
Regular Expressions in R

Paul E. Johnson1

1Center for Research Methods and Data Analysis

2018

Johnson (CRMDA) regex 2018 1 / 56

Outline

1 What is a Regular Expression?

2 Pattern matching

3 Replacing/Revising strings

4 What do you do next?

Johnson (CRMDA) regex 2018 2 / 56

What is a Regular Expression?

Outline

1 What is a Regular Expression?

2 Pattern matching

3 Replacing/Revising strings

4 What do you do next?

Johnson (CRMDA) regex 2018 3 / 56

What is a Regular Expression?

What for?

Regular expressions are used for

1 Matching: Identifying patterns that exist in strings

2 Editing and re-arranging matched patterns in strings

Johnson (CRMDA) regex 2018 4 / 56

What is a Regular Expression?

What for?

Some users know “shell globs” for pattern matching, e.g. “*.docx”
represents all files that end in “docx”.

Regular expressions are a different pattern matching system that allows
much more delicate filtering.

Regular expressions are Jedi light sabres compared to shell globs

Johnson (CRMDA) regex 2018 5 / 56

What is a Regular Expression?

General Purpose Terminology

“grep”: the GNU regular expression
parser

Regular expressions are heavily used
Perl, Python, awk, sed, and other
interactive languages used in the
Web

More-or-less uniform, some
variations among implementations

Johnson (CRMDA) regex 2018 6 / 56

What is a Regular Expression?

General Purpose Terminology

R (R Core Team, 2017) includes functions that use regular expressions.
Today we focus on functions named

grep() : identifying the presence of a pattern

gsub() : replacing a matched pattern

We will only go about 25% below the surface of this (deep deep) water.

Johnson (CRMDA) regex 2018 7 / 56

What is a Regular Expression?

Regular Expression Symbol Highlights

. matches any character

* a quantifier, meaning any number of times. “ .* ” is any
character, any number of times

ˆ the beginning of a string

$ the end of a string

Other special symbols in regex: () [] - + \

Johnson (CRMDA) regex 2018 8 / 56

Pattern matching

Outline

1 What is a Regular Expression?

2 Pattern matching

3 Replacing/Revising strings

4 What do you do next?

Johnson (CRMDA) regex 2018 9 / 56

Pattern matching

grep is for finding values

grep: “GNU regular expression parser”

In a terminal, I use grep all the time to filter text.

R’s implementation is an R function grep()

primary arguments

pattern a regular expression character string

x the input character vector in which matches are to be
found

Return will be the number of each matching item

Johnson (CRMDA) regex 2018 10 / 56

Pattern matching

simple example 1

x <- c("Dieter-Charles", "Charles", "Charlie",

"Charles-William", "Charlene")

Which ones end with “Charles”?

grep("Charles$", x)

[1] 1 2

I want the ones that begin with “Charles”

grep("^Charles", x)

[1] 2 4

Johnson (CRMDA) regex 2018 11 / 56

Pattern matching

simple example 1 ...

You want the names, not the positions in the vector? I forgot to
mention this argument:

value return the values of matching items

grep("^Charles", x, value = TRUE)

[1] "Charles" "Charles-William"

Johnson (CRMDA) regex 2018 12 / 56

Pattern matching

The back slash problem

The backslash is a special symbol, it is used in “escape combinations”
like

\n new line
\t tab character

These are known as “escape sequences”. Any “\” is seen as the
beginning of an escape sequence by the R interpreter.

In regular expressions, some symbols have special meaning, so they have
to be escaped by “\” when we want to use them literally.

Ex: If quotation marks are needed inside a quoted string, for example,
we “escape” the middle quotes

aname <- "Fred \"The Hammer\" Williamson"

aname

[1] "Fred \"The Hammer\" Williamson"

Johnson (CRMDA) regex 2018 13 / 56

Pattern matching

The back slash problem ...

Easier way to type that in uses single quotes, but you see end result is
same

aname <- ’Fred "The Hammer" Williamson ’

aname

[1] "Fred \"The Hammer\" Williamson"

The single backslash is not allowed to appear in text strings unless it is
performing a special purpose of escaping something. So, if you want to
type in “\” literally, it must escape itself!

“\” is entered by“\\”!

x <- c("Dieter \\ Charles", "Friend/Foe")

Note, that the double backslash appears when we print() the string,

but not when we cat() it.

Johnson (CRMDA) regex 2018 14 / 56

Pattern matching

The back slash problem ...

print(x)

[1] "Dieter \\ Charles" "Friend/Foe"

cat(x)

Dieter\Charles Friend/Foe

The cat output indicates that the “real” string just has one backslash,
but the display of it shows two because the first one is escaping the
second one.

If you want to match the items that have the literal backslash, get

ready for “ \\\\ ”

grep("\\\\", x)

[1] 1

Johnson (CRMDA) regex 2018 15 / 56

Pattern matching

The back slash problem ...

Why 4? Well,

R is an interpreter, so you need 2 escapes for R

R is passing this to the GNU regex engine, and it needs 2 escapes as well

Johnson (CRMDA) regex 2018 16 / 56

Pattern matching

Other grep parameters

fixed if TRUE, turns off regex matching, uses literal character
matching

ignore.case capitalization does not count

perl use the regex style of the Perl program

invert return the non-matching items

Johnson (CRMDA) regex 2018 17 / 56

Pattern matching

fixed parameter helps on the backslash problem

Turning off regular expressions means we don’t need 4 slashes anymore,
just 2

grep("\\", x, fixed = TRUE)

[1] 1

Why do we still need 2? All character strings in computers always have
“\n” or “\t” for newline or tab, those are not regular expression escapes.

If we include just “\”, the system will say we did not supply “n” or “t” to
finish what we started.

If we say “\\”, it is interpreted as one literal backslash.

The “why do I need four backslashes to match one backslash?” problem
is one of the FAQs for many programs.

Johnson (CRMDA) regex 2018 18 / 56

Pattern matching

Quiz

cities <- c("Dallas Texas", "Denver Colorado",

"Austin Texas", "Salem Oregon", "Salem

Massachusetts", "California Pennsylvania",

"Long Beach California", "San Francisco

California", "Texas Missouri", "Nevada

Missouri", "St. Louis Missouri", "Truth or

Consequences New Mexico", "Charleston South

Carolina", "Charleston North Carolina")

If you ask “which elements are from the state of Texas”, note that a fixed
pattern match will not find them.

Johnson (CRMDA) regex 2018 19 / 56

Pattern matching

Quiz ...

grep("Texas", cities , fixed = TRUE , value = TRUE)

[1] "Dallas Texas" "Austin Texas" "Texas Missouri"

Can you find a regular expression to find cities in state of Texas?

grep("______", cities)

Johnson (CRMDA) regex 2018 20 / 56

Pattern matching

Texas, As If you would want that

grep("Texas$", cities , value = TRUE)

[1] "Dallas Texas" "Austin Texas"

Johnson (CRMDA) regex 2018 21 / 56

Pattern matching

A real life pattern matching problem

We have a data set with a lot of variables, here are the column names,
in a vector

cnames <- c("ID", "Q1", "encounter", "forms",

"ar_physinj.n", "ar_illness.n",

"ar_chronic.n", "ar_job.n", "ar_hunger.n",

"ar_STI.n", "ar_sa.n",

"ar_UTI.n", "ar_abuse.n", "ar_dental.n",

"ar_drugalc.n", "ar_suicide.n",

"ar_chronrun.n", "ar_truancy.n",

"ar_sysinvolve.n", "ar_menthealth.n",

5 "ar_tattoos.n", "ar_other.n", "rf_pov.n",

"rf_homeless.n", "rf_famdys.n",

"rf_control.n", "rf_addiction.n",

"rf_physdis.n", "rf_cogdis.n",

"rf_race.n", "rf_LGBTQ.n", "rf_undoc.n",

"rf_lang.n", "rf_pregnancy.n",

Johnson (CRMDA) regex 2018 22 / 56

Pattern matching

A real life pattern matching problem ...

"rf_dropout.n", "rf_running.n", "rf_sex.n",

"rf_abuse.n", "rf_fincontrol.n",

"rf_ssnetworks.n", "rf_other.n", "ar_physinj.l",

"ar_illness.l",

10 "ar_chronic.l", "ar_job.l", "ar_hunger.l",

"ar_STI.l", "ar_sa.l",

"ar_UTI.l", "ar_abuse.l", "ar_dental.l",

"ar_drugalc.l", "ar_suicide.l",

"ar_chronrun.l", "ar_truancy.l",

"ar_sysinvolve.l", "ar_menthealth.l",

"ar_tattoos.l", "ar_other.l", "rf_pov.l",

"rf_homeless.l", "rf_famdys.l",

"rf_control.l", "rf_addiction.l",

"rf_physdis.l", "rf_cogdis.l",

15 "rf_race.l", "rf_LGBTQ.l", "rf_undoc.l",

"rf_lang.l", "rf_pregnancy.l",

Johnson (CRMDA) regex 2018 23 / 56

Pattern matching

A real life pattern matching problem ...

"rf_dropout.l", "rf_running.l", "rf_sex.l",

"rf_abuse.l", "rf_fincontrol.l",

"rf_ssnetworks.l", "rf_other.l", "ar_physinj.s",

"ar_illness.s",

"ar_chronic.s", "ar_job.s", "ar_hunger.s",

"ar_STI.s", "ar_sa.s",

"ar_UTI.s", "ar_abuse.s", "ar_dental.s",

"ar_drugalc.s", "ar_suicide.s",

20 "ar_chronrun.s", "ar_truancy.s",

"ar_sysinvolve.s", "ar_menthealth.s",

"ar_tattoos.s", "ar_other.s", "rf_pov.s",

"rf_homeless.s", "rf_famdys.s",

"rf_control.s", "rf_addiction.s",

"rf_physdis.s", "rf_cogdis.s",

"rf_race.s", "rf_LGBTQ.s", "rf_undoc.s",

"rf_lang.s", "rf_pregnancy.s",

Johnson (CRMDA) regex 2018 24 / 56

Pattern matching

A real life pattern matching problem ...

"rf_dropout.s", "rf_running.s", "rf_sex.s",

"rf_abuse.s", "rf_fincontrol.s",

25 "rf_ssnetworks.s", "rf_other.s", "cr_strongfam",

"cr_mentors",

"cr_faithcom", "cr_culturecom", "cr_employment",

"cr_edaccess",

"cr_houseaccess", "cr_pathimm", "cr_physhealth",

"cr_menthealth",

"cr_insurance", "cr_govprog", "cr_other",

"or_protocol", "or_collab",

"or_lawenforce", "or_hotline", "or_training",

"or_other", "sector",

30 "chronrun", "truancy", "region", "arak", "arub",

"arakUTI", "Q57", "Q59",

"Q61", "Q63", "Q65", "Q19", "Q21", "Q23", "Q25",

"Q27")

Johnson (CRMDA) regex 2018 25 / 56

Pattern matching

Here are the assignments

Use a regular expression to pull out the variable names that begin with
“ar” and end in “.n”, “.s”, and “.l”

Find the variables that have “chronrun” in the middle after “ ” and
before “.s”, “.n”, or “.l” (hint: this is a literal period, not a regex “this .
means anything” period, so it will need to be escaped “\\.”).

Johnson (CRMDA) regex 2018 26 / 56

Pattern matching

Fill in the blanks

Use a regular expression to pull out the variable names that end in “.n”,
“.s”, and “.l”

grep("______", _____ , value = TRUE)

Johnson (CRMDA) regex 2018 27 / 56

Pattern matching

My Answer 1

I needed those as columns in a data frame, so lets try

reslt1 <- data.frame(

n = grep("^ar_.*\\.n$", cnames , value = TRUE),

s = grep("^ar_.*\\.s$", cnames , value = TRUE),

l = grep("^ar_.*\\.s$", cnames , value = TRUE))

5 head(reslt1 , 15)

n s l
1 ar_physinj.n ar_physinj.s ar_physinj.s
2 ar_illness.n ar_illness.s ar_illness.s
3 ar_chronic.n ar_chronic.s ar_chronic.s

5 4 ar_job.n ar_job.s ar_job.s
5 ar_hunger.n ar_hunger.s ar_hunger.s
6 ar_STI.n ar_STI.s ar_STI.s
7 ar_sa.n ar_sa.s ar_sa.s
8 ar_UTI.n ar_UTI.s ar_UTI.s

10 9 ar_abuse.n ar_abuse.s ar_abuse.s
10 ar_dental.n ar_dental.s ar_dental.s
11 ar_drugalc.n ar_drugalc.s ar_drugalc.s
12 ar_suicide.n ar_suicide.s ar_suicide.s
13 ar_chronrun.n ar_chronrun.s ar_chronrun.s

Johnson (CRMDA) regex 2018 28 / 56

Pattern matching

My Answer 1 ...

15 14 ar_truancy.n ar_truancy.s ar_truancy.s
15 ar_sysinvolve.n ar_sysinvolve.s ar_sysinvolve.s

Johnson (CRMDA) regex 2018 29 / 56

Pattern matching

My Answer 2

reslt2 <- grep("_chronrun \\.", cnames , value =

TRUE)

reslt2

[1] "ar_chronrun.n" "ar_chronrun.l" "ar_chronrun.s"

And we could use that to pull columns from the hts data frame:

hts[reslt2]

Johnson (CRMDA) regex 2018 30 / 56

Replacing/Revising strings

Outline

1 What is a Regular Expression?

2 Pattern matching

3 Replacing/Revising strings

4 What do you do next?

Johnson (CRMDA) regex 2018 31 / 56

Replacing/Revising strings

gsub

gsub is for replacing character strings

gsub(“pattern”, “replacement”, x)

Johnson (CRMDA) regex 2018 32 / 56

Replacing/Revising strings

City & State names, again

cities <- c("Dallas Texas", "Denver Colorado",

"Austin Texas", "Salem Oregon", "Salem

Massachusetts", "California Pennsylvania",

"Long Beach California", "San Francisco

California", "Texas Missouri", "Nevada

Missouri", "St. Louis Missouri", "Truth or

Consequences New Mexico", "Charleston South

Carolina", "Charleston North Carolina")

Suppose you want to divide this into 2 variables, city names and state names.

The complications:

names have spaces in them, so I can’t choose all of the states by taking
the last name.

ideas?

Johnson (CRMDA) regex 2018 33 / 56

Replacing/Revising strings

Here’s what I thought of before I asked you

Step 1. Lets replace the state names with abbreviations.

Step 2. Cut out the abbreviations to get the city names by themselves.

Step 3. Keep only last 2 characters to get the State names.

Step 4. Put the full names back in.

Johnson (CRMDA) regex 2018 34 / 56

Replacing/Revising strings

Step 1. Insert Abbreviated State names

Easy to replace one state name at end by typing

gsub("Texas$", "TX", cities)

[1] "Dallas TX" "Denver Colorado"
[3] "Austin TX" "Salem Oregon"
[5] "Salem Massachusetts" "California Pennsylvania"
[7] "Long Beach California" "San Francisco California"

5 [9] "Texas Missouri" "Nevada Missouri"
[11] "St. Louis Missouri" "Truth or Consequences New

Mexico"
[13] "Charleston South Carolina" "Charleston North Carolina"

But I don’t want to type each state one by one

R has variables “state.name” and “state.abb” built into the session

head(state.name)

[1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"
"Colorado"

Johnson (CRMDA) regex 2018 35 / 56

Replacing/Revising strings

Step 1. Insert Abbreviated State names ...

head(state.abb)

[1] "AL" "AK" "AZ" "AR" "CA" "CO"

We can go one by one, through those names, with a for loop.

Johnson (CRMDA) regex 2018 36 / 56

Replacing/Revising strings

Step 1 Detour. named vector

In the first workshop using this guide, the most surprising/unfamiliar
items was the way we use a named vector.

The following will name the items in state.name , using the short
2-letter abbreviations as the names.

names(state.name) <- state.abb

Now the abbreviations and full names are tied together. Inspect the first
few

head(state.name)

AL AK AZ AR CA
CO

"Alabama" "Alaska" "Arizona" "Arkansas" "California"
"Colorado"

Now I can retrieve a state’s long name by using the index name from
the abbreviation

Johnson (CRMDA) regex 2018 37 / 56

Replacing/Revising strings

Step 1 Detour. named vector ...

state.name["TX"]

TX
"Texas"

Johnson (CRMDA) regex 2018 38 / 56

Replacing/Revising strings

Step 1 Resumes, with a for loop

The index, i, will be the abbreviations.

The gsub inside the loop scans each item, looking for the long state

name given by state.name[i] , and replacing it with the short name

from i .

cities2 <- cities

I’ll iterate on the abbreviations

for(i in state.abb) {

cities2 <- gsub(state.name[i], i, cities2)

5 }

Johnson (CRMDA) regex 2018 39 / 56

Replacing/Revising strings

Understanding Checkpoint

To test your understanding of the for loop, try these things.

1 Insert “ print() ” statements into the loop to cause verbose output from

each step, such as print(i) , print(state.name[i]) , or print(cities2) .

2 Insert this “ browser() ”at the beginning of the for loop. This will stop

the calculation so you can inspect the variables interactively.
(Remember, to exit from browser, type“Q” return)

Johnson (CRMDA) regex 2018 40 / 56

Replacing/Revising strings

Step 1. There is an error, however

Inspect the output, especially item 10

cities2

[1] "Dallas TX" "Denver CO" "Austin TX"
[4] "Salem OR" "Salem MA" "CA PA"
[7] "Long Beach CA" "San Francisco CA" "TX MO"

[10] "NV MO" "St. Louis MO" "Truth or
Consequences NM"

5 [13] "Charleston SC" "Charleston NC"

cities2 [10]

[1] "NV MO"

My state-name-matching gsub() usage was not smart enough. I need to
restrict its work to the end of the string. We need to add a “$” to the
end of state.name in the target.

Johnson (CRMDA) regex 2018 41 / 56

Replacing/Revising strings

Step 1. Correction for the state name error

In Summer 2017, we tried 2 equivalent approaches

Keep cities safe , write on a copy cities2

cities2 <- cities

Method 1

Puts the target match correction into the for

loop

5 for(i in state.abb) {

target is a string , only has one element

target <- paste0(state.name[i], "$")

cities2 <- gsub(target , i, cities2)

}

10 ## Appears correct:

cities2

Johnson (CRMDA) regex 2018 42 / 56

Replacing/Revising strings

Step 1. Correction for the state name error ...

[1] "Dallas TX" "Denver CO" "Austin TX"
[4] "Salem OR" "Salem MA" "California

PA"
[7] "Long Beach CA" "San Francisco CA" "Texas MO"

[10] "Nevada MO" "St. Louis MO" "Truth or
Consequences NM"

5 [13] "Charleston SC" "Charleston NC"

##

Here is method 2. We start over ,

Creating a target VECTOR before the for loop.

After this , target is a vector of corrected

matches

5 cities2 <- cities

target <- paste0(state.name , "$")

names were lost , so re-apply them

names(target) <- names(state.name)

inspect

10 head(target , 5)

Johnson (CRMDA) regex 2018 43 / 56

Replacing/Revising strings

Step 1. Correction for the state name error ...

AL AK AZ AR CA
"Alabama$" "Alaska$" "Arizona$" "Arkansas$" "California$"

for(i in state.abb) {

target is a vector , choose the i’th one

cities2 <- gsub(target[i], i, cities2)

}

5 cities2

[1] "Dallas TX" "Denver CO" "Austin TX"
[4] "Salem OR" "Salem MA" "California

PA"
[7] "Long Beach CA" "San Francisco CA" "Texas MO"

[10] "Nevada MO" "St. Louis MO" "Truth or
Consequences NM"

5 [13] "Charleston SC" "Charleston NC"

Johnson (CRMDA) regex 2018 44 / 56

Replacing/Revising strings

Step 1. Consider kutils::mgsub

We found ourselves writing that for loop very often.

To streamline, we made a simple function mgsub() (as in “multi-gsub”)

in the kutils package.

It does the exact same work in one line of code

Inputs are
1 the vector of target regular expressions that will be replaced
2 the vector of replacements, must be same length as target
3 the string vector in which replacements are to be made.

Example usage

library(kutils)

target <- paste0(state.name , "$")

mgsub(target , state.abb , cities)

Johnson (CRMDA) regex 2018 45 / 56

Replacing/Revising strings

Step 1. Consider kutils::mgsub ...

[1] "Dallas TX" "Denver CO" "Austin TX"
[4] "Salem OR" "Salem MA" "California

PA"
[7] "Long Beach CA" "San Francisco CA" "Texas MO"

[10] "Nevada MO" "St. Louis MO" "Truth or
Consequences NM"

5 [13] "Charleston SC" "Charleston NC"

Johnson (CRMDA) regex 2018 46 / 56

Replacing/Revising strings

Step 2. Cut out the abbreviated state names from the ends

head(cities2 , 5)

[1] "Dallas TX" "Denver CO" "Austin TX" "Salem OR" "Salem MA"

cities3 <- gsub(" ..$", "", cities2)

head(cities3 , 5)

[1] "Dallas" "Denver" "Austin" "Salem" "Salem"

We deleted a space (“ “) and any two characters (“..”) at the end (“$”).

Johnson (CRMDA) regex 2018 47 / 56

Replacing/Revising strings

Step 3. Cut out city names to get state names

This seems a bit too easy after all of that work.

Abbreviated state names, called stabbs here, results from replacing
everything up to the last space with “”

stabbs <- gsub(".* ", "", cities2)

stabbs

[1] "TX" "CO" "TX" "OR" "MA" "PA" "CA" "CA" "MO" "MO" "MO" "NM" "SC"
"NC"

This exploits a regular expression default, “greedy matching”. The
match goes as far as logically possible, so it picks up all of the spaces
until the last space.

Johnson (CRMDA) regex 2018 48 / 56

Replacing/Revising strings

Step 4. Create full state names from abbreviations

The project requires full state names, not just abbreviations.

Use the named state.name vector to pull out the long names, one for
each abbreviation

stnames <- state.name[stabbs]

stnames

TX CO TX OR
MA

"Texas" "Colorado" "Texas" "Oregon"
"Massachusetts"
PA CA CA MO

MO
"Pennsylvania" "California" "California" "Missouri"

"Missouri"
5 MO NM SC NC

"Missouri" "New Mexico" "South Carolina" "North Carolina"

Johnson (CRMDA) regex 2018 49 / 56

Replacing/Revising strings

Put that together in data.frame to finish

reslt <- data.frame(address = cities ,

cities = cities3 , st.abb = stabbs ,

st.name = stnames)

head(reslt)

address cities st.abb st.name
1 Dallas Texas Dallas TX Texas
2 Denver Colorado Denver CO Colorado
3 Austin Texas Austin TX Texas

5 4 Salem Oregon Salem OR Oregon
5 Salem Massachusetts Salem MA Massachusetts
6 California Pennsylvania California PA Pennsylvania

Johnson (CRMDA) regex 2018 50 / 56

Replacing/Revising strings

How did we do this without RE?

We have gotten this wrong by trying to split on both spaces and
commas with the R function “strsplit”.

Johnson (CRMDA) regex 2018 51 / 56

What do you do next?

Outline

1 What is a Regular Expression?

2 Pattern matching

3 Replacing/Revising strings

4 What do you do next?

Johnson (CRMDA) regex 2018 52 / 56

What do you do next?

How did we do this without RE?

Don’t be too intimidated by regular
expressions

Don’t let your life be consumed by
them either

Levithan (2012) strike the right balance
for me

Johnson (CRMDA) regex 2018 53 / 56

What do you do next?

References

Levithan, Steven, J. G. (2012). Regular Expressions Cookbook. O’Reilly
Media.

R Core Team (2017). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.

Johnson (CRMDA) regex 2018 54 / 56

What do you do next?

Session

sessionInfo ()

R version 3.6.0 (2019 -04-26)
Platform: x86_64-pc-linux-gnu (64 -bit)
Running under: Ubuntu 19.04

5 Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3

locale:
10 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8

LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

15 attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] kutils_1.69

Johnson (CRMDA) regex 2018 55 / 56

What do you do next?

Session ...

20

loaded via a namespace (and not attached):
[1] compiler_3.6.0 plyr_1.8.4 tools_3.6.0 foreign_0.8-71

lavaan_0.6-3 Rcpp_1.0.1
[7] mnormt_1.5-5 pbivnorm_0.6.0 xtable_1.8-4 zip_2.0.2

openxlsx_4.1.0 stats4_3.6.0

Johnson (CRMDA) regex 2018 56 / 56

	What is a Regular Expression?
	Pattern matching
	Replacing/Revising strings
	What do you do next?
	References

