
Monte	Carlo	Simulation

Ben	Kite	and	Terrance	Jorgensen
KU	CRMDA

2017	Stats	Camp



Agenda

• Introduction	to	concept	of	Monte	Carlo
• Examples	in	R
• Tips	and	tricks
• Break	for	lunch	(12:00-1:30)
• Discussion	of	power	analysis
• Examples	in	R
• Questions



About	me

• Ben	Kite

• CRMDA	Assistant	Researcher

• Quantitative	Psychology

• Four	years	of	simulation	research	experience



What	Is	a	Monte	Carlo	Simulation?

• Anything	that	involves	generating	random	data	in	
a	parameter	space

• Simulating	data from	a	known	parameter space	
that	we	specify

• Read	Johnson’s	(2013)	“Monte	Carlo	Analysis	in	
Academic	Research”	for	history	and	applications
– doi:10.1093/oxfordhb/9780199934874.013.0022



What	Is	a	Monte	Carlo	Simulation?

• Consider	a	statistical	procedure	(e.g.,	a	t test)	
that	receives	data	and	returns	a	result
– i.e.,	parameter	estimates,	sample	statistics

• Presumably	there	is	a	“true”	population	value	
that	the	estimate	is	supposed	to	represent
– Does	the	procedure	yield	good	estimates	of	the	
true	parameters?

– Is	the	sampling	distribution	of	the	estimates	
normal,	symmetric,	consistent,	etc.?



What	Is	a	Monte	Carlo	Simulation?

• Specify	a	population	(i.e.,	a	set	of	parameters),	
then	draw	random	samples	from	it
– A	population	is	a	data-generating	process

• Apply	the	procedure	to	each	sample
– Save	estimates,	tests,	p-values,	etc.

• Evaluate	the	procedure
– Compare	stats	to	parameters,	check	distributions



Goals	of	a	Monte	Carlo	Simulation

• Check	that	a	procedure	behaves	as	expected
– Nominal	Type	I	error	rates,	unbiased	estimates…

• See	how	a	procedure	behaves	when	
assumptions	are	violated
– Inflated	Type	I	error	rates?		Robust	if	minor?	
Effects	of	missing	data?		Effect	of	sample	size?

• Compare	2	procedures
– OLS	v.	WLS;	LGCM	v.	MLM

• Power	analysis



Replicating	a	Random	Process

• We	must	be	able	to	regenerate	results	exactly	
without	saving	each	data	set

• Pseudorandom	number	generator	(PRNG)
– Algorithm	that	generates	seemingly	random	
streams	of	integers

– The	“random”	numbers	you	get	depend	on	a	
random	“state”	characterized	by	a	“seed”
• Seed	can	typically	be	specified	using	a	single	integer
• Setting	the	seed	allows	you	to	replicate	results



Let’s	Generate	Random	Numbers	in	R!

Let's	open	our	R	syntax	and	get	started.	 Here	is	
an	outline	of	today's	topics/tasks:
• Generate	some	simple	(pseudo)random	
numbers

• Generate	random	samples	of	data	using	
population	parameters

• Design	a	small-scale	Monte	Carlo	study
– How	are	Type	I	errors	affected	by	between-group	
differences	in	N and	SD?



Advice	for	Monte	Carlo	Designs
DO	NOT:
• Think	of	the	Monte	Carlo	experiment	as	“One	Giant	

Sequential	Script”	of	commands
• Generate	a	massive	block	of	data	that	needs	to	be	saved	

and	re-loaded	every	time	you	run	a	procedure	on	it
Rather,	create	a	function	for	every	action	you	need	to	take
• Data-generation	and	-manipulation	functions

– Generates	data	for	one	“run”	of	the	simulation
– Perturbs	the	data	(impose	missingness,	etc.)

• A	function	that	accepts	1	data	set	and	analyzes	it
• A	function	that	combines	the	above	steps

– Runs	one	complete	replication
• Functions	to	harvest	estimates,	summarize/plot	results



Monte	Carlo	Designs

• Think	of	a	random	sample	as	a	person/case
–Multiple	samples	in	each	condition

• Between-subjects	factors	change	the	data-
generating	process
– Parameters,	distributions,	missing	data,	scales

• Within-subjects	factors	analyze	the	same	data	
using	different	methods
– Estimation	method,	with/out	covariates,	N?



Monte	Carlo	Outcomes

• Sampling	distributions	of…	anything!
• Consistency,	efficiency,	normality
• Bias	in	point	and	SE estimates
• (Root)	mean-squared	error
• Confidence	Interval	coverage	rates
• Rejection	rates	(alpha,	power)
• Convergence	rates
• Model	fit



Design	your	study	to	test	hypotheses

Exploratory	simulations	can	get	out	of	hand
• Are	all	conditions	necessary	to	test	your	
hypotheses?
– Consider	how	factors	are	expected	to	affect	
outcomes	of	interest,	including	interactions

• If	exploring	potential	effects,	try	2	levels	of	
each	variable	(2k)	for	pilot	study
– Detect	interactions (use	η2/R2,	not	p value)
– Confound	higher-order	ones	to	reduce	conditions
– Add	levels	to	detect	nonlinear	effects



Write	down	a	recipe	for	your	code

Writing	syntax	can	be	daunting,	so	start	with	
plain	language
• Ingredients
– Characteristics	of	your	population(s)
–Manipulated	factors,	outcomes	of	interest

• Write	down	steps	from	beginning	to	end
– Can	start	broad,	move	to	specific
– Ultimately,	easier	to	translate	to	R,	C,	Fortran



Variance	Reduction	Techniques

Save	time	and	computing	power,	as	well	as	
reduce	the	amount	of	noise	in	your	results
• When	is	it	necessary	to	draw	new	samples?
– NOT	for	factors	like	sample	size,	different	
estimators,	prior	variance,	competing	models

– Typically,	ONLY	when	the	population	differs	(e.g.,	
normal/nonnormal data),	or	the	factor	reflects	an	
aspect	of	design	that	changes	characteristics	of	
the	data	(e.g.,	number	of	response	categories)



Variance	Reduction	Techniques

• Consider	sample	size,	etc.,	to	be	within-
sample	(or	within-replication)	factors
– Recycle	same	seeds,	or	better	yet,	perform	all	
analyses/conditions	on	the	data	the	one	time	is	
generated

– Generate	largest	N,	then	take	first	Nj from	sample
• Repeat	this	for	#	of	replications,	within	each	
cell	of	between-replication	design



Analysis	Plan

• Carefully	consider	outcomes	of	interest
– Have	testable	hypotheses/predictions
– In	each	replication,	save	the	output	you	intend	to	
investigate,	in	a	way	that	makes	it	easy	to	analyze

• Picture	your	analysis	of	results	ahead	of	time
– Perhaps	make	up	data	in	a	spreadsheet	that	
mimics	the	format	of	your	results

– Could	help	your	design



Useful	Tools

• In	R,	the	package	portableParallelSeeds
allows	you	to	exercise	great	control	of	
replicability	using	random	seed-states
– Developed	by	Paul	Johnson
– Run	this	syntax	to	install	and	find	help	files:

install.packages("portableParallelSeeds", repos = 
"http://rweb.quant.ku.edu/kran", type = "source")


