Power Analysis

Ben Kite and Terrance Jorgensen KU CRMDA 2017 Stats Camp

Recall Hypothesis Testing?

- Null Hypothesis Significance Testing (NHST) is the most common application in social science
 - Frame research hypothesis as an "alternative" (H_1) to a "null" hypothesis (H_0) that is given preference
 - Design study to test H_0 , collect data
 - Reject H_0 when data are uncommon if H_0 is true
 - If you fail to reject H_0 , you can't reject H_0 as a plausible explanation for the observed data

Examples of H₀

- Effect of wealth on electricity demand is $\beta_1 = 7$ Electricity Demand = $\beta_0 + \beta_1$ Wealth + ϵ
 - Estimate from data is $\hat{\beta}_1 = 10$
 - Is 10 far enough from 7 for H_0 to be rejected?
- Gender difference is $\mu_{Men} \mu_{Women} = \mu_{diff} = 0$
 - Estimate is $\hat{\mu}_{diff}$ = –5
 - Is the observed difference big enough to convince us that H₀ is untenable?

What Is Statistical Power?

- The probability of rejecting H₀, on the condition that it is FALSE (1 Type II error)
 - Only makes sense in the context of NHST
 - Conduct before data collection (avoid *post hoc*)
- Affected by 4 factors
 - Rejection criterion (α level)
 - Sample size (N)
 - Sampling variability (SD, σ^2)
 - Effect size (the degree to which H₀ is false)

Motivation Behind Power Analyses

- Important part of research proposals
 - How many cases are required to reject your H_0 ?
 - Funding agencies & dissertation advisors want to make sure they aren't wasting time & money
- Think backwards
 - Imagine a completed study, with data
 - MUST write down the actual model to be estimated
 - With "made up data" of size N, using carefully chosen population parameters, how often is a "significant" effect detected?
 - If not, how large must N be to detect the effect at least as often as a minimum threshold?

Real-Life Research Example

- Researcher collects data on N = 10 people to find out whether tobacco causes cancer
 - Statistical procedure says there's no relationship, so we can't reject H_0 of no relationship
 - Suppose the effect of tobacco on cancer risk is actually present, but we missed it by not collecting enough data (Type II error)
- 80% is a customary threshold for "enough" power
 - We should design experiments so the power ≥ 0.8
 - Measure variables with little variance; collect large N
- Effect must be "large" if it is to be detected with small N
 - If effect is "small," then we increase N to increase chances of finding a "significant" result (i.e., of rejecting H₀)

Effect Sizes

• Raw effect sizes are just the parameter estimate minus the null hypothesized value

- Regression slopes ($\hat{\beta} - \beta_0$)

- Mean-differences between groups ($\hat{\mu}_{Diff} \mu_0$) - Often can divide difference by SE for a t statistic
- Let's look at the R syntax
 - Continuing the example from this morning's workshop on Monte Carlo Simulation
 - See PowerAnalysis-01.R

Effect Sizes

- Effect Size = magnitude of difference between a parameter estimate and its H_0 value (e.g., $\hat{\mu} \mu_0$)
- APA requires "standardized" effect sizes
 - Seeking a number that is generic across contexts
 - Supposed to represent "practical" significance, but effects in units of SD or proportions are not always intuitive or useful
- Cohen (1988) pioneered the most frequently used criteria for describing effect sizes and estimating power among social scientists
 - Back to R! (see also G*Power)

Monte Carlo Power Analysis

- A Monte Carlo study where:
 - The outcome of interest is statistical power
 - The main manipulated factor is N
- Useful because analytical methods only cover simple cases
 - Power = the proportion of samples in a condition for which H_0 was rejected
- Can manipulate other factors

- Effect size, alpha, variability, missing data, etc.

Free Power Analysis Resources

- G*Power (<u>http://www.gpower.hhu.de/en.html</u>)
 - Linear Models (regression, correlation, t test, ANOVA, ANCOVA, MANOVA, MANCOVA)
 - Some generalized linear models (Poisson or logistic regression)
 - Contingency tables (χ^2 , McNemar's test)
 - Proportion tests
 - The user's manual on the website is easy to read (lot's of pictures and easy instructions)

Free Power Analysis Resources

- WebPower (<u>http://webpower.psychstat.org/wiki/</u>)
 - Correlation, regression
 - Proportion/Mean differences
 - Mediation
 - Multilevel and Longitudinal modeling
 - Structural equation modeling
 - Fairly new, may have bugs

Free Power Analysis Resources

- Multilevel Modeling power analysis software
 - PINT (<u>http://www.stats.ox.ac.uk/~snijders/multilevel.htm#progPINT</u>)
 - Uses analytical approximation, 2-level models only
 - MLPowSim (<u>http://www.bristol.ac.uk/cmm/software/mlpowsim/</u>)
 - Makers of MLwiN (among the best MLM software)
 - You input characteristics of your data (summary stats of predictors, sample size at each level) and population parameters, then MLPowSim writes an R script for Monte Carlo simulation-based power analysis

CRMDA Resources

- For SEMs (and more), see KUant Guide #12: Monte Carlo Simulation in Mplus
 - See <u>http://crmda.ku.edu/kuant-guides</u>
 - This is primarily SEM software (not free), but it can also be used for anything that can be framed as a
 - Linear model (*t* test, ANOVA, regression)
 - Generalized linear model (Poisson or logistic regression)
 - Multilevel / mixed-effects model
 - Just need to know how to write model in Mplus syntax