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Instructions

This is a template, not instructions

@ All of this is brought to us by R (R Core Team, 2017)

KU
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Introduction

What is a Monte Carlo Simulation?

@ Generating from a known probability model
@ Comparing variations among separate samples drawn from the model

@ "Monte Carlo Analysis in Academic Research” (Johnson, 2013) gives
history and applications doi:10.1093/oxfordhb/9780199934874.013.0022

KU
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Introduction

Goals of a Monte Carlo Simulation

o Consider a statistical procedure (e.g., a t test) that receives data and
returns a result — i.e., parameter estimates, sample statistics

@ Presumably there is a “true” set of parameters (“population values”) that
the estimate is supposed to represent
o We wonder

e Does the procedure yield unbiased (correct “on average”) estimates of
the “true” parameters?

@ Is an estimator consistent (closer to correct as the sample size grows?)

o Is the sampling distribution of the estimates normal, symmetric, etc.?

@ From estimates with “real data”, we can't say if we are “right”, because
we don't know the true model of the data generator

CRMDA (CRMDA) MC 2018
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Introduction

The Standard "Playbook”

@ Specify a data generating process (i.e., a set of parameters)
e often called a “population” in statistical vernacular

@ Draw random samples from it

@ Apply the procedure to each sample
o Save estimates, tests, p-values, etc.

@ Evaluate the procedure

o Compare stats to parameters, check distributions

KU
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Introduction

Goals of Analysis

@ Check that a procedure behaves as expected

o Does the null rejection rate match the nominal Type | error rate?
o Are estimates unbiased?

@ See how a procedure behaves when assumptions are violated

o Inflated Type | error rates? Robust if minor?
o Effects of missing data?
o Effect of sample size?

@ Compare 2 procedures — OLS v. WLS; LGCM v. MLM

@ Power analysis

KU
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Introduction

Replication is a Priority

@ We must be able to regenerate results exactly without saving each data
set

@ Pseudorandom number generator (PRNG)

o Algorithm that generates seemingly random streams of integers
o The “random” numbers you get depend on a random “state”
characterized by a “seed”
o Initial starting condition can be controlled by specifying an single integer,
which is commonly referred to as the “seed” (but, technically, it is not)
@ Setting the initial seed makes it possible to replicate draws from random
number generators

KU
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Interactive Session

Outline

© Interactive Session
@ Distributions in R
@ Binomial Distribution
@ Normal distribution
@ Generating Samples: Regression
@ Generating Samples: Group Mean Differences

@ T-test replication
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Interactive Session

Let's Generate Random Numbers in R!

Let's open our R syntax and get started. Here is an outline of today's
topics/tasks:

@ Generate some simple (pseudo) random numbers

@ Generate random samples of data using population parameters

@ Design a small-scale Monte Carlo study

o How are Type | errors affected by between-group differences in N and
SD?

KU
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Interactive Session  Distributions in R

R terminology

For most distributions, R offers functions with names like rnorm, dnorm,
pnorm and gnorm
@ r returns a pseudorandom sample from that distribution

@ d returns the probability density (or probability mass for discrete
distributions)

@ p returns the cumulative probability distribution (CDF)

@ ¢ returns the quantile associated with a certain cumulative probability

KU
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Interactive Session  Distributions in R

Help pages for some built-in distributions

‘ ?rnorm

Normal package:stats R Documentation
The Normal Distribution

5 |Description:

Density , distribution function, quantile function and random
generation for the normal distribution with mean equal to 'mean’

and standard deviation equal to 'sd'.
0

Usage:
dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
5 gqnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)
Arguments:
0 x, q: vector of quantiles.

p: vector of probabilities.
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Interactive Session  Distributions in R

25

Help pages for some built-in distributions ...

n: number of observations. If ’'length(n) > 1', the length is
taken to be the number required.

mean: vector of means.
sd: vector of standard deviations.
log, log.p: logical; if TRUE, probabilities p are given as log(p).

lower.tail: logical; if TRUE (default), probabilities are P[X <= x]
otherwise , P[X > x].

Details:

If '"mean’ or 'sd' are not specified they assume the default values
of '0' and 'l', respectively.

The normal distribution has density
f(x) = 1/(sqrt(2 pi) sigma) e"—((x — mu)"2/(2 sigma“"2))

where mu is the mean of the distribution and sigma the standard
deviation.

Value:

CRMDA (CRMDA) MC 2018




Interactive Session  Distributions in R

Help pages for some built-in distributions ...

generates random deviates.

other functions.

The numerical arguments other than 'n’ are recycled to

of the result. Only the first elements of the logical

are used.

For 'sd = 0' this gives the limit as 'sd’' decreases to

mass at 'mu’. 'sd < 0’ is an error and returns 'NaN'.
Source:

For 'pnorm', based on

Cody, W. D. (1993) Algorithm 715: SPECFUN — A portable
package of special function routines and test drivers.
Transactions on Mathematical Software_ %19%, 22-—-32.

For 'gnorm’', the code is a C translation of

CRMDA (CRMDA) MC

"dnorm’ gives the density, 'pnorm’' gives the distribution
function , ’'gqnorm’ gives the quantile function, and ’'rnorm’

The length of the result is determined by 'n’ for 'rnorm', and
the maximum of the lengths of the numerical arguments for the

is

the length
arguments

0, a point
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Interactive Session  Distributions in R

Help pages for some built-in distributions ...

Wichura, M. J. (1988) Algorithm AS 241: The percentage points of
the normal distribution. _Applied Statistics_ , #37x, 477 —484.

which provides precise results up to about 16 digits.

For 'rnorm’, see RNG for how to select the algorithm and for
references to the supplied methods.

References:

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S
Language_. Wadsworth & Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) _Continuous
Univariate Distributions_, volume 1, chapter 13. Wiley, New York.
See Also:

Distributions for other standard distributions , including 'dlnorm
for the _Log_normal distribution.

Examples:

require(graphics)

dnorm (0) == 1/sqrt (2xpi)
dnorm (1) == exp(—1/2)/sqrt (2:*pi)

CRMDA (CRMDA) MC 2018
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Interactive Session  Distributions in R

Help pages for some built-in distributions ...

dnorm (1) == 1/sqrt (2% pixexp (1))
## Using "log = TRUE" for an extended range

par(mfrow = c(2,1))
plot(function(x) dnorm(x, log = TRUE), —60, 50,

main = "log { Normal density }")
curve(log(dnorm(x)), add = TRUE, col = "red”, lwd = 2)
mtext ("dnorm(x, log=TRUE)", adj = 0)
mtext("log(dnorm(x))"”, col = "red”, adj = 1)
plot(function(x) pnorm(x, log.p = TRUE), —50, 10,

main = "log { Normal Cumulative }")
curve(log(pnorm(x)), add = TRUE, col = "red”, lwd = 2)
mtext ("pnorm(x, log=TRUE)", adj = 0)
mtext("log(pnorm(x))"”, col = "red”, adj = 1)

## if you want the so-called ’error function’

erf <— function(x) 2 * pnorm(x x sqrt(2)) — 1

## (see Abramowitz and Stegun 29.2.29)

## and the so-called ’complementary error function’

erfc <— function(x) 2 % pnorm(x % sqrt(2), lower = FALSE)
## and the inverses

erfinv <— function (x) qnorm((1 + x)/2)/sqrt(2)

erfcinv <— function (x) gnorm(x/2, lower = FALSE)/sqrt(2)

CRMDA (CRMDA) MC

2018
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Interactive Session  Distributions in R

Each Subgroup Has an Assignment

Choose one of these distributions (T, x?, Poisson, Uniform, Gamma,
Beta, Cauchy, Logistic, Weibull, Binomial, or Negative Binomial)

Review the help page for that (see below)
Run example() for your distribution (may be helpful, maybe not)

Run 1 simple set of commands to set the arguments and use the r
variant. Create a histogram. Here's example demonstrating my use of
the normal distribution

m <- 7
s <- 3
N <- 2000
y <- rnorm(N, m = m, s = s)
5 hist(y, breaks = 50, prob = TRUE)
range (y)

‘[1] -3.004026 16.992200 ‘

KU
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Interactive Session  Distributions in R

Each Subgroup Has an Assignment ...

‘ str (y)

‘ num [1:2000] 8.76 9.13 6.67 5.64 8.82 ...

@ Report to rest of us on following
@ is output variable discrete or floating-point numeric?
o what parameters control the data generator?
e can you guess what the range of the variable might be (does it have
values from —oo to oo, or is it bounded, say, in (0, co].

@ T distribution

‘ 7rt

Q X2 distribution

‘ ?rchisq

CRMDA (CRMDA) MC

2018
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Interactive Session  Distributions in R

Each Subgroup Has an Assignment ...

© Poisson distribution

‘ ?rpois ‘

@ Uniform distribution

‘ ?runif ‘

© Gamma distribution

‘ ?rgamma ‘

Q@ Beta distribution

‘ ?rbeta ‘

@ Cauchy distribution

‘ ?rcauchy ‘

KU
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Interactive Session  Distributions in R

Each Subgroup Has an Assignment ...

@ Logistic distribution

‘ ?rlogis ‘

© Weibull distribution

\ ?rweibull \

@ binomial distribution

‘ ?rbinom ‘

@ Negative binomial distribution

‘ 7?rnbinom ‘

KU
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Interactive Session ~ Binomial Distribution

Binomial distribution

@ The number of “Yes” answers in a sequence of “Yes” or “No” trials with
fixed probability of “Yes”

@ Represents coin flips “"Heads" or “Tails"

@ Conduct 10 flips with a fair coin, count number of Heads.
Do that over and over, a total of N = 100 times

size <- 10

prob <- 0.5

N <- 100

y <- rbinom(n = 100, size = size, prob = prob)

s | ¥

[1] 4 6 7446757757833634356 443554544
73561763645274548

(48] 2456 6 4544523357375565663565435
66663285444663647T

[95] 6 53 6 4 5

KU
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Interactive Session ~ Binomial Distribution

Binomial distribution

@ What is the distribution of outcomes?

table (y)

y
1 2 3 4 5 6 7 8

1 4 15 22 22 22 11 3

CRMDA (CRMDA) MC

2018
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Interactive Session ~ Binomial Distribution

| forgot to set the random generator's initial state

set.seed (234234)
yl <- rbinom(n = 100, size = size, prob
head (y1)

prob)

[[11 5 94655 \

set.seed (234234)
y2 <- rbinom(n = 100, size = size, prob
head (y2)

prob)

[[11 594655 \

KU
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Interactive Session ~ Binomial Distribution

Bernoulli Trials

@ We have N random samples and each one uses a collection of size
random draws.

@ A Bernoulli trial is a sample of N observations in which the size is
restricted to 1.

@ Bernoulli is the base distribution of logit/probit models, each
observation is a draw from a TRUE/FALSE outcome.

KU
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Interactive Session ~ Binomial Distribution

Two ways to think about Bernoulli Trials

@ I'll do 1000 samples, each of size 1, with prob = 0.4.

N <- 1000

size <- 1

prob <- 0.4

yl <- rbinom(N, size, prob)
s | head(y1)

[[l1 000010

## The total number of 1’s is
sum (y1)

[[1] 383 |

@ I'll draw 1 sample, with size 1000, with prob = 0.4
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Interactive Session ~ Binomial Distribution

Two ways to think about Bernoulli Trials ...

N <- 1

size <- 1000

y2 <- rbinom(N, size, prob)
y2

[[1] 404

o What's the difference?
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Interactive Session ~ Binomial Distribution

One Application: Modeling Rare Events

Celiac disease affects 1% of the population. We will draw one sample with
size = 10

‘ rbinom (1, size = 10, prob = .01) ‘

[[11 o |

How many would we expect in a random sample of 100 people?

‘ rbinom (1, size = 100, prob = .01) ‘

[[1] 2 |

How many are found in a random sample of 1000 people?
1000, prob = .01) |

‘ rbinom (1, size

[[11 10 |

@ As size gets larger, the sample size drawn should get closer and closer to
prob X size. KU
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Interactive Session ~ Binomial Distribution

Check that with a little simulation study

@ I'll create 4 sets of draws with 4 values of the size parameter

N <- 2000

sizel <- 10

size2 <- 100

size3 <- 1000

5 size4 <- 10000

ohone <- 0.01 ## a joke!

yl <- rbinom(N, sizel, prob = ohone)
y2 <- rbinom(N, size2, prob = ohone)
y3 <- rbinom(N, size3, prob = ohone)
0 y4 <- rbinom(N, size4, prob = ohone)

@ Convert output to proportions

KU
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Interactive Session ~ Binomial Distribution

Check that with a little simulation study ...

## Convert to proportions
ylp <- yil/sizel
head (yip)

[[11 0.0 0.0 0.1 0.0 0.0 0.0

y2p <- y2/size?2
head (y2p)

‘[1] 0.03 0.00 0.00 0.00 0.00 0.00

y3p <- y3/size3
head (y3p)

‘[1] 0.010 0.012 0.006 0.009 0.011 0.011 ‘

KU
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Interactive Session ~ Binomial Distribution

Check that with a little simulation study ...

ydp <- y4/sized
head (y4p)

‘[1] 0.0084 0.0103 0.0111 0.0111 0.0099 0.0112

CRMDA (CRMDA) 2018 32/121



Interactive Session ~ Binomial Distribution

Check that with a little simulation study ...

@ Make a nice plot

ylp.range <- range(ylp)

par (mfcol = c(2,2))

hist(ylp, prob = TRUE, xlim = ylp.range,
hist(y2p, prob = TRUE, xlim = ylp.range,
hist (y3p, prob = TRUE, xlim = ylp.range,

hist(y4p, prob = TRUE, xlim = ylp.range,

breaks=50, main = paste("Size =", sizel))
breaks=50, main = paste("Size =", size2))
breaks=50, main = paste("Size =", size3))

breaks=50, main = paste("Size =", sized))

CRMDA (CRMDA) MC

2018
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Interactive Session ~ Binomial Distribution

Check that with a little simulation study ...
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Interactive Session ~ Binomial Distribution

If You Were Doing that For Real, I'd tighten it up

N <- 2000
size <- c(10, 100, 1000, 10000)
ohone <- 0.01 ## a joke!
for(j in seq_along(size)){
y <- rbinom(N, size[j], prob = ohone)
yname <- pasteO("y", j)
assign(yname, y)

@ The assign() puts the variables y1, y2, y3, y4 in the global workspace,
which is rather careless

@ |'d convert the output to a matrix in either

e wide format: y with N rows and #{size} columns, or

e long format: N x #{size}rows and 2 columns (1 column size and 1
column “stacked y")

o Will discuss designing output

CRMDA (CRMDA) MC 2018
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Interactive Session ~ Normal distribution

Normal distribution

@ Most of us are familiar with at least a few special cases of the general
linear model: regression, correlation, t tests, ANOVA.

@ These assume a normally distributed outcome (at least, a normal
residual term).

@ These models assert the error term is normally distributed with a
standard deviation of some number ¢ and expected value 0.

sigma <- 3
mu <- 0
error <- rnorm(100, m = mu, s = sigma)

head (error)

[1] ©0.06315714 3.51111143 -7.30378820 0.13006657 -4.77096913

-0.33498189

KU
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Interactive Session ~ Normal distribution

Normal distribution ...

‘ mean (error) ‘

[[1] -0.03904841 \

@ The normal distribution is most often written down as N (u,0?) , (in
words N (mu, sigma?)), we are thinking of the parameters as the
expected value and variance

@ In Bayesian software like BUGS and JAGS, they say the second
parameter is 1/02. They call that precision, writing N (j, ) for
T=1/0"

@ In Bayesian software Stan, they differ again, referring to the normal by
expected value and standard deviation, N(u,0)

KU
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Interactive Session ~ Normal distribution

Normal distribution defaults

@ The R rnorm default parameters are m=0 and s=1

y <- rnorm(10)
head (y)

‘[1] -0.1881444 0.4115536 1.6776777 2.9389290 -0.1080186 -0.3335427 ‘

These are commonly called Z scores. Referred to as a “standard normal”
distribution.

@ In many programs, one can only draw from N(0,1) and then manually
rescale with the desired mean and standard deviation.

@ If e; is a draw from N(0,1), we can manufacture N (m, s?)

Y; = mu + sigma - e;

KU
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Interactive Session ~ Normal distribution

Normal distribution defaults ...

@ In R, it is usually not necessary to do that re-scaling manually because
we can specify the expected value and standard deviation parameters.

@ Example, 1Q scores

y <- rnorm (10, m = 100, s = 15)
head (y)

‘[1] 96.57619 87.93997 93.17366 104.17639 113.21681 100.65354

@ A large enough sample should look “normal”, somewhat like the
probability density function

mu <- 100

sigma <- 15

N <- 150

x <- rnorm(N, mean = mu, sd = sigma)

hist(x, prob = TRUE, main = "IQ Scores", xlab =
"IQ", col = "grey70", breaks = 30)

CRMDA (CRMDA) MC 2018
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Interactive Session ~ Normal distribution

Normal distribution defaults ...

IQ Scores

0.04
|

Density
0.02
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Interactive Session ~ Normal distribution

Normal distribution defaults ...

@ Do the sample statistics match the population parameters?

## Using x again, sample of N
mu

\[1] 100 ‘

‘ mean (x) ‘

[[1] 100.595 |

‘ sigma ‘

[[1] 15 |

‘ sd (x) ‘

\[1] 15.39491 \ KU
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Interactive Session ~ Normal distribution

Normal distribution defaults ...

@ Questions

@ Why don’t they match exactly?
@ What would make them match more closely?

@ Bigger sample!

x.1000 <- rnorm(1000, mean = mu, sd = sigma)
hist(x.1000, prob = TRUE, main = "IQ Scores",
xlab = "IQ", col = "grey70", breaks = 30)

CRMDA (CRMDA) MC

2018
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Interactive Session ~ Normal distribution

Normal distribution defaults

1Q Scores
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Interactive Session ~ Normal distribution

That's what Statistics is All About!

@ Quantify how much we expect the sample mean to differ from the
population parameter.

@ Remember the standard error?

SD
sqrt(N)

@ If the standard deviation is 15 and the sample size is 150, we expect SE
to be the standard deviations of the estimates of the mean

sigma <- 15

N <- 150

stderr.theoretical <- sigma / sqrt(N)
stderr.theoretical

\[1] 1.224745

CRMDA (CRMDA) MC 2018
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Interactive Session ~ Normal distribution

What exactly is the SE? Let's use a Monte Carlo

investigation

@ To illustrate using Monte Carlo methods, we can draw several random
samples of N = 150 from the same data generating process (e.g.,
“population”), saving the mean from each one.

@ First, write a very simple function that will do this for one replication:

getSampleMean <- function(rep, N, M, SD){
## rep is an unused parameter , a place-holder
x <- rnorm(N, mean = M, sd = SD)
mean (x)

Note the function arguments can have any name we want

@ now apply it once to check that it works

CRMDA (CRMDA) MC 2018
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Interactive Session ~ Normal distribution

What exactly is the SE? Let's use a Monte Carlo

investigation ...

# Recall
N

\[1] 150 ‘

= |

[[11 100 \

‘ sigma ‘

[[1] 15

‘ getSampleMean(1l, N, mu, sigma)

KU
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Interactive Session ~ Normal distribution

What exactly is the SE? Let's use a Monte Carlo

investigation ...

[[1] 99.19473

@ OK, now apply it 10,000 times (estimates of mu are called muhat here,

~

1)

set.seed (123)
muhat <- vapply(1:10000, getSampleMean, N = 150,
M = mu, SD = sigma, numeric (1))

@ print the first few means to see if it looks like the output you expected

‘ head (muhat) ‘

‘[1] 99.63456 101.39869 99.30975 100.96353 99.56550 100.93269

2018 47 /121
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Interactive Session ~ Normal distribution

What exactly is the SE? Let's use a Monte Carlo

investigation ...

@ What is the mean of the sample means?

muhatmean <- mean (muhat)
muhatmean

\[1] 99.98058 ‘

= |

\[1] 100 ‘

‘ mu - muhatmean ‘

[[1] 0.01941632 \

Pretty close! Mean of means approaches true mu as N approaches
infinity KU
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Interactive Session ~ Normal distribution

What exactly is the SE? Let's use a Monte Carlo

investigation ...

@ What is the SD of the sample means?

muhatsd <- sd(muhat)
stderr.theoretical

[[1] 1.224745 \

‘ muhatsd - stderr.theoretical ‘

\[1] -0.009331123 \

pretty close! SD of means approaches SE as N approaches infinity
@ What's the point of this?

o Just to test whether the formula for SE works? Maybe

o Well, we drew random NORMAL numbers, so we would expect the
normal-theory formula for SE to work.

o Can now ask, “What if that assumption were violated?” KU

CRMDA (CRMDA) MC 2018 49/121



Interactive Session ~ Normal distribution

Violations of the Normality Assumption

@ Suppose we were studying exam scores, with a ceiling effect at 100.

@ Re-design previous function to return a vector (rep, mean, std.dev,
std.err.)

getEstimates <- function(rep, N, M, SD) {

x <- rnorm(N, mean = M, sd = SD)
x <- ifelse(x > 100, 100, x)
c(rep = rep, mean = mean(x), sd = sd(x),

sterr = sd(x)/sqrt(N))
5 }
set.seed (123)

@ the estimates are returned as a matrix that has 4 rows and one column
per replication.

KU
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Interactive Session ~ Normal distribution

Violations of the Normality Assumption

## Recall
mu

\[1] 100 ‘

‘ sigma ‘

\[1] 15

trunc.hat <- vapply(1L:10000L, getEstimates, N =
150, M = mu, SD = sigma, numeric(4))

trunc.hat[ , 1:3]
[,11 [,2] [,3]
rep 1.0000000 2.0000000 3.0000000
mean 94.1130062 95.1492024 93.5446341
sd 8.1099243 6.7194443 9.6017264

5 |sterr 0.6621726 0.5486403 0.7839777

KU
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Interactive Session ~ Normal distribution

Violations of the Normality Assumption ...

@ With sample of 150, the standard formula for the standard error of the
mean is SD/+/150

‘ (trunc.mean <- mean(trunc.hat[2, 1))

[[1] 94.00859 |

## Empirical standard error of the mean is:
(trunc.mean.sd <- sd(trunc.hat[2, 1))

[[1] 0.7054973 \

## Mean of within sample estimates of stardard
error:
(trunc.se.mean <- mean(trunc.hat[4, 1))

[[11 0.7127951 \

KU
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Interactive Session ~ Normal distribution

Violations of the Normality Assumption ...

## Theory-based std.err based using parameters
(ignoring trunctation)

stderr.theory <- sigma/sqrt(N)

stderr.theory

[[1] 1.224745 \

The normal theory-based standard error is much higher than the observed
standard deviation of the means.

KU
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Interactive Session  Generating Samples: Regression

Generating random samples from population parameters

Basic regression model

@ we want to ensure that our regression model is estimating a slope
properly.

@ generate data from a population space where the regression slope for X
predicting Y is known.

## Generate 100 cases

N <- 100
## X is normally distributed with a mean of 0 and
a sd of 10

## Y = b0 + blxX + e
5 b0 <- 30

bl <- 2

e.sigma <- 5

x.mu <- 0

x.sigma <- 5

0 ## e = N(0O, e.sigma”2) KU
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Generating random samples from population parameters ...

error <- rnorm(N, O, e.sigma)
x <- rnorm(N, x.mu, x.sigma)
dtest <- data.frame(x = x,
y = b0 + bl * x + error,
5 ynoe = b0 + bl * x)
head (dtest)

X y ynoe
1.278349 39.82345 32.55670
-1.088651 20.58299 27.82270
6.819867 45.73093 43.63973
6.390948 38.18484 42.78190
-3.679375 26.32133 22.64125
-8.880630 8.06160 12.23874

(&
DO W N

ml <- 1m(y ~ x, data = dtest)

ml.summary <- summary(ml) ## Save summary in
object for later

ml.summary

CRMDA (CRMDA) MC

2018
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Generating random samples from population parameters ...

Call:
Im(formula = y ~ x, data = dtest)

Residuals:
5 Min 1Q Median 3Q Max
-17.4355 -2.9898 0.3711 3.6924 12.0098

Coefficients:
Estimate Std. Error t value Pr(>|tl)

0 (Intercept) 29.78017 0.50952 58 .45 <2e-16 **x*
X 1.99847 0.09424 21.20 <2e-16 **x
Signif. codes: O ’*x*x’ 0.001 ’x*’ 0.01 ’x’ 0.05 ’.” 0.1 > ’ 1

5 |Residual standard error: 5.094 on 98 degrees of freedom
Multiple R-squared: 0.8211, Adjusted R-squared: 0.8192
F-statistic: 449.7 on 1 and 98 DF, p-value: < 2.2e-16

rockchalk::plotSlopes (ml, plotx = "x") ‘

@ When estimating regressions, understand the data structures they
generate
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Generating random samples from population parameters ...

‘ names (m1)

[1] "coefficients" "residuals" "effects" "rank"
"fitted.values" "assign"

[7] "qr" "df .residual" "xlevels" "call"
"terms" "model"

coef (ml) ## just the betas

(Intercept) x
29.780173 1.998473

names (ml.summary)

[1] "call" "terms" "residuals" "coefficients"
"aliased" "sigma"

[7] m"af" "r.squared" "adj.r.squared" "fstatistic"
"cov.unscaled"
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Generating random samples from population parameters ...

coef (ml.summary) ## Parameter table

(I

Estimate Std. Error t value Pr(>|tl)
ntercept) 29.780173 0.50952160 58.44732 5.451129e-78
1.998473 0.09424465 21.20516 2.138829e-38

X

@ What if the variance of the error term is larger?

ehuge <- rnorm(NROW(dtest), 0, 50)
dtest$yhuge <- b0 + bl * dtest$x + ehuge

m3 <- 1m(yhuge ~ x, dtest)
summary (m3)

CRMDA (CRMDA) MC
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Generating random samples from population parameters ...

Call:
Im(formula = yhuge ~ x, data = dtest)

Residuals:
5 Min 1Q Median 3Q Max
-97.091 -36.281 -4.686 34.494 142.950

Coefficients:
Estimate Std. Error t value Pr(>|t])

0 |(Intercept) 28.9358 5.4270 5.332 6.24e-07 **x
X 0.6816 1.0038 0.679 0.499
Signif. codes: 0 ’*%%’ 0.001 ’*x’ 0.01 ’*’ 0.05 ’.’ 0.1 > > 1

5 |Residual standard error: 54.26 on 98 degrees of freedom
Multiple R-squared: 0.004682, Adjusted R-squared: -0.005474
F-statistic: 0.461 on 1 and 98 DF, p-value: 0.4988

rockchalk::plotSlopes (m3, plotx = "x") ‘
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Generating random samples from population parameters ...

o
o
«

_| — Predicted valueis

150
1

yhuge
100
!

50
1

-50
|

-10 -5 0 5 10

X

@ What if we forget the error term?

KU
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Generating random samples from population parameters ...

m2 <- 1m(ynoe ~ x, data = dtest)
summary (m2)

Call:
Im(formula = ynoe ~ x, data = dtest)

Residuals:
5 Min 1Q Median 3Q Max
-7.193e-15 -2.259e-15 -1.152e-15 9.000e-18 1.293e-13

Coefficients:

Estimate Std. Error t value Pr(>|t])
0 |(Intercept) 3.000e+01 1.326e-15 2.262e+16 <2e-16 ***
X 2.000e+00 2.453e-16 8.154e+15 <2e-16 *x*x*

Signif. codes: O ’*x%’ 0.001 ’x%’ 0.01 ’x’ 0.05 ’.” 0.1 > °’> 1

5 |Residual standard error: 1.326e-14 on 98 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 6.648e+31 on 1 and 98 DF, p-value: < 2.2e-16
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Generating random samples from population parameters ...

## Generates a warning

## Warning message: In summary.lm(m2)

essentially perfect fit: summary may be ##
unreliable

KU
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Group mean differences

There is evidence that birth order (social more than biological) affects 1Q
(doi:10.1126/science.1141493).
@ We'll create data with the predictor “first” (1 = first-born, 0 = not), and
@ the true mean difference between those two populations is 5 1Q points.

@ Group 1 is the first-born group, for which the mean is 103, while the
mean for Group 0, the the ones who are not first born, is 98. The
standard deviations within the 2 groups are equal to 15.

@ Mean of group 1 can either be thought of as
98 +5

so 98 is the mean for humans and 5 is a bonus for first borns.

@ Suppose that 40% of children are first-borns. (60% of children are 2nd
or subsequent).

@ The expected value of the IQ score for the entire population is

4 %103+ .6 %98 KU
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Group mean differences ...

@ First, | have un-structured code that works

## Two groups, first = 0 or 1

set.seed (123)

firstprop <- 0.4

dat <- data.frame(first = rbinom(n = 100, size =
1, prob = firstprop))

## We have just assigned rows of data into groups
labeled 1 and O

head (dat)

first

O U WN
O = OF

CRMDA (CRMDA) MC 2018
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Group mean differences ...

## Now we sample IQ scores, taking group
membership into account.

## Here we use vectorized inputs to the data
generator

dat$IQ <- rnorm(NROW(dat), m = 98 + 5 *
dat$first, sd = 15)

## round to nearest whole number, since that is
how IQ scores are

## reported

dat$IQ <- round(dat$IQ)

head (dat, 10)

CRMDA (CRMDA) MC
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Interactive Session  Generating Samples: Group Mean Differences

Group mean differences ...

first IQ
102
103

124
100
121

112
100
101

= ©O© 00N O WN e
OO FrOOKREFEORO

@ Test out various estimators, note results are all equivalent

## Do the sample statistics match the data
generator (population) parameters?

## Several convenient ways to retrieve the
answers

ml <- 1m(IQ ~ first, data = dat)

summary (m1)

CRMDA (CRMDA) MC
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Interactive Session  Generating Samples: Group Mean Differences

up mean differences ...

Call:
Im(formula = IQ ~ first, data = dat)

Residuals:
Min 1Q Median 3Q Max
-33.425 -8.969 -0.817 8.727 33.183

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 97 .817 1.884 51.920 <2e-16 **x*
first 3.608 2.979 1.211 0.229

Signif. codes: O ’*x%’ 0.001 ’x%’ 0.01 ’x’ 0.05 ’.” 0.1 °

Residual standard error: 14.59 on 98 degrees of freedom
Multiple R-squared: 0.01475, Adjusted R-squared: 0.004698
F-statistic: 1.467 on 1 and 98 DF, p-value: 0.2287

>

1

## Or

t.test (IQ ~ first, data = dat)

CRMDA (CRMDA) MC
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up mean differences

Welch Two Sample t-test

data: IQ by first
t = -1.2193, df = 85.601, p-value = 0.2261
5 |alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-9.491625 2.274959
sample estimates:
mean in group O mean in group 1
10 97 .81667 101.42500

## Or
aggregate (IQ ~ first, data = dat,
FUN = function(x) c(M = mean(x),
SD = sd(x)))

first IQ.M IQ.SD
1 0 97.81667 14.78030
2 1 101.42500 14.30597
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Group mean differences ...

## I’m sure we could find a more tedious way
to get group differences, but this is near
the maximum

diff (aggregate(IQ ~ first, data = dat,
mean)$IQ)

[[1] 3.608333

KU
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Plan a Monte Carlo Study

@ We expect sampling variability, so the observed group difference will not
be exactly 5

@ And it isn't

@ Let's use Monte Carlo methods to find out how much the
mean-difference varies

@ | prefer to think of any MC exercise as 3 chores

@ Write a data-generator function
@ Write a function that analyzes a data set
© Write a function that orchestrates the first 2 functions.

KU
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Plan a Monte Carlo Study ...

5

20

@ Here's my data generator

##’ Create one data set for the first born question
##°
##’ This uses a vectorized call to rnorm
##’ Qparam rep Integer to name repetition
##’ Qparam N Sample Size
##’ Qparam M1 Mean of first born group
##’ Q@param MO Mean of non-first born group
##’ Qparam SD1 Standard Deviation of first born
##’ Qparam SDO Standard Deviation of non-first born
##’ Q@return A data frame
##’ Qauthor Paul Johnson
## define a data-generator function for one replication
getData <- function(rep, N, M1, MO, SD1, SDO) {
dat <- data.frame(first = rbinom(n = N, size = 1, prob =
dat$rep <- rep
dat$IQ <- rnorm(N, m = MO + dat$first * (M1 - MO),
s = SDO + dat$first * (SD1 - SDO))
dat$IQ <- round(dat$IQ)
dat

.4))

CRMDA (CRMDA) MC
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Plan a Monte Carlo Study ...

@ Here's the analysis function

##’ Calculate difference between groups
##
##’ This setup is lazy because it assumes the names
##’ of the variables are simply "first" and "IQ".
##’ I’d never do this in a real project.
##’ Qparam dframe a data frame with input data
##’ Q@return A floating point number for the difference
getDiff <- function(dframe){
diff (aggregate (IQ ~ first, data = dframe, mean)$IQ)
}

@ Test that

## try it on one replication first
datl <- getData(i, N = 100, M1 = 103, MO = 98, SD1 = 15, SDO
getDiff (datl)

15)

[[1] 7.899117
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Plan a Monte Carlo Study ...

L0

##
## Combine into 1 step if we don’t want to save the data
getDiff (getData(l1, N = 100, M1 = 103, MO = 98, SD1 = 15, SDO = 15

))

[[1] 5.374122

I'd run in debugger to make sure everything looks correct

@ Do that lots of times

## Make a wrapper function
oneSim <- function(rep, N = 100, M1 = 103, MO = 98, SD1 = 15, SDO
15) {
getDiff (getData(li, N = N, M1 = M1, MO = MO, SD1 = SD1, SDO =
}
## now do it 2000 times
## vapply here not different from R’s replicate, but we have
## more control
set.seed (123)
myMeanDiffs <- vapply(1:2000, oneSim, N = 100,
M1 = 103, MO = 98, SD1 = 15, SDO = 15,
numeric (1))

CRMDA (CRMDA) MC
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Plan a Monte Carlo Study ...

## check results
mean (myMeanDiffs)

[[1] 4.920373 \

‘ sd (myMeanDiffs)

[[1] 3.073736 |

CRMDA (CRMDA) MC 2018
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Plan a Monte Carlo Study ...

@ What did we find out?

‘ hist (myMeanDiffs, prob = TRUE, breaks = 30)

Histogram of myMeanDiffs

Density

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

I T T T 1
-5 0 5 10 15

myMeanDiffs w
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Remember the assumptions of a t-test?

T-test for difference of means historically assumed

@ equal variances (or SD) in each group (called homoscedasticity)
@ normally distributed data
@ independent (uncorrelated) observations randomly sampled

Perhaps you've also heard that a t-test is "robust” to a moderate violation of
normality

@ You'll make about as many Type | errors with moderately non-normal
data as you would with normal data.

@ The t-test is also somewhat robust to heteroscedasticity (different
variances), as long as the sample sizes are roughly equal.

KU

CRMDA (CRMDA) MC 2018 76/ 121



Interactive Session ~ T-test replication

Remember the assumptions of a t-test?

@ Let's design a simulation to see what the effects of these factors are on
the result of a t-test.

@ Research question: Does violating these assumptions increase the
probability of making a Type | error.

CRMDA (CRMDA) 2018
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Problem: User interface for simulation

@ Many years ago (when you were infants), some CRMDA GRAs decided
to write a simulator that would receive parameters as colon-separated
strings.

@ For example, they would want to provide a parameter in a string like
“40:20" and they wanted that to turn into a vector c(40, 20).

@ First, we need to explore some string magic

x <- "40:20"
strsplit(x, ":")

[[11]
[1] "40" "20"

## It is wrapped in an R list
unlist (strsplit(x, ":"))

KU

2018 78 /121

‘ [1] "40" "20"
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Problem: User interface for simulation ...

## It is still characters, need numbers
as.numeric (unlist(strsplit(x, ":")))

[[11 40 20

@ Create a function that can receive those strings for N, M and SD.

## Define a function for one replication
getTdata <- function(rep, N, M, SD) {
## tease apart two sample sizes

Nvec <- as.numeric(unlist(strsplit(N, ":")))
5 ## tease apart two means
Mvec <- as.numeric(unlist(strsplit(M, ":")))

## tease apart two SDs
SDvec <- as.numeric(unlist(strsplit (SD,

II:II)))

KU
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Interactive Session ~ T-test replication

Problem: User interface for simulation ...

data set

Nvec [1]),
rep(l, times =
Nvec [2]1)))
## generate random IQ scores
dat$IQ <- rnorm(sum(Nvec), m =
Mvec [(dat$first + 1)1,

dat$IQ <- round(dat$IQ)

attr (dat, "rep") <- rep

attr (dat, "parms") <- c(N = N, M = M,
SD)

dat

## assign dummy variables to each group’s

dat <- data.frame(first = c(rep(0, times

sd = SDvec[(dat$first + 1)1])

CRMDA (CRMDA) MC
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Problem: User interface for simulation ...

## Test
dframel <- getTdata(l, N = "30:30", M = "98:102",
SD = "15:15")

@ |'ve used attributes to store copies of the rep number and the parms, in
case | wanted to do record keeping

## Note the attributes stored with the data frame:
attributes (dframeil)

KU

CRMDA (CRMDA) MC 2018  81/121



L0

5

Interactive Session ~ T-test replication

Problem: User interface for simulation

$names
[1] |Ifirst|l |IIQI|

$row.names
23 24 25 26 27 28 29 30 31 32
55 56 57 58 59 60

$class
[1] "data.frame"

$rep
[1] 1
$parms
N M SD
"30:30" "98:102" "15:15"

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

[33] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

## Individual attributes can be retrieved
attr (dframel, "rep")

CRMDA (CRMDA) MC
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Problem: User interface for simulation ...

[[11 1 |

‘ attr (dframel, "parms")

N M SD
"30:30" "98:102" "15:15"

@ The analysis function

##’ A small wrapper to calculate a t-test

##’ Oparam dframe A data frame

##’ @param y character string for name of
dependent variable. Default is "IQ"

##’ QOparam x character string for name of
independent variable. Default is "first"

5 ##’ Q@return We return only the p-value.

KU
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Problem: User interface for simulation ...

conductTtest <- function (dframe, y = "IQ", x =
"first"){
t.test (formula(paste(y, "~", x)), data =
dframe, var.equal = TRUE)$p.value

b
## Test it once, wrapping 2 function calls
together
0 conductTtest (getTdata(l, N = "30:30", M =
"98:103", SD = "15:15"))

[1] 0.02832306

KU
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Problem: User interface for simulation ...

## Create a one-step wrapper to put those together
runOneSim <- function(nreps, N, M, SD){

df <- getTdata(l, N = "30:30", M = "98:103",
SD = "15:15")
reslt <- conductTtest (df)
5 reslt
}
## Now apply it 10 times to see the format of the
output
sim10 <- sapply(1:10, runOneSim, N = "30:30", M =
"98:103", SD = "15:15")
sim10

[1] 5.655317e-02 3.943166e-04 1.184527e-01 3.095466e-01 8.163624e-02
4.154827e-05 4.396998e-01
[8] 5.338259e-01 3.253789e-01 2.306124e-01

KU
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Problem: User interface for simulation ...

## Oops, I did not snatch the attributes for
records.

## Oops, I also forgot to store the rejection
decision, so insert it

runOneSim <- function(rep, N, M, SD){
dframe <- getTdata(rep, N = N, M = M, SD
SD)
reslt <- conductTtest (dframe)
parms <- attr(dframe, "parms")
dframe2 <- data.frame(rep = attr(dframe,
"rep"),
pvalue = reslt, reject = if
(reslt <= 0.05) 1 else O,
N = parms["N"], M = parms["M"],
SD = parms["SD"])

dframe?2

CRMDA (CRMDA) MC
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Problem: User interface for simulation ...

b
## test that
runOneSim(1, N = "30:30", M = "98:103", SD =
"15:15")
rep pvalue reject N M SD
N 1 0.1556859 0 30:30 98:103 15:15

## Returns a list of one row data frames

set.seed (123)

nReps <- 1000

result.list <- lapply(l:nReps, runOneSim, N =
"30:30", M = "98:103", SD = "15:15")

## Smash those down into one data frame with 1 row

## per replication

result.df <- do.call("rbind", result.list)

mean (result.df$reject)

CRMDA (CRMDA) MC 2018
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Problem: User interface for simulation ...

\[1] 0.248

‘ plot (result.df$pvalue, result.df$reject)

KU
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Problem: User interface for simulation

e
—

0.8

result.df$reject

0.4

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

result.df$pvalue
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Explore range of conditions

@ R has a magic function named expand.grid

@ It is easier to display it than to describe it.

expand.grid(x = c("a", "b", "C"), y = C("j",
"k"), z = c(1, 2, 3))

© 00 ~N®O e WN -

10

15 |14

M OT P OT P OTPEPOTHEOTE N

f SR SR SR SR S SR S S SR o)
WWWWNRONNONNR B BN
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Explore range of conditions ...

17 b k 3
18 ¢ k 3

@ What did we get
e a "mix and match” of elements, one per row

@ Caution: It turned our character strings into factors:

eg <- expand.grid(x = c("a", "b", "c"),
C("j", "k"), z = C(l, 2’ 3))

## In document production,
error.

## str(eg)

lapply(eg, class)

y:

this causes an
Should be 0K interactively

KU
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Explore range of conditions ...

$x
[l "FarweseD

8y
5 |[1] "factor"

$=z

[1] "numeric"

@ Prevent unwanted creation of R factors

eg <- expand.grid(x = c("a", "b", "c"),
y = C("j", "k"),
z = c(1, 2, 3),
stringsAsFactors = FALSE)
s | ## str(eg)
lapply(eg, class)

KU
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Explore range of conditions ...

$x

[1] "character"

$y
5 |[1] "character"

$z

[1] "numeric"

@ In simulations, we usually have vectors of settings. We will use
expand.grid to “mix and match” all of them.

KU

CRMDA (CRMDA) MC 2018  93/121



Interactive Session ~ T-test replication

Explore range of conditions

@ Create a conds data frame to summarize the work to be done

## Set a variety of factors and compare p-values

## We need to choose levels of our predictors
(sample size and SD)

## - equal v. unequal group sample sizes
5 ## - equal v. unequal group variances
## - mean-difference: O, 5, or 10

cond.N <- c("30:30", "40:20")

cond.SD <- c("10:20", "15:15", "20:10")

cond.M <- c("100:100") # for now, mean-difference
=0

0 ## A fully crossed design runs all combinations
of these levels. This

## is a 2 (N) by 3 (SD) factorial design, so it
has 2 * 3 = 6 KU
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Interactive Session ~ T-test replication

Explore range of conditions ...

= cond.N,

head (conds)

## conditions
conds <- expand.grid(maxReps = 3, SD = cond.SD, N

M

cond.M,

stringsAsFactors = FALSE)

maxReps SD

DO WN e
W wwwww
N
o
=
o
w
o

100:
100:
100:
100:
100:
100:

100
100
100
100
100
100

@ | did not think of an elegant approach, so here's my strategy.

@ Create one more function that can receive the conds matrix and pick
one row out of it. Let that function run as many simulations as we
need, and return a data.frame.

CRMDA (CRMDA)

MC 2018
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Interactive Session ~ T-test replication

Explore range of conditions ...

##’ Tell this function the condition row to use,

##’ and it creates a batch of simulations

runOneCondition <- function(i, conds){
x <- conds[i, ]
result.list <- lapply(l:x$maxReps, runOneSim,

N = x$N, M = x$M, SD = x$SD)
do.call("rbind", result.list)
}

allResults <- lapply (1:NROW(conds),
runOneCondition, conds)

## Each sample drawn from a particular population
is a "case" (like

## subjects). We can easily combine our list of
results as a single

## data set for amnalysis

output <- do.call(rbind, allResults)

head (output, 30)

CRMDA (CRMDA) MC 2018
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Explore range of conditions ...

rep pvalue reject N M SD

N 1 0.42719499 0 30:30 100:100 10:20

N1 2 0.31725809 0 30:30 100:100 10:20

N2 3 0.57996600 0 30:30 100:100 10:20

5 |N3 1 0.74422299 0 30:30 100:100 15:15
Ni1 2 0.41279370 0 30:30 100:100 15:15
N21 3 0.63699226 0 30:30 100:100 15:15

N4 1 0.55661831 0 30:30 100:100 20:10
N12 2 0.61536653 0 30:30 100:100 20:10

0 [N22 3 0.83029046 0 30:30 100:100 20:10
N5 1 0.86315193 0 40:20 100:100 10:20
N13 2 0.18103430 0 40:20 100:100 10:20
N23 3 0.09913700 0 40:20 100:100 10:20

N6 1 0.80104357 0 40:20 100:100 15:15

5 |N14 2 0.08603419 0 40:20 100:100 15:15
N24 3 0.04868749 1 40:20 100:100 15:15

N7 1 0.66700548 0 40:20 100:100 20:10
N15 2 0.25679324 0 40:20 100:100 20:10
N25 3 0.93516193 0 40:20 100:100 20:10
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Interactive Session ~ T-test replication

Explore range of conditions ...

## Finally, we are ready to run several
replications in each condition.

conds$maxReps <- 1000

conds

o0 WwN

maxReps SD N M
1000 10:20 30:30 100:100
1000 15:15 30:30 100:100
1000 20:10 30:30 100:100
1000 10:20 40:20 100:100
1000 15:15 40:20 100:100
1000 20:10 40:20 100:100
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Interactive Session ~ T-test replication

Explore range of conditions ...

## Our Monte Carlo study will take a few moments
to run

set.seed (123)

bigResults <- lapply (1:NROW(conds),
runOneCondition, conds)

stackedResults <- do.call(rbind, bigResults)

## Now summarize the rejection rate for each
condition

output <- aggregate(reject ~ N + SD, data =
stackedResults, FUN = mean)

names (output) <- c("N", "SD", "Type.I.Rate")

output

CRMDA (CRMDA) MC 2018
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Interactive Session ~ T-test replication

Explore range of conditions ...

DO W N

N SD Type.I.Rate
30:30 10:20 0.044
40:20 10:20 0.108
30:30 15:15 0.053
40:20 15:15 0.050
30:30 20:10 0.041
40:20 20:10 0.012

@ The findings are sobering for t-testing with unequal sample sizes

## How does it perform when sample sizes are

equal?
output [output$N == "30:30",]
N SD Type.I.Rate
1 30:30 10:20 0.044
3 30:30 15:15 0.053
5 30:30 20:10 0.041
CRMDA (CRMDA) MC 2018




Interactive Session ~ T-test replication

Explore range of conditions ...

## Unequal?
output [output$N != "30:30",]
N SD Type.I.Rate
2 40:20 10:20 0.108
4 40:20 15:15 0.050
6 40:20 20:10 0.012

@ The corrected version of the t-test. Does it reduce the problem?

## Since 15 years ago, R’s default t-test
uses Welch'’s
## correction for difference in variance.

## A replacement for the t-test function

5 conductTtest <- function (dframe, y = "IQ", x
= "first"){
t.test (formula(paste(y, "~", x)), data =
dframe) $p.value KU
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Interactive Session ~ T-test replication

Explore range of conditions ...

10

b

set.seed (123)

bigResults <- lapply (1:NROW(conds),
runOneCondition, conds)

stackedResults <- do.call(rbind, bigResults)

## Now summarize the rejection rate for each
condition

output <- aggregate(reject ~ N + SD, data =
stackedResults, FUN = mean)

names (output) <- c("N", "SD", "Type.I.Rate")

output

o0 WwN -

N SD Type.I.Rate
30:30 10:20 0.040
0.047
0.053
40:20 15:15 0.048
0.041
0.047
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Interactive Session ~ T-test replication

Explore range of conditions ...

@ Yes!

KU
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Recommendations

Outline

@ Recommendations

KU
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Recommendations

Advice for Monte Carlo Designers

DO NOT:
@ Think of the Monte Carlo experiment as “One Giant Sequential Script”
of commands
@ Generate a massive block of data that needs to be saved and re-loaded
every time you run a procedure on it

Rather, create separate functions that

© Generate and manipulate data for one “run” of the simulation

o May receive a random seed for replication purposes
@ Handles all of the data-related changes (impose missingness, etc.)

©Q Accept & analyze 1 data set (Runs one complete replication, saves
results)

© Orchestrate repetition of the above steps
@ Harvest estimates, summarize/plot results

KU
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Recommendations

Example of what to NOT Do

R code generated by ML-Pow-SIM

#it A programme to obtain the power of parameters in 2 level

# balanced model with Normal response

# generated on 09/11/16

(12 20UV VYV INVVVVIIVVY Required packages ~an~mnnmmnnnssnnnsditE

library (MASS)
library (1lme4)

HH RN AN AN AN AN AN Initial inputs YV VYV VNV PNV NV T

set.seed (666)

siglevel<-0.025

zlscore<-abs (qnorm(siglevel))
simus<-100

nilow<-5

nihigh<-6

nistep<-1

n2low<-35

n2high<-40

n2step<-5

npred<-1

randsize<-1
beta<-c(0.00000,+.500000)
betasize<-length(beta)
effectbeta<-abs(beta)
sgnbeta<-sign(beta)

randcolumn<-0
xprob<-c(0,0.500000)
meanpred<-c(0,0.000000)
sigma2u<-matrix(c(1.000000),randsize,randsize)
sigmae<-sqrt (2.000000)
nirange<-seq(nilow,nlhigh,nistep)
n2range<-seq(n2low,n2high,n2step)

CRMDA (CRMDA) MC
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Recommendations

Example of what to NOT Do ...

nilsize<-length(nirange)

n2size<-length(n2range)

totalsize<-nlsize*n2size

finaloutput<-matrix(0,totalsize ,6*betasize)

rowcount<-1

e Inputs for model fitting S

fixname<-c("x0","x1")

fixform<-"1+x1"

randform<-"(1]12id)"
expression<-paste(c(fixform,randform),collapse="+")
modelformula<-formula(paste("y ~",expression))
data<-vector("list",2+length(fixname))

names (data)<-c("12id","y",fixname)

#####--------- Initial input for power in two approaches —-------------—-#####
powaprox<-vector ("list",betasize)
names (powaprox)<-c("b0","b1")

powsde<-powaprox

cat (" The programme was executed at", date(),
cat (" - _

for(n2 in seq(n2low,n2high,n2step)){
for(nl in seq(nilow,nihigh,nistep)){

length=n1+n2
x<-matrix (1,length,betasize)
z<-matrix(1,length,randsize)
12id<-rep(c(1:n2),each=n1)
sdepower<-matrix (0,betasize,simus)
powaprox [1:betasize]l<-rep(0,betasize)
powsde<-powaprox

CRMDA (CRMDA) MC
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Recommendations

Example of what to NOT Do ...

cat (" Start of simulation for sample sizes of ",n1," micro and ",n2,"macro units\n")
for (iter in 1:simus){

if (iter/10==floor (iter/10)){
cat (" Iteration remain=",simus-iter,"\n")
}
# R - o —m = To set up X matrix e T T T T T

x[,2]<-rbinom(length,1,xprob[2]
e ittt 2 22 2
e<-rnorm(length,0,sigmae)
u<-mvrnorm(n2,rep (0, randsize),sigma2u)
fixpart<-xJ%*/%beta
randpart<-rowSums (z*u[12id,])
y<-fixpart+randpart+e
Bl —m e Inputs for model fitting e 'Y

data$l2id<-as.factor (12id)
data$y<-y
data$x0<-x[,1]
data$x1<-x[,2]
## Fitting the model using lmer funtion At i i

(fitmodel <- lmer(modelformula,data,REML=TRUE))
######~~ . To obtain the power of parameter (s) ~~n~~~~~rrAREEEE

estbeta<-fixef (fitmodel)
sdebeta<-sqrt (diag(vcov(fitmodel)))
for(l in 1:betasize)
{
cibeta<-estbeta[l]-sgnbeta[l]*zlscore*sdebetal[l]
if (beta[l]*cibeta>0) powaprox [[1]]<-powaprox [[1]]+1

CRMDA (CRMDA) MC
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Recommendations

Example of what to NOT Do ...

sdepower [1,iter]<-as.numeric(sdebetal[1l])

o o g

} ## iteration end here
- - oo Powers and their CIs Bt 4.5 1
for (1 in 1:betasize){

meanaprox<-powaprox [[1]]<-unlist (powaprox[[1]]/simus)
Laprox<-meanaprox-zlscorexsqrt (meanaprox*(l-meanaprox)/simus)
Uaprox<-meanaprox+zlscore*sqrt(meanaprox#* (1-meanaprox)/simus)
meansde<-mean (sdepower [1,])

varsde<-var (sdepower [1,])
USDE<-meansde-zlscore*sqrt(varsde/simus)
LSDE<-meansde+zlscore+sqrt (varsde/simus)

powLSDE<- pnorm(effectbetal[l]/LSDE-zlscore)

powUSDE<- pnorm(effectbetal[l]/USDE-zlscore)

powsde [[1]]<-pnorm(effectbeta[l] /meansde-zlscore)

LA e e e Restrict the CIs within 0 and 1 ---------##
if (Laprox<0) Laprox<-0
if (Vaprox>1) Uaprox<-1
if (powLSDE<0) powLSDE<-0
if (powUSDE>1) powUSDE<-1

finaloutput [rowcount ,(6%1-5):(6%1-3)]<-c(Laprox ,meanaprox ,Uaprox)
finaloutput [rowcount ,(6%1-2):(6%1)]<-c(powLSDE,powsde [[1]], powUSDE)

}

#H# Set out the results in a data frame I i d
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Recommendations

Example of what to NOT Do ...

rowcount<-rowcount+1

€t (M= == = e o e o e e \nY)
} ## end of the loop over the first level
} ## end of the loop over the second level

e Export output in a file Rt 2 2

finaloutput<-as.data.frame(round(finaloutput,3))
output<-data.frame (cbind(rep(n2range,each=nisize),rep(nirange,n2size),finaloutput))

write.table (output,"powerout.txt",sep="\t
", quote=F,eol="\n",dec=".",col.names=T,row.names=F, qmethod="double")

names (output)<-c("N","n","zLbO","zpb0","zUb0","sLbO", "spb0","sUb0O","zLb1","zpbi","zUb1i","sLb1",

"spbil

CRMDA (CRM MC
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Recommendations

MC Designs from an ANOVA Point of View

@ Think of a random sample as a person/case in a study
o Multiple samples in each condition

@ Between-subjects factors change the data-generating process
o Parameters, distributions, missing data, scales

@ Within-subjects factors analyze the same data using different methods —
Estimation method, with/out covariates, N?

KU

CRMDA (CRMDA) MC 2018 111/121



Recommendations

Monte Carlo Outcomes

@ Sampling distributions of... anything!
Consistency, efficiency, normality

Bias in point and SE estimates

Confidence Interval coverage rates
Hypothesis tests rejection rates (alpha, power)

°
°
o (Root) mean-squared error
°
°
@ Model fit

KU
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Recommendations

Design your study to test hypotheses

Exploratory simulations can get out of hand

@ Are all conditions necessary to test your hypotheses?

o Consider how factors are expected to affect outcomes of interest,
including interactions

o If exploring potential effects, try 2 levels of each parameter you want to
explore.

o That gives 2* separate conditions for k parameters for pilot study
o Reduce number of conditions by intentionally confounding higher-order
interactions

@ Alternative strategy

e think of each parameter as a continuum,
e draw parameters for a run from the continuous space

KU
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Recommendations

Write down a recipe to plan your study

Writing syntax can be daunting, so start with plain language

@ Ingredients

o Characteristics of your population(s)
o Manipulated factors, outcomes of interest

@ Write down steps from beginning to end

o Can start broad, move to specific
o Ultimately, easier to translate to R, C, Fortran if you remember what
you are trying to do

KU
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Recommendations

Variance Reduction Techniques

Save time and computing power, as well as reduce the amount of noise in
your results

@ When is it necessary to draw new samples?
o NOT for factors like sample size, different estimators, prior variance,
competing models
e Typically, ONLY when the population differs (e.g., normal/nonnormal
data), or the factor reflects an aspect of design that changes
characteristics of the data (e.g., number of response categories)

KU
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Recommendations

Variance Reduction Techniques

o Consider sample size, etc., to be within- sample (or within-replication)
factors
@ Recycle same seeds, or better yet, perform all analyses/conditions on the
data the one time is generated
o Generate largest N, then take first N; from sample
o Repeat this for # of replications, within each cell of between-replication
design

CRMDA (CRMDA) MC 2018
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Recommendations

Analysis Plan

@ Carefully consider outcomes of interest

@ Have testable hypotheses/predictions
@ In each replication, save the output you intend to investigate, in a way
that makes it easy to analyze

@ Picture your analysis of results ahead of time

o Perhaps make up data in a spreadsheet that mimics the format of your
results
o Could help your design

KU
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Recommendations

Useful Tools

@ In R, the package portableParallelSeeds allows you to exercise great
control of replicability using random seed-states

o Developed at CRMDA, hosted on our KRAN server
o To install and find help files:

CRAN <- "http://rweb.crmda.ku.edu/cran"

KRAN <- "http://rweb.crmda.ku.edu/kran"

options (repos = c(KRAN, CRAN))

install.packages ("portableParallelSeeds", type =
"source"

CRMDA (CRMDA) MC 2018
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Recommendations

References

R Core Team (2017). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
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Recommendations

Session

5

‘ sessionInfo ()

R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so0.3.7.1
LAPACK: /usr/1lib/x86_64-linux-gnu/lapack/liblapack.s0.3.7.1

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8
LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8

LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets Dbase

loaded via a namespace (and not attached):

CRMDA (CRMDA) MC
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Session

[1] Rcpp_0.12.15
grid_3.4.4
[6] nlme_3.1-137
minga_1.2.4
car_2.1-6
lme4_1.1-17
pbkrtest_0.4-7
mgcv_1.8-23
[21] quantreg_5.35

[11]

[16]

Recommendations

lattice_0.20-35
MatrixModels_0.4-1
rockchalk_1.8.111
nloptr_1.0.4
Matrix_1.2-14
tools_3.4.4
parallel_3.4.4
nnet_7.3-12
methods_3.4.4

MASS_7.3-49
SparseM_1.77
splines_3.4.4

compiler_3.4.4
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