40: 20$	$15: 15$	$100: 106$	0.298	0.412
6	$100: 100$	$15: 15$	$100: 106$	0.784	0.869
7	$30: 30$	$20: 10$	$100: 106$	0.297	0.429
8	$40: 20$	$20: 10$	$100: 106$	0.183	0.299
9	$100: 100$	$20: 10$	$100: 106$	0.746	0.833

```
tPowerSim(conds, var.equal = FALSE)
```

	N	SD	M reject.05.mean	reject.1.mean	
1	$30: 30$	$10: 20$	$100: 106$	0.302	0.425
2	$40: 20$	$10: 20$	$100: 106$	0.232	0.359
3	$100: 100$	$10: 20$	$100: 106$	0.746	0.842
4	$30: 30$	$15: 15$	$100: 106$	0.341	0.459
5	$40: 20$	$15: 15$	$100: 106$	0.272	0.396
6	$100: 100$	$15: 15$	$100: 106$	0.803	0.875
7	$30: 30$	$20: 10$	$100: 106$	0.278	0.396
8	$40: 20$	$20: 10$	$100: 106$	0.344	0.459
9	$100: 100$	$20: 10$	$100: 106$	0.758	0.846

Experiment with That ...

```
cond.N <- c("100:100", "150:150", "150:100", "100:150")
conds <- expand.grid(nReps = 1000, SD = cond.SD, N = cond.N,
M = cond.M, stringsAsFactors = FALSE)
tPowerSim(conds, var.equal = TRUE)
```

	N	$S D$	M reject.05.mean	reject.1.mean	
1	$100: 100$	$10: 20$	$100: 106$	0.734	0.827
2	$150: 150$	$10: 20$	$100: 106$	0.899	0.944
3	$150: 100$	$10: 20$	$100: 106$	0.851	0.906
4	$100: 150$	$10: 20$	$100: 106$	0.821	0.905
5	$100: 100$	$15: 15$	$100: 106$	0.809	0.891
6	$150: 150$	$15: 15$	$100: 106$	0.922	0.955
7	$150: 100$	$15: 15$	$100: 106$	0.875	0.928
8	$100: 150$	$15: 15$	$100: 106$	0.874	0.922
9	$100: 100$	$20: 10$	$100: 106$	0.739	0.837
10	$150: 150$	$20: 10$	$100: 106$	0.908	0.956
11	$150: 100$	$20: 10$	$100: 106$	0.810	0.884
12	$100: 150$	$20: 10$	$100: 106$	0.847	0.905

```
tPowerSim(conds, var.equal = FALSE)
```


Experiment with That ...

	N	SD	M	reject. 05.mean	reject. 1. mean
1	$100: 100$	$10: 20$	$100: 106$	0.763	0.865
2	$150: 150$	$10: 20$	$100: 106$	0.902	0.936
3	$150: 100$	$10: 20$	$100: 106$	0.766	0.851
4	$100: 150$	$10: 20$	$100: 106$	0.883	0.932
5	$100: 100$	$15: 15$	$100: 106$	0.804	0.871
6	$150: 150$	$15: 15$	$100: 106$	0.935	0.968
7	$150: 100$	$15: 15$	$100: 106$	0.865	0.922
8	$100: 150$	$15: 15$	$100: 106$	0.864	0.907
9	$100: 100$	$20: 10$	$100: 106$	0.766	0.852
10	$150: 150$	$20: 10$	$100: 106$	0.885	0.939
11	$150: 100$	$20: 10$	$100: 106$	0.902	0.950
12	$100: 150$	$20: 10$	$100: 106$	0.795	0.874

```
cond.M <- c("100:110")
conds <- expand.grid(nReps = 1000, SD = cond.SD, N = cond.N,
M = cond.M, stringsAsFactors = FALSE)
tPowerSim(conds, var.equal = TRUE)
```


Experiment with That ...

	N	SD	M	reject.05.mean	reject.1.mean
1	$100: 100$	$10: 20$	$100: 110$	0.998	1.000
2	$150: 150$	$10: 20$	$100: 110$	1.000	1.000
3	$150: 100$	$10: 20$	$100: 110$	0.995	0.998
4	$100: 150$	$10: 20$	$100: 110$	1.000	1.000
5	$100: 100$	$15: 15$	$100: 110$	0.997	0.999
6	$150: 150$	$15: 15$	$100: 110$	1.000	1.000
7	$150: 100$	$15: 15$	$100: 110$	0.999	0.999
8	$100: 150$	$15: 15$	$100: 110$	0.999	0.999
9	$100: 100$	$20: 10$	$100: 110$	0.995	0.998
10	$150: 150$	$20: 10$	$100: 110$	1.000	1.000
11	$150: 100$	$20: 10$	$100: 110$	0.998	1.000
12	$100: 150$	$20: 10$	$100: 110$	0.996	0.999

IQ study

- We are planning a study about parental IQ
- This is a study focused on a correlation, R, between the IQs of the parents (which are positively correlated).
- Cohen's guidelines say a "medium" correlation would be 0.30 , so we will use that to manufacture data.
- We are going to manufacture data using a multivariate normal distribution

Digression: Drawing MVN samples

- A vector of means $\mu=$ "mu" and a covariance matrix $\Sigma=$ "Sigma"
$\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{p}\end{array}\right] \sim M V N(\boldsymbol{\mu}, \boldsymbol{\Sigma})=M V N\left(\left[\begin{array}{c}\mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{p}\end{array}\right],\left[\begin{array}{cccc}\sigma_{1}^{2} & \sigma_{12} & & \sigma_{1 p} \\ \sigma_{12} & \sigma_{2}^{2} & & \sigma_{2 p} \\ & & \ddots & \\ \sigma_{1 p} & \sigma_{2 p} & & \sigma_{p}^{2}\end{array}\right]\right)$
- The one-variable formula for the probability density of the Normal distribution

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \text { or } \frac{1}{(2 \pi)^{1 / 2} \sigma} e^{-\frac{1}{2}(x-\mu) \sigma^{-1}(x-\mu)}
$$

- The multivariate one looks almost the same

$$
f(\mathbf{x})=\frac{1}{(2 \pi)^{p / 2}|\boldsymbol{\Sigma}|^{1 / 2}} e^{\frac{-1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

where p is the number of elements in μ.

Digression: Drawing MVN samples ...

- We will create Sigma by specifying standard deviations and a correlation matrix, then we use this handy formula

$$
\text { SD.diagonal } \times \text { Corr.matrix } \times \text { SD.diagonal }
$$

$\begin{aligned} \text { Sigma }= & {\left[\begin{array}{ccccc}\sigma_{x 1} & 0 & 0 & 0 & 0 \\ 0 & \sigma_{x 2} & 0 & 0 & 0 \\ 0 & 0 & \sigma_{x 3} & 0 & 0 \\ 0 & 0 & 0 & \sigma_{x 4} & 0 \\ 0 & 0 & 0 & 0 & \sigma_{x 5}\end{array}\right] \times\left[\begin{array}{ccccc}1 & \rho_{12} & \rho_{13} & \cdots & \rho_{1 p} \\ \rho_{21} & 1 & \rho_{23} & & \rho_{2 p} \\ & \ddots & 1 & & \rho_{3 p} \\ \rho_{31} & & & \\ \vdots & 11 & \rho_{11} & \ddots & \\ \rho_{p 1} & \rho_{11} & \rho_{11} & & 1\end{array}\right] } \\ & \times\left[\begin{array}{ccccc}\sigma_{x 1} & 0 & 0 & 0 & 0 \\ 0 & \sigma_{x 2} & 0 & 0 & 0 \\ 0 & 0 & \sigma_{x 3} & 0 & 0 \\ 0 & 0 & 0 & \sigma_{x 4} & 0 \\ 0 & 0 & 0 & 0 & \sigma_{x 5}\end{array}\right]\end{aligned}$

- The R implementation. We'll use mvrnorm from the rockchalk package, a slightly adjusted version of the one in MASS.

Digression: Drawing MVN samples ...

- rockchalk has convenience functions I created because I got tired of writing out matrix function calls

```
library(rockchalk)
myR <- lazyCor(X = 0.3, d = 5)
myR
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	1.0	0.3	0.3	0.3	0.3
$[2]$,	0.3	1.0	0.3	0.3	0.3
$[3]$,	0.3	0.3	1.0	0.3	0.3
$[4]$,	0.3	0.3	0.3	1.0	0.3
$[5]$,	0.3	0.3	0.3	0.3	1.0

```
mySD <- c (0.5, 0.5, 0.5, 1.5, 1.5)
myCov <- lazyCov(Rho \(=m y R, S d=m y S D)\)
myCov
```


Digression: Drawing MVN samples ...

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	0.250	0.075	0.075	0.225	0.225
$[2]$,	0.075	0.250	0.075	0.225	0.225
$[3]$,	0.075	0.075	0.250	0.225	0.225
$[4]$,	0.225	0.225	0.225	2.250	0.675
$[5]$,	0.225	0.225	0.225	0.675	2.250

myMu <-c $c(1.1,2.0,1.1,-0.2,0)$
\#\# Draw one to see what that does
set.seed (123123)
mvrnorm(1, mu $=m y M u, m y C o v)$
[1] $1.2809807 \quad 2.1131828 \quad 0.9241272$-0.2839534 -0.4944292
Now create 1000 rows of that (5 columns)

$$
\begin{aligned}
& \mathrm{N}<-1000 \\
& \mathrm{X}<-\mathrm{mvrnorm}(\mathrm{~N}, \mathrm{mu}=\mathrm{myMu}, \mathrm{myCov})
\end{aligned}
$$

Digression: Drawing MVN samples ...

```
## Check column means
colMeans(X)
```

$\left[\begin{array}{llllll}{[1]} & 1.1008238 & 1.9931514 & 1.1021634 & -0.2079248 & -0.1264216\end{array}\right.$
\#\# Check Pearson Correlations
cor (X)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	1.0000000	0.3581434	0.3040862	0.3085298	0.3271159
$[2]$,	0.3581434	1.0000000	0.2762719	0.3117241	0.3361439
$[3]$,	0.3040862	0.2762719	1.0000000	0.3015170	0.2782909
$[4]$,	0.3085298	0.3117241	0.3015170	1.0000000	0.3168756
$[5]$,	0.3271159	0.3361439	0.2782909	0.3168756	1.0000000

Fiddle to find create IQ data generator

```
R <- 0.30 #"medium" in Cohen's opinion
## Start with a correlation matrix of predictors
## If you do this the standard R way
IQ.cor <- matrix(c(1, R, R, 1), nrow = 2, ncol = 2,
dimnames = list(c("dadIQ", "momIQ"),
                        c("dadIQ", "momIQ")))
```

IQ.cor

```
    dadIQ momIQ
dadIQ 1.0 0.3
momIQ 0.3 1.0
```

```
## My equivalent method in rockchalk
IQ.cor <- lazyCor(X = R, d = 2)
IQ.cor
```

	$[, 1]$	$[, 2]$
$[1]$,	1.0	0.3
$[2]$,	0.3	1.0

Fiddle to find create IQ data generator ...

```
## these are the assumed means of momIQ and dadIQ
IQ.M <- c(dadIQ = 100, momIQ = 100)
## mvrnorm will take these as column names in the
## output. That's why those are named
## these are the standard devations of momIQ and dadIQ
IQ.SD <- c(15, 15)
## The diagonal matrix we need will be
diag(IQ.SD)
```

	$[, 1]$	$[, 2]$
$[1]$,	15	0
$[2]$,	0	15

```
## Create the covariance matrix
IQ.cov <- diag(IQ.SD) %*% IQ.cor %*% diag(IQ.SD)
IQ.cov
```

	$[, 1]$	$[, 2]$
$[1]$,	225.0	67.5
$[2]$,	67.5	225.0

Fiddle to find create IQ data generator ...

```
## Use R's builtin cov2cor to double-check thc
## correlations
cov2cor(IQ.cov)
```

	$[, 1]$	$[, 2]$
$[1]$,	1.0	0.3
$[2]$,	0.3	1.0

```
N <- 100
set.seed(123)
dat <- mvrnorm(n = N, mu = IQ.M, Sigma = IQ.cov)
dat <- as.data.frame(round(dat))
head(dat)
```

dadIQ	momIQ
95	91
118	119
86	117
117	94
96	88
112	118

Fiddle to find create IQ data generator ...

```
## Do observed means and correlations reflect
## the population parameters? Rounding is not too harmful
colMeans(dat)
```

```
    dadIQ momIQ
100.23 99.86
```

```
cor(dat)
```

```
dadIQ momIQ
```

dadIQ 1.00000000 .2170863
momIQ 0.21708631 .0000000

Fiddle to find create IQ data generator ...

```
## Now we will once again draw random birth-orders
dat$first <- rbinom(n = N, size = 1, prob = .4)
## Now that we have our multiple predictors, we
## specify a model to generate outcomes (child's IQ)
## with random sampling error.
stde <- 9
b <- c(-3, 5, .5, .5)
## parameters designed so child IQ is average of parents
dat$IQnoe <- b[1] + b[2]*dat$first + b[3]*dat$dadIQ + b[4]*dat$momIQ
dat$IQ <- dat$IQnoe + rnorm(N, m = 0, sd = stde)
dat$IQ <- round(dat$IQ)
head(dat)
```

	dadIQ	momIQ	first	IQnoe	IQ
1	95	91	1	95.0	92
2	118	119	0	115.5	110
3	86	117	1	103.5	100
4	117	94	0	102.5	103
5	96	88	0	89.0	103
6	112	118	0	112.0	111

Fiddle to find create IQ data generator ...

```
## Do sample statistics match data generator parameters?
modO <- lm(IQ ~ first + momIQ + dadIQ, data = dat)
summary(modO)
```

```
Call:
lm(formula = IQ ~ first + momIQ + dadIQ, data = dat)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-20.0270 & -5.5010 & 0.1397 & 6.3073 & 19.2770
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) & \\
(Intercept) & 2.73128 & 8.59794 & 0.318 & 0.7514 & \\
first & 4.26077 & 1.86205 & 2.288 & 0.0243 & \(*\) \\
momIQ & 0.46511 & 0.07340 & 6.336 & \(7.60 \mathrm{e}-09\) & \(* * *\) \\
dadIQ & 0.49168 & 0.06181 & 7.955 & \(3.53 \mathrm{e}-12\) & \(* * *\)
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.074 on 96 degrees of freedom
Multiple R-squared: 0.5867, Adjusted R-squared: 0.5738
F-statistic: 45.42 on 3 and 96 DF, p-value: < 2.2e-16
```


Anticipate Data Output Requirements

Monte Carlo methods can be used to check the power simultaneously for all effects (i.e., each slope estimates).

```
## Inspect data output, figure out what we want.
##
summary(mod0)$coef
```

| | Estimate | Std. Error | t value | Pr $(>\|t\|)$ |
| :--- | ---: | :--- | ---: | ---: | ---: |
| (Intercept) | 2.7312803 | 8.59793508 | 0.317667 | $7.514275 \mathrm{e}-01$ |
| first | 4.2607692 | 1.86205478 | 2.288208 | $2.431902 \mathrm{e}-02$ |
| momIQ | 0.4651099 | 0.07340265 | 6.336418 | $7.602465 \mathrm{e}-09$ |
| dadIQ | 0.4916806 | 0.06180512 | 7.955337 | $3.531280 \mathrm{e}-12$ |

\#\# get p values
summary (mod0)\$coef[2:4, 4]
first
momIQ
dadIQ
$2.431902 \mathrm{e}-027.602465 \mathrm{e}-09 \quad 3.531280 \mathrm{e}-12$

Anticipate Data Output Requirements ...

```
## check whether they meet significance criterion
alpha <- . 05
alpha
```

```
[1] 0.05
```

summary (mod0)\$coef [2:4, 4] < alpha
first momIQ dadIQ
TRUE TRUE TRUE

Data Generator Program

```
makeData <- function(rep, N, R, stde = 9, b = c(-3, 5, .5, .5)) {
    require(rockchalk) # will load the package if it's not already
        loaded
    IQ.cor <- lazyCor(R, 2)
    IQ.M <- c(dadIQ = 100, momIQ = 100)
    IQ.SD <- c(15, 15)
    IQ.cov <- diag(c(15, 15)) %*% IQ.cor %*% diag(c (15, 15))
    dat <- mvrnorm(n = N, mu = IQ.M, Sigma = IQ.cov)
    dat <- as.data.frame(round(dat))
    dat$first <- rbinom(n = N, size = 1, prob = .4)
    dat$IQnoe <- b[1] + b[2]*dat$first + b[3]*dat$dadIQ +
        b[4]*dat$momIQ
    dat$IQ <- dat$IQnoe + rnorm(N, m = 0, sd = stde)
    dat$IQ <- round(dat$IQ)
    dat$rep <- rep
    dat
    }
## Test it once
set.seed (123)
dat <- makeData(1, N = 20, R = .3)
head(dat)
```


Data Generator Program ...

	dadIQ	momIQ	first	IQnoe	IQ
1	95	91	0	90.0	92
2	118	119	1	120.5	120
3	86	117	0	98.5	98
4	117	94	1	107.5	120
5	96	88	0	89.0	87
6	112	118	0	112.0	126

```
## To analyze that data and return rejection decisions
getDecision <- function(data, alpha = .05) {
    ## run a regression on sample data
    mod <- lm(IQ ~ first + momIQ + dadIQ, data = data)
    ## return decisions about whether null was rejected for each slope
    summary(mod)$coef [2:4, 4] < alpha
    }
## Test it once (on the data we just generated)
getDecision(data = dat)
```

```
first momIQ dadIQ
FALSE TRUE TRUE
```


Data Generator Program ...

```
## Test it on 5 replications to see the format of the output
dataList <- lapply(1:5, makeData, N = 100, R = 0.30)
lapply(dataList, head)
```

[[1]]						
	dadiQ	momIQ	first	IQnoe	IQ	rep
1	115	74	1	96.5	99	1
2	118	106	0	109.0	120	1
3	83	101	1	94.0	82	1
4	107	86	0	93.5	99	1
5	103	101	1	104.0	99	1
6	97	103	1	102.0	108	1
[[2]]						
	dadIQ	momIQ	first	IQnoe	IQ	rep
1	119	124	0	118.5	114	2
2	90	113	0	98.5	96	2
3	95	87	1	93.0	97	2
4	129	129	0	126.0	121	2
5	133	107	1	122.0	123	2
6	94	101	0	94.5	77	2
[[3]]						

Data Generator Program ...

1	84	76	0	77.0	76	3
2	120	91	0	102.5	101	3
3	87	120	0	100.5	113	3
4	102	97	1	101.5	110	3
5	108	103	0	102.5	88	3
6	102	118	1	112.0	114	3
[[4]]						
	dadIQ	momIQ	first	IQnoe	IQ	rep
1	105	79	0	89.0	85	4
2	119	115	1	119.0	107	4
3	65	122	0	90.5	102	4
4	103	95	0	96.0	83	4
5	118	90	1	106.0	98	4
6	107	105	1	108.0	114	4
$\left[\begin{array}{l}{[5]}\end{array}\right]$						
	dadiq	momIQ	first	IQnoe	IQ	rep
1	108	85	0	93.5	96	5
2	90	87	1	90.5	92	5
3	93	63	1	80.0	77	5
4	118	108	0	110.0	100	5
5	79	77	0	75.0	77	5
6	110	122	1	118.0	99	5

Data Generator Program ...

```
do.call(rbind, lapply(dataList, getDecision))
```

	first	momIQ	dadIQ
$[1]$,	TRUE	TRUE	TRUE
$[2]$,	TRUE	TRUE	TRUE
$[3]$,	TRUE	TRUE	TRUE
$[4]$,	TRUE	TRUE	TRUE
$[5]$,	TRUE	TRUE	TRUE

```
## Define a function that gets rejections for nReps replications per
## condition
runCond <- function(nReps, N, R) {
    ## generate nReps data sets
    dataList <- lapply(1:nReps, makeData, N = N, R = R)
    ## run regression and get rejection decisions for each data set
    out <- data.frame(do.call(rbind, lapply(dataList, getDecision)))
    ## record conditions
    out$N <- N
    out$R <- R
    ## return results
    out
}
## Test it on 10 replications
runCond(nReps = 10, N = 100, R = .3)
```


Data Generator Program ...

	first	momIQ	dadIQ	N	R
1	FALSE	TRUE	TRUE	100	0.3
2	TRUE	TRUE	TRUE	100	0.3
3	TRUE	TRUE	TRUE	100	0.3
4	TRUE	TRUE	TRUE	100	0.3
5	FALSE	TRUE	TRUE	100	0.3
6	FALSE	TRUE	TRUE	100	0.3
7	TRUE	TRUE	TRUE	100	0.3
8	TRUE	TRUE	TRUE	100	0.3
9	TRUE	TRUE	TRUE	100	0.3
10	FALSE	TRUE	TRUE	100	0.3

Build a condition object

```
## Using a Monte Carlo design, we can calculate
    power across sample
## sizes as the proportion of cases where the
    null was rejected in
## each condition.
cond.N <- seq(from = 20, to = 150, by = 10)
cond.N
```

[1] 20 | | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

cond.R <- c(0.30) \# for now, don't vary the correlation between predictors
conds <- expand.grid($N=$ cond. $N, \quad R=$ cond.R) conds\$nReps <- 1000 conds

Build a condition object ...

	N	R	nReps
1	20	0.3	1000
2	30	0.3	1000
3	40	0.3	1000
4	50	0.3	1000
5	60	0.3	1000
6	70	0.3	1000
7	80	0.3	1000
8	90	0.3	1000
9	100	0.3	1000
10	110	0.3	1000
11	120	0.3	1000
12	130	0.3	1000
13	140	0.3	1000
14	150	0.3	1000

Run a simulation

```
## Run 1000 t tests in each condition to see how
    often the null is
## rejected
set.seed(123)
out <- apply(conds, MARGIN = 1,
                                FUN = function(x) do.call(runCond,
                                    as.list(x)))
out <- do.call(rbind, out)
head(out)
```

	first	momIQ	dadIQ	N	R
1	FALSE	TRUE	TRUE	20	0.3
2	FALSE	TRUE	FALSE	20	0.3
3	FALSE	TRUE	TRUE	20	0.3
4	FALSE	FALSE	TRUE	20	0.3
5	FALSE	TRUE	TRUE	20	0.3
6	FALSE	TRUE	TRUE	20	0.3

Run a simulation ...

```
## TRUE == 1 and FALSE == 0, so the mean of each
    outcome is the
## proportion of samples for which the null was
    rejected (in each
## condition).
rates <- aggregate(cbind(first, momIQ, dadIQ) ~
    N, data = out, mean)
rates
```

	N	first	momIQ	dadIQ
1	20	0.149	0.805	0.825
2	30	0.281	0.963	0.959
3	40	0.375	0.994	0.989
4	50	0.448	0.997	0.996
5	60	0.529	1.000	1.000
6	70	0.581	1.000	1.000
7	80	0.656	1.000	1.000
8	90	0.723	1.000	1.000
9	100	0.762	1.000	1.000
10	110	0.813	1.000	1.000

Run a simulation ...

```
11 120}00.8351.000 1.00
12}131300.842 1.000 1.00
13}14400.886 1.000 1.000
14 150 0.913 1.000 1.000
```


Did we find out anything?

```
\#\# plot power by sample size
plot (first \(\sim N\), data = rates, type = "l", lid =
    2, glim = 0:1)
abline (h = .8, col = "darkgreen", lty = "dashed")
lines (momIQ ~ N, data = rates, col = "red", lid =
    2, ley = 2)
lines(dadIQ \(\sim N\), data = rates, col = "blue", lad
    \(=2\), lty = 3)
legend("bottomright", legend \(=c(" f i r s t "\),
    "momIQ", "dadIQ"),
        col = c("black", "red", "blue"), lty =
        \(c(1,2,3)\) )
```


Did we find out anything?

(c) What sample size is required to detect the effect of mom's IQ at least 80% of the time?
(2) Dad's IQ?

Did we find out anything?

(3) First-born status?

Do we need to add more sample size conditions?
More complete power analyses might take into more population parameters, such as the correlation among other predictors, or the effects (slopes) of each predictor, or the variance of the random errors, or whether interactions exist, etc.

The function above already allows you to manipulate the correlation between predictors, but you can add arguments to manipulate other characteristics of importance.

Outline

(1) Power Framework

- Hypothesis Testing
- Motivation
- Effect Sizes
(2) Cookbook answers
(3) Monte Carlo Power
- Worked Example 1
- Worked Example 2

4 Conclusions
KU

Cookbook. And Beyond!

- Power analysis is easy for simple problems, we have a good deal of experience with 1-predictor models with simple designs
- More complicated models don't fit into the easy-to-use cookbooks
- Monte Carlo Simulation can be a way to understand the ability of a proposed study to detect statistically significant findings.

Can't live with it. Can't live without it

- Power analysis involves guessing about parameters and distributions of predictors
- Much of the work seems onerous or silly to researchers, who say they "just don't know," yet
- Nevertheless, project planners (and funders) need to be assured that the study will, if correctly executed, recover statistically significant evidence.
- If a study ever concludes with a comment like

We did not find statistically significant differences between groups, but we still believe there are effects worth finding. The likely explanation for our difficulty is the small number of participants in each group.
we should blame the people who carried out the study for poor planning and inadequate power analysis.

References

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Session

sessionInfo ()

```
R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04 LTS
```

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
locale:

```
    [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC = C
        LC_TIME=en_US.UTF-8
    [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8
        LC_MESSAGES = en_US.UTF-8
    [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
        LC_ADDRESS = C
[10] LC_TELEPHONE=C
    LC_MEASUREMENT = en_US.UTF-8
        LC_IDENTIFICATION = C
attached base packages:
[1] stats graphics grDevices utils datasets base
other attached packages:
[1] rockchalk_1.8.111 pwr_1.2-2
```


Session

```
loaded via a namespace (and not attached):
    [1] Rcpp_0.12.15 lattice_0.20-35 MASS_7.3-49
        grid_3.4.4
    [6] nlme_3.1-137
        nloptr_1.0.4
    *
    SparseM_1.77 minqa_1.2.4
    car_2.1-6
[11] Matrix_1.2-14 splines_3.4.4 lme4_1.1-17
    tools_3.4.4
    [16] parallel_3.4.4
        nnet_7.3-12
    pbkrtest_0.4-7
    compiler_3.4.4 mgcv_1.8-23
    quantreg_5.35
[21] methods_3.4.4
```

