Merge

Zack Roman ${ }^{1}$
${ }^{1}$ Center for Research Methods and Data Analysis

2018
 KU
 CENTER FOR RESEARCH METHODS \& DATA ANALYSIS
 College of Liberal Arts \& Sciences

Outline

(1) What is Merging
(2) Types of Merges
(3) Practice
(4) Merging Long Data: Multiple IDs
(5) Typical Issues and How to Avoid Them
(6) Further Help and Resources

Goals of This Session

Conceptual:

- Types of merges
- Merging vocabulary
- When to use merges

Skill Building:

- Practicing merging variants
- Different implementations of merging in R
- Dangers associated with improper merging and how to avoid them

Outline

(1) What is Merging

2 Types of Merges

Practice

4 Merging Long Data: Multiple IDs
(5) Typical Issues and How to Avoid Them

6 Further Help and Resources

Small Example

- This is an example provided with R (R Core Team, 2017)

authors

	surname	nationality	deceased
1	Tukey	US	yes
2	Venables	Australia	no
3	Tierney	US	no
4	Ripley	UK	no
5	McNeil	Australia	no

books

	name	title	other_author
1	Tukey Exploratory Data Analysis	$<N A>$	
2	Venables Modern Applied Statistics	Ripley	
3	Tierney	LISP-STAT	$<N A>$
4	Ripley	Spatial Statistics	$<N A>$
5	Ripley	Stochasticc Simulation	$<N A>$
6	McNeil Interactive Data Analysis	$<N A>$	
7	R Core	An Introduction to R Venables \& Smith	

Small Example ...

```
merge(x = authors, \(y=\) books, by.x = "surname",
    by. \(y=\) "name")
```

	surname	nationality	deceased		title	other_author
1	McNeil	Australia	no	Interactive Data	Analysis	<NA>
2	Ripley	UK	no	Spatial S	Statistics	$<\mathrm{NA}\rangle$
3	Ripley	UK	no	Stochastic S	Simulation	$\langle N A\rangle$
4	Tierney	US	no		LISP-STAT	<NA>
5	Tukey	US	yes	Exploratory Data	a Analysis	<NA>
6	Venables	Australia	no	Modern Applied S	Statistics	Ripley

Merge Arguments

```
merge(x, y, by.x, by.y, by, incomparables, sort,
    all.x, all.y, all )
```

(1) x Specifies the left data set
(2) y Specifies the right data set
(3) by. x, by. y, by specifies the key as a character string. by is common to both x and y.
(9) incomparables provides values in the key to not be used for matching, such as NA, blank space, or NaN (not a number).
(5) sort Logical (TRUE or FALSE), sorts the output
(6) all. x, all.y, all Logical, will help us determine the behavior of the merge. We will talk more about this as we go

Outline

(1) What is Merging
(2) Types of Merges

Practice

4 Merging Long Data: Multiple IDs
(5) Typical Issues and How to Avoid Them

- Further Help and Resources

Binding is not a merging

- The functions rbind() and cbind() can be used to "stack" matrices on top of each other (rows bound together), or place them side by side (columns bound together)
- Binding puts data sets together, but if the rows (or columns) are not in exactly the same order, it will corrupt the result. Binding two data sets is not merging
- Merging takes into account a "Key" variable (typically an ID \# or Name), so that the correct rows are aligned with each other.

SQL Terminology

- SQL = "Structured Query Language". Very widely used general purpose data-base framework.
- R merge developed in isolation, used different terminology.
- Next we show that the SQL terms "left join", "inner join" and so forth can be achieved by properly setting the value of the merges all parameter (all, all.x, and all.y)

Left Join

The "Left Join" is used when the goal data set should only have rows that are present in X . The key variable is used to scan Y for matches, which are then merged with the X rows.
dat_legs

	animal	legs
1	dog	4
2	cats	4
3	human	2
4	snake	0
5	tree	0

dat_fur

	animal	fur
1	dog	yes
2	cats	Mostly
3	human	No
4	bird	No

Left Join ...

```
merge(x = dat_legs, y = dat_fur, by = "animal",
    all.x = TRUE)
```

	animal	legs	fur
1	cats	4	Mostly
2	dog	4	yes
3	human	2	No
4	snake	0	<NA>
5	tree	0	<NA \rangle

Setting "all.x" to TRUE produces a "Left Join". The output data will contain rows that are in x and there will be additional columns aligned from y.

Left Join

KU

Left Join Switched

Let's do a Left Join again, but switch the data sets.
dat_legs

	animal	legs
1	dog	4
2	cats	4
3	human	2
4	snake	0
5	tree	0

dat_fur

	animal	fur
1	dog	yes
2	cats	Mostly
3	human	No
4	bird	No

merge(x = dat_fur, $y=d a t _l e g s, \quad b y=$ "animal", all. $x=$ TRUE)

Left Join Switched

	animal	fur	legs
1	bird	No	NA
2	cats	Mostly	4
3	dog	yes	4
4	human	No	2

KU

Situations calling for Left Join

- You want to investigate the relationship between fur and legs in animals
- You have a data set of the animals you are interested in and their fur status
- You obtain a list of all animals legs count
- Key = Animal Name
- Output data is the length of the fur data set
- You want to investigate the effect of tuition on retention rate in Florida
- You have Floridian school tuition rates data set
- You obtain a nationwide data set of retention rates
- Key = School Name
- Output data is the length of the tuition rates data set

Inner Join

The "Inner join" is used when the goal data set should only have rows that have keys in both the X and Y data.
all $=$ FALSE is the default setting. It is not required to achieve an inner join
dat_legs

	animal	legs
1	dog	4
2	cats	4
3	human	2
4	snake	0
5	tree	0

dat_fur

	animal	fur
1	dog	yes
2	cats	Mostly
3	human	No
4	bird	No

Inner Join ...

```
merge(x = dat_legs, y = dat_fur, by = "animal")
```

	animal	legs	fur
1	cats	4	Mostly
2	dog	4	yes
3	human	2	No

Omitting all, or setting all = FALSE produces an "Inner Join". The output data will only contain rows that have matching key values on both input data sets.

Inner Join

KU

Qualities of Inner Joins

- Pro, result data set will be more complete than other merges.
- Con, result data set loses more information than other merges.

Full Join

Full Join keeps all data rows, filling in unmatched rows with missing values.
dat_legs

	animal	legs
1	dog	4
2	cats	4
3	human	2
4	snake	0
5	tree	0

dat_fur

	animal	fur
1	dog	yes
2	cats	Mostly
3	human	No
4	bird	No

Full Join

$$
\begin{aligned}
& \text { merge }(x=\text { dat_legs, } y=\text { dat_fur, by }=\text { "animal", } \\
& \text { all }=\text { TRUE) }
\end{aligned}
$$

	animal	legs	fur
1	bird	NA	No
2	cats	4	Mostly
3	dog	4	yes
4	human	2	No
5	snake	0	<NA $>$
6	tree	0	<NA \rangle

Full Join

KU

Properties of Full Joins

- Output set includes rows for all cases from both data sets
- There may be lots of "missing" values where rows are not present in one set or the other
- You don't lose any information, but the value of wholly missing rows may be low

Outline

(1) What is Merging

2 Types of Merges
(3) Practice

4 Merging Long Data: Multiple IDs
(5) Typical Issues and How to Avoid Them

6 Further Help and Resources

Practice

```
dat1
```

	Company	Earnings
1	A	126345
2	B	492012
3	C	234512
4	D	-28124
5	E	128675

dat2

	Company	Region
1	A	Midwest
2	B	Southeast
3	C	West
4	F	North

Can you:

- Left Join the data so we have all Earnings in the Output set.
- Left Join the data so we have all Regions in the Output set.
- Inner Join the data so we have no missing data.
- Full Join the data so we have everything in the Output set.

Practice: Answer 1

$$
\begin{aligned}
& \operatorname{merge}(x=\text { dat1, } y=\operatorname{dat} 2, \text { by }=\text { Company", all.x }= \\
& \text { TRUE) }
\end{aligned}
$$

	Company	Earnings	Region
1	A	126345	Midwest
2	B	492012	Southeast
3	C	234512	West
4	D	-28124	$\langle N A\rangle$
5	E	128675	$\langle N A\rangle$

- Left Join the data so we have all Earnings in the Output set.

Practice: Answer 2

$$
\begin{aligned}
& \operatorname{merge}(x=\operatorname{dat} 2, y=\text { dat1, by }=\text { Company", all.x }= \\
& \text { TRUE) }
\end{aligned}
$$

	Company	Region	Earnings
1	A	Midwest	126345
2	B	Southeast	492012
3	C	West	234512
4	F	North	NA

- Left Join the data so we have all Regions in the Output set.

Practice: Answer 3

```
merge(x = dat1, y = dat2, by = "Company", all =
    FALSE)
```

	Company	Earnings	Region
1	A	126345	Midwest
2	B	492012	Southeast
3	C	234512	West

- Inner Join the data so we have no missing data.

Practice: Answer 4

$$
\begin{aligned}
& \underset{\text { TRUE })}{\operatorname{merge}(x}=\text { dat1, } y=\text { dat2, by }=\text { "Company", all = }
\end{aligned}
$$

	Company	Earnings	Region
1	A	126345	Midwest
2	B	492012	Southeast
3	C	234512	West
4	D	-28124	<NA
5	E	128675	<NA
6	F	NA	North

- Full Join the data so we have everything in the Output set.

Outline

(1) What is Merging

2 Types of Merges

3 Practice

4 Merging Long Data: Multiple IDs
(5) Typical Issues and How to Avoid Them

6 Further Help and Resources

Longitudinal Data

- Data comes in 2 typical formats
(1) Wide: Columns that describe units of observation (one row per state, or per school, or per child)

state	region
Alabama	south
Alaska	north

(2) Long: Repeated observations, several times for each unit.

year	state	poverty
2000	Alabama	13

2001 Alabama 12

2017 Wisconsin 11

- We often want to merge the information about the units from the wide format onto the longitudinal data that is in the long format.

Example: Merging Wide data onto Longitudinal Data

The longitudinal data is about children measured at 3 time points
dat_long

	child_id	Time	FSIQ
1	110	1	98
2	110	2	102
3	110	3	104
4	210	1	89
5	210	2	91
6	210	3	95

Separate data about the education of parents is available for some children
dat_edu

	child_id	par_edu
1	210	BA
2	110	HS

Longitudinal Data: Long

$$
\begin{aligned}
& \text { merge }\left(x=\text { dat_long, } y=d a t _e d u, b y=\right.\text { "child_id", } \\
& \text { all }=\text { TRUE) }
\end{aligned}
$$

	child_id	Time	FSIQ	par_edu
1	110	1	98	HS
2	110	2	102	HS
3	110	3	104	HS
4	210	1	89	BA
5	210	2	91	BA
6	210	3	95	BA

- This is a full join
- No problems encountered, result seems adequate.

Points of caution in the full join

(1) If information about some families is missing from the wide data, then missing values will be created in the result
Example:
We change the wide data by removing one child

```
child_id par_edu
1 210 BA
```

```
merge(x = dat_long, y = dat_edu2, by =
    "child_id", all = TRUE)
```

	child_id	Time	FSIQ	par_edu
1	110	1	98	$\langle N A\rangle$
2	110	2	102	$\langle N A\rangle$
3	110	3	104	$\langle N A\rangle$
4	210	1	89	BA
5	210	2	91	BA
6	210	3	95	BA

Points of caution in the full join ...

(2) If wide data includes information about children/families that are not tracked in the long data, then the full join will create "extra" all missing lines in the longitudinal part.
Example:
We only change dat_edu by inserting additional rows for some children.

	child_id	par_edu
1	210	BA
2	110	HS
3	400	ES
4	501	HS

Why would this happen in real life? Suppose these are child/parent data rows from a different study in which some of the children participated.

Points of caution in the full join ...

$$
\begin{aligned}
& \text { merge(x = dat_long, y = dat_edu2, by }= \\
& \text { "child_id", all = TRUE) }
\end{aligned}
$$

5 | | child_id | Time | FSIQ | par_edu |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 110 | 1 | 98 | HS |
| 2 | 110 | 2 | 102 | HS |
| 3 | 110 | 3 | 104 | HS |
| 4 | 210 | 1 | 89 | BA |
| 5 | 210 | 2 | 91 | BA |
| 6 | 210 | 3 | 95 | BA |
| 7 | 400 | NA | NA | ES |
| 8 | 501 | NA | NA | HS |

Points of caution in the full join ...

(3) Some users may prefer to think of this as a left join, keeping only rows about children in a study (and omitting rows about families of children who are not in the study)

```
merge(x = dat_long, y = dat_edu2, by =
    "child_id", all.x = TRUE, all.y = FALSE)
```

	child_id	Time	FSIQ	par_edu
1	110	1	98	HS
2	110	2	102	HS
3	110	3	104	HS
4	210	1	89	BA
5	210	2	91	BA
6	210	3	95	BA

Longitudinal Data: Long Data by Long Data

dat_long1

	child_id	Time	FSIQ
1	110	1	98
2	110	2	102
3	110	3	104
4	210	1	89
5	210	2	91
6	210	3	95

dat_long2

	child_id	Time	Reaction
1	210	1	0.34
2	210	2	0.28
3	210	3	0.19
4	110	1	0.33
5	110	2	0.32
6	110	3	0.28

Notice here, the dangers are repeating ID's in both data sets.

Longitudinal Data: Long Data by Long Data

```
head(merge(x = dat_long1, y = dat_long2, by =
"child_id", all.x = TRUE), 12)
```

	child_id	Time.x	FSIQ	Time. y	Reaction
1	110	1	98	1	0.33
2	110	1	98	2	0.32
3	110	1	98	3	0.28
4	110	2	102	1	0.33
5	110	2	102	2	0.32
6	110	2	102	3	0.28
7	110	3	104	1	0.33
8	110	3	104	2	0.32
9	110	3	104	3	0.28
10	210	1	89	1	0.34
11	210	1	89	2	0.28
12	210	1	89	3	0.19

This is WRONG!!! look closely.

Longitudinal Data: Long Data by Long Data

To solve our problem we provide multiple Keys to the "by" argument:

```
merge(x = dat_long1, y = dat_long2, by =
c("child_id", "Time"), all.x = TRUE)
```

	child_id	Time	FSIQ	Reaction
1	110	1	98	0.33
2	110	2	102	0.32
3	110	3	104	0.28
4	210	1	89	0.34
5	210	2	91	0.28
6	210	3	95	0.19

That is much better, notice the fix:
by = c("child_id", "Time")

Longitudinal Data: Long Data by Long Data

An intuitive way to determine when you need to supply multiple keys to the "by" argument is to ask yourself:

- Can every occurrence of my ID variable be uniquely identified ?
- If not, which other variable is necessary to produce an uniquely identified ID ?

Longitudinal Data: QUIZ

Which columns together create the proper uniquely identifiable key set?
dat_nat

	ID	Year	Quarter	population	il
1	USA	1990	Q1	10.585529	97.15840
2	USA	1990	Q2	10.709466	90.80678
3	USA	1991	Q1	9.890697	98.83752
4	USA	1991	Q2	9.546503	118.17312
5	UK	1990	Q1	10.605887	103.70628
6	UK	1990	Q2	8.182044	105.20216
7	UK	1991	Q1	10.630099	92.49468
8	UK	1991	Q2	9.723816	108.16900

Longitudinal Data: A Useful way to Identify Keys

```
table(dat_nat$ID)
```

```
UK USA
    4 4
```

Not unique, we need another key

```
table(dat_nat$ID, dat_nat$Quarter)
```

	Q1	Q2
UK	2	2
USA	2	2

getting closer
table(dat_nat\$ID, dat_nat\$Quarter, dat_nat\$Year)

Longitudinal Data: A Useful way to Identify Keys ...

```
, , = 1990
    lrr
, , = 1991
    lrr
```

Winner! Each data point can be uniquely identified as being collected from a country, during a year, and a quarter.

Outline

(1) What is Merging

2 Types of MergesPractice

4 Merging Long Data: Multiple IDs
(5) Typical Issues and How to Avoid Them
6) Further Help and Resources

Different Key Names

head (datX)

$\left.\begin{array}{|rrrrr}\hline & \text { ID } & \text { Year } & \text { Quarter } & \text { pop } \\ \text { illnesses } \\ 1 & \text { USA } & 1990 & \text { Q1 } & 9.113642\end{array}\right) 84.02290$

head(datY)

	Country	year	Semester	percipitation	cars
1	USA	1990	Q1	12.049190	111.28511
2	USA	1990	Q2	11.632446	76.19642
3	USA	1991	Q1	10.254271	89.39734
4	USA	1991	Q2	10.491188	109.37141
5	UK	1990	Q1	9.675913	108.54452
6	UK	1990	Q2	8.337950	114.60729

Different Key Names

head (datX)

	ID	Year	Quarter	pop
illnesses				
1	USA	1990	Q1	10.583188
2	USA	1990	Q2	8.693201
3	USA	1991	Q1	9.459614
4	USA	1991	Q2	11.91 .45795
5	UK	1990	Q1	10.053590
6	UK	1990	Q2	10.351663

head(datY)

	Country	year	Semester	percipitation	cars
1	USA	1990	Q1	9.413120	89.50647
2	USA	1990	Q2	8.167623	123.30512
3	USA	1991	Q1	10.888139	114.02705
4	USA	1991	Q2	11.593488	109.42601
5	UK	1990	Q1	10.516855	108.26258
6	UK	1990	Q2	8.704328	91.88460

Different Key Names

```
merge(x = datX, y = datY, by.x = c("ID", "Year",
"Quarter"), by.y = c("Country", "year",
"Semester"), all = TRUE)
```

	ID	Year	Quarter	pop	illnesses	percipitation	cars
1	UK	1990	Q1	10.053590	101.49592	10.516855	108.26258
2	UK	1990	Q2	10.351663	86.57469	8.704328	91.88460
3	UK	1991	Q1	9.329023	105.53303	10.054616	104.76248
4	UK	1991	Q2	10.277954	115.89963	9.215351	110.21258
5	USA	1990	Q1	10.583188	106.91171	9.413120	89.50647
6	USA	1990	Q2	8.693201	108.23795	8.167623	123.30512
7	USA	1991	Q1	9.459614	121.45065	10.888139	114.02705
8	USA	1991	Q2	11.947693	76.53056	11.593488	109.42601

Matching Missing

datX

	ID	cars	fear
1	111	6	90.61873
2	112	5	97.35806
3	NA	7	91.15475
4	114	6	94.99807
5	115	5	106.76902
6	116	5	114.09072
7	NA	9	109.50524

datY

	ID	pets
1	111	5
2	NA	4
3	113	4
4	114	8
5	115	6
6	NA	4
7	117	7

Matching Missing:The Problem

merge($x=$ datX, $y=$ datY, by $=$ "ID", all. $x=$ TRUE)

	ID	cars	fear	pets
1	111	6	90.61873	5
2	112	5	97.35806	NA
3	114	6	94.99807	8
4	115	5	106.76902	6
5	116	5	114.09072	NA
6	NA	7	91.15475	4
7	NA	7	91.15475	4
8	NA	9	109.50524	4
9	NA	9	109.50524	4

Oops! That is a dangerous outcome: Keys with NA values will be row-aligned

Matching Missing:The Remedy

incomparables to the rescue
merge $(x=$ datX, $y=$ datY, by $=$ "ID", all= FALSE, incomparables = "NA")

	ID	cars	fear	pets
1	111	6	90.61873	5
2	114	6	94.99807	8
3	115	5	106.76902	6

That is much better! Always remember to use the incomparables argument if you have any missing data on keys.

Outline

(1) What is Merging

2 Types of Merges

Practice

4 Merging Long Data: Multiple IDs
(5) Typical Issues and How to Avoid Them

6 Further Help and Resources

kutils::mergeCheck

df 1

	id	x
1	1	-0.9806329
2	2	0.6873321
3	3	-0.5050435
4	4	2.1577198
5	5	-0.5997976
6	6	-0.6945467
7	7	0.2239254

df 2

	id	x
1	2	-1.1562233
2	3	0.4224185
3	4	-1.3247553
4	5	0.1410843
5	6	-0.5360480
6	9	-0.3116061
7	10	1.5561096

Kutils::mergeCheck

```
library(kutils)
mergeCheck(df1, df2, by = "id")
```

```
Merge difficulties detected
Unmatched cases from df1 and df2 :
df1
    id x
1 1 -0.9806329
7 0.2239254
df 2
    id x
6 9 -0.3116061
7 10 1.5561096
```

- mergeCheck alerts you to potential merging issues
- ID 1 and 7 in the df1 dont have matching IDs in df2
- ID 9 and 10 , in the df1 dont have matching id in df2

kutils::mergeCheck

df 1

	idx	x
1	1	-0.44803329
2	2	0.32112354
3	3	-1.23017225
4	4	-1.32405869
5	5	1.26124227
6	NA	1.31923172
7	NaN	-0.08075376

df 2

```
idy
x
1 2 -0.50508981
2 3-0.05215359
    40.62886063
    5 2.18000240
    6 -0.06901731
    9 1.54486360
70 1.32145202
```


Kutils::mergeCheck

```
mergeCheck(df1, df2, by.x = "idx", by.y = "idy")
```

```
Merge difficulties detected
Unacceptable key values
df 1
    idx x
6 NA 1.31923172
7 NaN -0.08075376
Unmatched cases from df1 and df2 :
df1
    idx x
1 -0.44803329
6 NA 1.31923172
7 NaN -0.08075376
df2
    idy
    6 -0.06901731
    9 1.54486360
    7 10 1.32145202
```

- In this situation we are warned of:
- Unacceptable key values: NA and NaN

Kutils::mergeCheck ...

- Again, unmatched IDs: $1,6,7,9,10$

kutils::mergeCheck

Load library(kutils) and run example(mergeCheck) to learn more about the function. Our kutils package has much more to offer! check out the kutils help page with help(package = "kutils")

More Information

- The CRMDA has a guide available on merges:
- https://crmda.ku.edu/guide-41-merge_R_SQL

References

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Session

sessionInfo ()

```
R version 3.6.0 (2019-04-26)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 19.04
```

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC = C
LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8
LC_MONETARY=en_US.UTF-8
LC_MESSAGES = en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS = C
[10] LC_TELEPHONE=C
LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION = C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] kutils_1.69

Session

```
loaded via a namespace (and not attached):
    [1] compiler_3.6.0 plyr_1.8.4 tools_3.6.0 foreign_0.8-71
    lavaan_0.6-3 Rcpp_1.0.1
    [7] mnormt_1.5-5 pbivnorm_0.6.0 xtable_1.8-4 zip_2.0.2
        openxlsx_4.1.0 stats4_3.6.0
```

