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Objectives

Key Terms

Vector: a column of numbers

Matrix: columns of equal length side-by-side, all elements of same
type (numeric, etc)

This presentation reviews the R (R Core Team, 2017) way of working
with vectors and matrices

Along the way, we try to become tolerant of jargon like “inner product”
“conform”, “transpose”, “symmetry”, “identity matrix”, “inverse”, and
orthogonal.
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Objectives

Matrix in stats: Regression!

Regression

Y = Xβ + ε

Xβ is the “linear predictor”, the inputs converted to a “regression line”

dep. var Slopes indep var error

y =


y1
y2
...
yN

 β =


β0
β1
...
βp

 X =


1 x11 . . . xp1
1 x12 xp2
...

...
...

1 x1N . . . xpN




ε1
ε2
...
εN


predicted values

ŷ =


ŷ1
ŷ2
...
ŷN

 = Xβ̂
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Vector

Terminology: vector

In math,“vector”means column vector.

y =


y1
y2
...
yN


If anybody says “vector”, it is assumed they mean a column.

This has N elements.
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Vector

Creating Vectors in R: easy as falling off a log

Many R functions create vectors.

x1a <- vector(mode = "double", length = 10)

x1b <- double(length = 10)

x1c <- numeric(length = 10)

## numeric is older terminology

5 x1a

[1] 0 0 0 0 0 0 0 0 0 0

identical(x1a , x1b , x1c)

[1] TRUE

On screen, these things look like rows. But they are to be thought of as
rows.

Use length() to ask a vector how many pieces of information it holds
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Vector

Creating Vectors in R: easy as falling off a log ...

length(x1a)

[1] 10

c() is “concatenate”, seq() creates “sequences”

x2a <- c(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

x2b <- seq(10, 1, by = -1)

identical(x2a , x2b)

[1] TRUE

R refers to vectors of numbers or letters as “atomic” vectors. These hold
values which are not further reducible into other structures. It does not
have “attributes”.
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Vector

Add and Subtract Vectors

In Math, Addition and Subtraction allowed if vectors that are EXACTLY
the same size

4
2
1
0
3

+


1
2
5
0
1

 =


5
4
6
0
4

 or


4
2
1
0
3

−


1
2
5
0
1

 =


3
0

−4
0
2


Conformability of vectors: same size!

Addition is term-by-term.
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Vector

Vector addition in R

R is similar

x <- c(4, 2, 1, 0, 3)

y <- c(1, 2, 5, 0, 1)

x + y

[1] 5 4 6 0 4

y - x

[1] -3 0 4 0 -2

R differs: “recycling”!

x <- c(1,2,3,4,5,6)

y <- c(1,2)

x + y

[1] 2 4 4 6 6 8
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Vector

R allows coercion of vector types

An integer can be promoted to floating point values

x <- c(1L, 2L, 3L)

class(x)

[1] "integer"

## same as as.numeric ()

y <- as.double(x)

y

[1] 1 2 3

class(y)

[1] "numeric"
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Vector

R allows coercion of vector types ...

as.integer() has effect of “rounding down”

x <- c(1.1, 2.2, 3.9)

is.integer(x)

[1] FALSE

y <- as.integer(x)

y

[1] 1 2 3
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Vector

Transpose= turn sideways

The superscript T means transpose, the column becomes a row:
1
2
3
4
5


T

=
[

1 2 3 4 5
]

(1)

Often the symbol ′ is also common, xT = x′, esp. in older books.

In R, transpose is a function t() .
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Vector

Transpose= turn sideways ...

On the screen, however, they both look like rows, but indexes differ
slightly

x

[1] 1.1 2.2 3.9

t(x)

[,1] [,2] [,3]
[1,] 1.1 2.2 3.9
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Vector

Multiply 2 Vectors: “inner product”

The inner product is defined as the sum of the products, xT · y, as
follows

[
a b c d e

]
·


f
g
h
i
j

 = af + bg + ch+ di+ ej (2)

The result is a single number (a “scalar”)
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Vector

Inner product of 2 vectors

[
a b c d e

]
·


f
g
h
i
j

 = af + bg + ch+ di+ ej

In math, this is defined ONLY IF the row and column vectors have
EXACTLY the same number of elements.

Conformability

Johnson (K.U.) Matrices 2018 17 / 85



Vector

Inner product of 2 vectors ...

Sometimes called a“dot product”, but it is not necessary to write the dot

Example

[ 3 1 6 2 ] ·


1/3
1

1/6
1/2

 = 1 + 1 + 1 + 1 = 4

Now you tell me. What is:

[ 1 12 21 ]

 0.1
0.5
1/3

 ?
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Vector

Back to the R side

%*% is the R operator calculates inner-product

x <- c(1, 12, 21)

y <- c(0.1, 0.5, 1/3)

t(x) %*% y

[,1]
[1,] 13.1
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Vector

R does check conformability for multiplication!

x <- c(1, 12, 21, 19, 18)

y <- c(0.1, 0.5, 1/3)

t(x) %*% y

Error in x %*% y : non-conformable arguments
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Vector

Application: Sum of Squares

Calculate the sum of “squares” as xTx

[
a b c d e

]
·


a
b
c
d
e

 = a2 + b2 + c2 + d2 + e2

Sum of squared residuals in regression:

N∑
i

(yi − ŷi)2

= (y1 − ŷ1)2 + (y2 − ŷ2)2 + (y3 − ŷ3)2 . . .

= (y − ŷ)T (y − ŷ)
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Vector

Application: Sum of Squares ...

= (y1 − ŷ1, y2 − ŷ2, y3 − ŷ3 . . . , yN − ŷN )


y1 − ŷ1
y2 − ŷ2

...
yN − ŷN
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Vector

Back on the R side of the story

While in the math book, an inner product is not defined unless the first
vector is transposed, R does not care.

Observe. You can transpose if you want to. But it is not necessary.

x <- c(1,2,3)

y <- c(4,5,6)

x %*% y

[,1]
[1,] 32

t(x) %*% y

[,1]
[1,] 32
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Vector

What if you forget the percent signs in the %*% Symbol?

In a math book, it would be very rare to see vector multiplication that is
not an inner product.

However, in stats, we do sometimes want an element-by-element
multiplication

x <- c(1,2,3)

y <- c(4,5,6)

x * y

[1] 4 10 18

R recycles x and issues a warning:

x <- 1:3

y <- 1:10

x*y
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Vector

What if you forget the percent signs in the %*% Symbol?
...

[1] 1 4 9 4 10 18 7 16 27 10

Warning message:
In x * y : longer object length is not a multiple
of shorter object length
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Vector

What if you forget the percent signs in the %*% Symbol?
...

See what it did? It manufactured a 10 element x for us, as if

(x <- c(1:3, 1:3, 1:3, 1))

[1] 1 2 3 1 2 3 1 2 3 1

(y <- 1:10)

[1] 1 2 3 4 5 6 7 8 9 10

x*y

[1] 1 4 9 4 10 18 7 16 27 10
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Matrix Create a matrix in R

Many ways to create matrices

1 Use the matrix function to manufacture a 4× 6 matrix

X <- matrix (1:24, nrow = 4, ncol = 6, byrow = FALSE ,

dimnames = list(NULL , letters [1:6]))

X

a b c d e f
[1,] 1 5 9 13 17 21
[2,] 2 6 10 14 18 22
[3,] 3 7 11 15 19 23

5 [4,] 4 8 12 16 20 24

byrow = FALSE is the default, not needed to explicitly state that.

Not necessary to supply values, could have put NA or 0 instead.

I insert dimnames just to prove I can. That seems difficult for
beginners. NULL row names, and a vector of column names

2 Combine columns to form a matrix ( cbind = column bind)
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Matrix Create a matrix in R

Many ways to create matrices ...

x1 <- 1:4; x2 <- 5:8; x3 <- 9:12;

x4 <- 13:16; x5 <- 17:20; x6 <- 21:24

cbind(x1, x2, x3, x4, x5, x6)

x1 x2 x3 x4 x5 x6
[1,] 1 5 9 13 17 21
[2,] 2 6 10 14 18 22
[3,] 3 7 11 15 19 23

5 [4,] 4 8 12 16 20 24
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Matrix Create a matrix in R

Difference between vectors and matrices

In mathematics, one might say a vector is a one column matrix

R would differentiate those ideas.

One hint of the difference in R is that a vector does not answer to the
dim() function (or nrow()), but a matrix does:

dim(x1a)

NULL

dim(X)

[1] 4 6

A vector answers length() .

Observe that if we create a one column selection from an R matrix, R
“demotes” that thing to a vector.
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Matrix Create a matrix in R

Difference between vectors and matrices ...

## Take 4th column from X

X4 <- X[ , 4]

is.matrix(X)

[1] TRUE

is.matrix(X4)

[1] FALSE

is.vector(X4)

[1] TRUE

We can ask R to not demote X4 to become a vector by inserting a third
argument
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Matrix Create a matrix in R

Difference between vectors and matrices ...

X4mat <- X[ , 4, drop = FALSE]

is.matrix(X4mat)

[1] TRUE

is.vector(X4mat)

[1] FALSE

If you have a vector, however, some special functions exist that will
treat it like a matrix. For example:

NROW(x1a)

[1] 10

NCOL(x1a)
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Matrix Create a matrix in R

Difference between vectors and matrices ...

[1] 1

These capital-letter versions of nrow and ncol can be convenient in
functions where we don’t know for sure if in put might be a vector or a
matrix.
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Matrix Matrix times Vector

Multiply a matrix times a vector

I’ll create a matrix that is (2× 5) (2 rows, 5 columns).

multiply “on the right” by a vector (5× 1)

[
a b c d e
r s t u v

]
·


f
g
h
i
j

 =
[
af + bg + ch+ di+ ej
rf + sg + th+ ui+ vj

]

Idea: treat matrix as two rows, calculate inner product for each one.

[2× 5] · [5× 1] yields a [2× 1] result

Matrices must conform. Number of columns of first matrix must equal
number of rows in 2nd one.
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Matrix Matrix times Vector

Multiply a matrix times a vector ...

Example: Xβ̂ is predicted values in regression
1 x11 x21
1 x12 x22
1 . . . . . .
1 x1N x2N


 β̂0
β̂1
β̂2

 =


β̂0 + β̂1x11 + β̂2x21
β̂0 + β̂1x12 + β̂2x22

. . .

β̂0 + β̂1x1N + β̂2x2N



Johnson (K.U.) Matrices 2018 35 / 85



Matrix Matrix Multiplication

Multiply a matrix times a matrix

[
a b c d e
r s t u v

]
·


f k
g l
h m
i n
j o


=
[
af + bg + ch+ di+ ej ak + bl + cm+ dn+ eo
rf + sg + th+ ui+ vj rk + sl + tm+ un+ vo

]

Break into sequences of vector multiplications, row 1 · column 1, row2 ·
column 1, row 1 · column 2, row 2 · column 2.

[2× 5] · [5× 2] yields a [2× 2] result
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Matrix Matrix Multiplication

R has matrix multiplication also: % ∗%

X1 <- matrix (1:12, nrow = 2)

X1

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12

X2 <- matrix (13:24 , ncol = 2)

X2

[,1] [,2]
[1,] 13 19
[2,] 14 20
[3,] 15 21

5 [4,] 16 22
[5,] 17 23
[6,] 18 24

X1 %*% X2
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Matrix Matrix Multiplication

R has matrix multiplication also: % ∗% ...

[,1] [,2]
[1,] 593 809
[2,] 686 938
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Matrix Example: sum of squares matrix

Transpose a Matrix

XT means “X turned on its side”

XT =

 1 1 1 . . . 1
x11 x12 x13 x1N

x21 x22 x23 x2N


Example, predictors in a regression:

X =


1 3 33
1 2 62
1 5 65
1 1 45
1 5 66

 X is 5x3

XT =

 1 1 1 1 1
3 2 5 1 5
33 62 65 45 66

 XT is 3x5
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Matrix Example: sum of squares matrix

XTX is an important matrix in statistics

And the product XTX is

 1 1 1 1 1
3 2 5 1 5
33 62 65 45 66




1 3 33
1 2 62
1 5 65
1 1 45
1 5 66

 =

 5 16 271
16 64 923
271 923 15539



Sum of squares (diagonal) and cross products (off-diagonals)

Used to calculate correlations, regression coefficients

X is N × p, XT is (p×N), so XTX is (p× p), much smaller than
either X or XT

In the pencil days of stats, the matrix XTX was especially heavily
emphasized
In computer era, it has less emphasis because of “rounding error”.
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Matrix Example: sum of squares matrix

R has 2 ways to get this done

In R, do not run t(X) %*% X

Instead, use the optimized function

crossprod(X)

a b c d e f

a 30 70 110 150 190 230

b 70 174 278 382 486 590

c 110 278 446 614 782 950

5 d 150 382 614 846 1078 1310

e 190 486 782 1078 1374 1670

f 230 590 950 1310 1670 2030
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Matrix Example: sum of squares matrix

R has 2 ways to get this done ...

Why is crossprod better? (more efficient! faster!)

1 The result is “symmetric”, same above and below. Hence, computer
should only need to calculate an upper triangle and copy the answer to
the other triangle.

2 Creating a new transposed matrix t(X) unnecessarily requires a copy of

the columns of X into the rows of t(X) . Computer can find values in

X (whereas humans need to see t(X) explicitly).

See also tcrossprod() and functions in the Matrix package.
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Matrix Example: sum of squares matrix

Accelerated matrix algebra libraries

Many C, C++, and Fortran libraries exist, competing to be the fastest,
most accurate calculation routines

They adhere to a common, internationally accepted interface (generally
referred to as BLAS)

Over time, R has relied on LINPACK, and now LAPACK for fast
calculations

On the horizon, some are narrower stats & modeling matrix libraries,
like Armadillo and Eigen, are in the spotlight through packages like
RcppArmadillo and RcppEigen
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Special Square Matrices Covariance Matrix

Got Simulations?

The MASS package for R (Venables and Ripley, 2002) introduced a
simulator for Multivariate Normal draws. Allows us to generate
“correlated columns”

The theoretical model is represented as

MVN(µ,Σ)

where µ is a vector of means and Σ is the covariance matrix .

MVN



µ1
µ2
...
µp

 ,


σ2
1 σ12 σ1p

σ12 σ2
2 σ2p

. . .

σ1p σ2p σ2
p




If the variables all have 0 means and are uncorrelated, of course, MVN is
the same as drawing 3 separate uncorrelated “standard normal” columns
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Special Square Matrices Covariance Matrix

Got Simulations? ...

library(MASS)

mu <- c(0, 0, 0)

Sigma <- diag(c(1, 1, 1))

Sigma

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

mvrnorm(5, mu, Sigma)

[,1] [,2] [,3]
[1,] -0.1162478 -1.8179560 0.5855288
[2,] 1.8173120 0.6300986 0.7094660
[3,] 0.3706279 -0.2761841 -0.1093033

5 [4,] 0.5202165 -0.2841597 -0.4534972
[5,] -0.7505320 -0.9193220 0.6058875
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Special Square Matrices Covariance Matrix

Got Simulations? ...

But we might have correlated values, for example

mu <- rep(0, 3)

Sigma <- matrix(c(1, .3, -.1 , .3, 1, .2, -.1 ,

.2, 1), nrow = 3)

Sigma

[,1] [,2] [,3]
[1,] 1.0 0.3 -0.1
[2,] 0.3 1.0 0.2
[3,] -0.1 0.2 1.0

mvrnorm(5, mu = mu, Sigma = Sigma)

[,1] [,2] [,3]
[1,] -0.1796238 -1.5100143 1.0723613
[2,] -0.3950370 1.1846379 1.3880722
[3,] 0.8681192 -0.1118966 -0.2419762

5 [4,] 0.3432726 -1.4629586 -1.5008948
[5,] 0.5923470 -0.3757720 -1.5577252
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Special Square Matrices Covariance Matrix

Got Simulations? ...

The Challenge: On a theoretical level, how do we conceptualize the
desired covariance matrix? What do we write in?
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Special Square Matrices Covariance Matrix

I understand mean and variance

The expected value is the center point of a distribution (AKA mean).

Variance is “dispersion” or “diversity”.

Suppose x is Normally distributed (x ∼ N(µ, σ2
x))

Expected Value: E[x] = µ
Variance: V [x] = σ2

x, the standard deviation is σx.

Next, we expand this to apply to several variables
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Special Square Matrices Covariance Matrix

Variance-Covariance Matrix

Think of X as 5 predictor columns, x1, ..., x5 for N rows of
observations

X =


x11 x21 x31 x41 x51
x12 x22 x32 x42 x52
x13 x23 x33 x43 x53

...
x1N x2N x3N x4N x5N

 (3)

V ar(X) = Σ =


σ2

x1 σx2,x1 σx3,x1 σx4,x1 σx5,x1
σx2,x1 σ2

x1 σ2
x3,x2 σx4,x2 σx5,x2

σx3,x1 σx3,x2 σ2
x3 σx4,x3 σx5,x3

σx4,x1 σx4,x2 σx4,x3 σ2
x4 σx5,x4

σx5,x1 σx5,x2 σx5,x3 σ2
x5

 (4)
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Special Square Matrices Covariance Matrix

Variance-Covariance Matrix ...

The diagonals are variances, which range from [0,∞), but the
off-diagonals are scale-free numbers called “covariances”, that range
from (−∞,∞).
If covariance is positive, two variables “go together”. But how big should
it be? I can’t conceptualize that.

It is easier for me to conceptualize
1 The standard deviations of the columns: [σx1, σx2, . . . , σx5]
2 The Pearson correlation matrix among the columns
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You know correlations, right?

Pearson product moment correlation is the ratio of covariance to the
product of the standard deviations (example with variables x1 and x3):

ρx1,x3 = σx1,x3

σx1 · σx3

Correlation ranges from (−1, 1)
0 indicates 2 variables are not related.

Rearrange to create another way to calculate Covariance

σx1,x3 = σx1 · σx3 · ρx1,x3 (5)



Special Square Matrices Covariance Matrix

Cov and Corr matrices

A Correlation matrix

ρ =


1 ρ12 ρ13 . . . ρ1p

ρ21 1 ρ23 ρ2p

ρ31
. . . 1 ρ3p

... ρ11
. . .

ρp1 ρ11 ρ11 1


Its Symmetric! Elements bounded between -1 and +1

Example

ρ =


1 .8 0 . . . 0
.8 1 0 0

0
. . . 1 0

... 0
. . .

0 0 0 1
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Special Square Matrices Covariance Matrix

Cov and Corr matrices ...

Restriction: the intercorrelations among several variables must make
sense. Suppose

x1 is very tightly correlated with x2, and

x2 is tightly correlated with x3, then

its not conceptually meaningful to suppose x1 is negatively related to x3

The restriction is that ρ is“positive definite”, meaning yT ρ y > 0 for any
vector y. Roughly speaking, a vector cannot be negatively correlated
with itself.
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Special Square Matrices Covariance Matrix

Variance-Covariance Matrix as Re-scaled Correlation

V ariance = Std.Deviation× Correlation× Std.Deviation

Σ =


σx1 0 0 0 0
0 σx2 0 0 0
0 0 σx3 0 0
0 0 0 σx4 0
0 0 0 0 σx5

×


1 ρ12 ρ13 . . . ρ1p

ρ21 1 ρ23 ρ2p

ρ31
. . . 1 ρ3p

... 11 ρ11
. . .

ρp1 ρ11 ρ11 1



×


σx1 0 0 0 0
0 σx2 0 0 0
0 0 σx3 0 0
0 0 0 σx4 0
0 0 0 0 σx5

 (6)

Inspect an individual piece
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Special Square Matrices Covariance Matrix

Variance-Covariance Matrix as Re-scaled Correlation ...

Σ11 should be the variance of x1

σx1,x1 = σx1 · σx1 = σ2
x1

Σ13 is a “cross” term, that weights the two standard deviations by their
correlations

σx1,x3 = ρ13σx1σx2 (7)
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Special Square Matrices Covariance Matrix

R has tools to get that done

An example correlation matrix: everything is equally strongly correlated
with everything else:

Rho

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0 0.5 0.5 0.5 0.5
[2,] 0.5 1.0 0.5 0.5 0.5
[3,] 0.5 0.5 1.0 0.5 0.5

5 [4,] 0.5 0.5 0.5 1.0 0.5
[5,] 0.5 0.5 0.5 0.5 1.0

Is the diagonal full of 1’s?

Rho.d <- diag(Rho)

Rho.d

[1] 1 1 1 1 1
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Special Square Matrices Covariance Matrix

R has tools to get that done ...

all.equal(Rho.d , rep(1, times = 5))

[1] TRUE

Is it symmetric?

isSymmetric(Rho)

[1] TRUE

Are all values in [−1, 1]?

## Seems like should be more direct way , but...

z <- as.vector(Rho)

z
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Special Square Matrices Covariance Matrix

R has tools to get that done ...

[1] 1.0 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5
0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5

[25] 1.0

## single | for vector compare

any(z > 1 | z < -1)

[1] FALSE

How to check if it is positive definite? In the MASS::mvrnorm
function, Venables and Ripley show one way.

In “exact math” a matrix is positive definite if all of its eigenvalues are
positive
Computers don’t do exact math, however
V&R’s solution is to require that the estimated eigenvalues must be
positive, or nearly so. The variable “tol” is tolerance, 10−6, a practical
standard
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Special Square Matrices Covariance Matrix

R has tools to get that done ...

eS <- eigen(Sigma , symmetric = TRUE)

ev <- eS$values

if (!all(ev >= -tol * abs(ev[1L])))

stop("’Sigma ’ is not positive definite")

This allows the possibility that the smallest eigenvalue, ev[1L] , might

be negative, but it must not be too far below 0.

I found that so useful I put same calculation into a function in
rockchalk called “ checkPosDef ”.
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Special Square Matrices Covariance Matrix

What’s all that good for?

In 30 years of teaching, I wrote 2 good lectures, one of which is:
http://pj.freefaculty.org/guides/stat/Regression/

Multicollinearity/Multicollinearity-1-lecture.pdf

Get the highlights:

library(rockchalk)

example(mcGraph3)
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Special Square Matrices OMG, why didn’t I get the memo?

The Regression Book says . . .

Regression book says

y = Xβ + ε

The “first order condition” for optimizing values of β is the “normal
equation”:

(XTX)β = XT y (8)

Which the book will say is solved by finding an inverse matrix
(XTX)−1 that we multiply on the left to get β̂ by itself

XXXXX(XTX)−1XXXX(XTX)β̂ = (XTX)−1XT y

β̂ = (XTX)−1XT y (9)
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Special Square Matrices OMG, why didn’t I get the memo?

The Regression Book says . . . ...

While correct on a theoretical level, this amounts to poor computational
numeric linear algebra. Regression estimates are not calculated in that
way.

Now I’ll explain all of the inter-related terms.
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Special Square Matrices OMG, why didn’t I get the memo?

Identity Matrix

The matrix equivalent of the number 1 is I, the Identity Matrix

I =


1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1



I times anything gives back anything

anything times I gives back anything

I × y = y

X × I = X
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Special Square Matrices OMG, why didn’t I get the memo?

Inverse Matrix

The sum of squares and cross products is a square matrix (XTX).

If we could find an inverse matrix (XTX)−1, then

(XTX)−1(XTX) = I

The matrix (XTX) is “invertible” under some “regularity” conditions
(lets worry about that another time).

Hence, in exact math, the normal equation (XTX)β = XT y can be
converted to the solution

β̂ = (XTX)−1XT y
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Special Square Matrices OMG, why didn’t I get the memo?

R can calculate the inverse of a matrix

Virtually every stats teacher I know has used R matrix calculations to
show we can reproduce the estimates from a regression function. Here’s
a sketch

mod1 <- lm(y ∼ x1 + x2 + x3, data =

any_data_you_have)

summary(mod1)

X <- model.matrix(mod1)

XTX <- t(X) %*% X

5 XTXinv <- solve(XTX)

BetaHat <- XTXinv %*% t(X) %*% any_data_you_have$y

I ran example(lm), which created an outcome variable weight and a
regression object lm.D9.

Then:
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Special Square Matrices OMG, why didn’t I get the memo?

R can calculate the inverse of a matrix ...

X <- model.matrix(lm.D9)

XTX <- t(X) %*% X

XTXinv <- solve(XTX)

Beta <- XTXinv %*% t(X) %*% weight

Which appears to be the same as the fitted model:

> Beta
[,1]

(Intercept) 5.032
groupTrt -0.371

5 > coef(lm.D9)
(Intercept) groupTrt

5.032 -0.371

But, if we dial up the number of displayed digits, the numbers are not
the same:
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Special Square Matrices OMG, why didn’t I get the memo?

R can calculate the inverse of a matrix ...

options.orig <- options ()
options(digits = 22)
> coef(lm.D9)

(Intercept) groupTrt
5 5.0320000000000000284217 -0.3709999999999997188915

> Beta
[,1]

(Intercept) 5.032000000000000916600
groupTrt -0.371000000000000995648

10 options(options.orig)

Why these differ in the decimal places, or how they come to differ, is
the big news in the next few slides.
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Special Square Matrices OMG, why didn’t I get the memo?

Now the tragic news

No respectable software today would explicitly form XTX for the
purpose of calculating regression estimates. Digital rounding error,
inherent in floating point calculations, is damaging and unnecessary

No respectable software calculates (XTX)−1. Doing so compounds on
the rounding error inherent in XTX

There are many ways to calculate inverses, some are more numerically
stable, some faster. But all are better than (XTX)−1
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Special Square Matrices OMG, why didn’t I get the memo?

How do they actually do it?

“Use the Source, Luke” (Kenobe, 1977)

First, type “lm” with no parentheses

lm

Scan through there, look for “ lm.fit(x, y, ...) ” .

Check the code for “lm.fit”. There’s no (XTX)−1, no hint of t(x) %*%
x

Instead, the magic bullet is

z <- .Call(C_Cdqrls , x, y, tol , FALSE)

That’s a call to a C function which calculates the “QR” decomposition
of x
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Special Square Matrices OMG, why didn’t I get the memo?

The QR decomposition of the predictor matrix

The QR decomposition: A matrix X can be reproduced as the product
of 2 parts,

1 An orthogonal matrix Q
2 An upper right triangular R (with rows of 0’s padding the bottom so

that it is length N).

Suppose X is N × p (regression predictors). Reproduce X as

X = Q

[
R
0

]
The matrix Q is N ×N , which means it is huge, but it has a very
interesting property: the correlation between each column and any of
the other columns is 0. I mean to say, the columns are orthogonal to
each other. For two columns Q.j and Q.k,

QT
.jQ.k = 0
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Special Square Matrices OMG, why didn’t I get the memo?

The QR decomposition of the predictor matrix ...

The Q matrix is also scaled so the inner product of any column with
itself is 1.

QT
.jQ.j = 1

This implies: QTQ = I, QQT = I.

Literally, Q−1 = QT .

The inverse of an orthogonal matrix is very easy to calculate, in other
words.

The requirement that Q is huge, N ×N , would ordinarily discourage us
because memory storage would be very expensive. However, it turns out
we only need the first p columns from Q.
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Special Square Matrices OMG, why didn’t I get the memo?

The QR decomposition of the predictor matrix ...

The bottom part of the stack,

[
R
0

]
, is N − p rows of 0’s:

[
R
0

]
=



r11 r12 r13 r14 r1p

0 r22 r23 r24 r2p

0 0 r33 r34 r3p

0 0 0
. . . r(N−1)p

0 0 0 0 rNN

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


(10)
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Special Square Matrices OMG, why didn’t I get the memo?

The QR decomposition of the predictor matrix ...

The bottom rows of R are all zeros, meaning that the columns on the
right side of Q don’t matter.

X =


q11 q1N

q21
. . .

[N ×N ]
. . .

qN1 qNN





r11 r12 r13 r1p

0 r22 r23 r2p

0 0 r33 r3p

0 0
. . . r(p−1)p

0 0 0 rpp

0 0 [N − p] 0
0 0 [rows] 0
0 0 [of 0′s] 0


(11)

The last m− n columns of Q get zeroed out by the 0’s on the bottom
of R.

The original matrix X can be reproduced if we just use the p columns
on the left side of Q and the triangular matrix R
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Special Square Matrices OMG, why didn’t I get the memo?

The QR decomposition of the predictor matrix ...

X =



q11 q12 q1p

q21
. . .

[N × p]

qN1 qNp




r11 r12 r13 r14 r1p

0 r22 r23 r24 r2p

0 0 r33 r34 r3p

0 0 0
. . . r(p−1)p

0 0 0 0 rpp


(12)

This more “petite” version (Qf ) is the one that R saves in memory

X = QfR (13)
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Special Square Matrices OMG, why didn’t I get the memo?

The QR decomposition of the predictor matrix ...
In regression analysis, we symbolically derive

β̂ = (XTX)−1XT y (14)

A very accurate, reasonably fast way to calculate that is with QR.
Replace X by the petite QfR.

β̂ = ((QfR)T (QfR))−1(QfR)T y (15)

If we use the rules for inverses and transposes mentioned above, we can
algebraically reduce that:z > 1 || z < -1

β̂ = (RTQT
f QfR))−1(QfR)T y (16)

(RTR)−1RTQT
f y (17)

R−1RT −1
RTQT

f y (18)

R−1QT
f y (19)
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Special Square Matrices OMG, why didn’t I get the memo?

The QR decomposition of the predictor matrix ...

What’s the big idea there?

We need the QR decomposition of X to calculate regression estimates

We do not need (XTX)−1.z > 1 || z < -1

The only regression book in which I have found this written out clearly
is Simon Wood’s Generalized Additive Models (2006).

I started more notes on this http://pj.freefaculty.org/guides/
stat/Math/Matrix-Decompositions
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Conclusions

Outline

1 Objectives

2 Vector

3 Matrix

Create a matrix in R

Matrix times Vector

Matrix Multiplication

Example: sum of squares matrix

4 Special Square Matrices

Covariance Matrix

OMG, why didn’t I get the memo?

5 Conclusions
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Conclusions

The High Points

If we are doing statistics, we are doing math

with vectors and matrices

There are some basic chores that all methodologists should be able to
handle which will require some comfort with matrices

Creating covariance and correlation matrices
Drawing random samples

This lecture introduced only a small slice of matrix algebra in order to
illustrate 2 main points

R has code to do calculations that math books describe, but
in a digital computer, matrix algebra does not work exactly as planned in
a math book that presumes exact calculations of floating point numbers

If we study the way the R team has implemented numerical calculations,
we can push forward our study of matrix algebra by focusing on the tools
that are immediately relevant (the QR decomposition, for example)
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Conclusions

That intriguing comment in prcomp

In the base R distribution, there are 2 functions for principal
components analysis, princomp and prcomp.

princomp is the older one
prcomp is the newer one

Care to guess why there are two?

In princomp, “Details” explains

The calculation is done using ’eigen’ on the

correlation or covariance matrix , as

determined by ’cor’. This is done for

compatibility with the S-PLUS result. A

preferred method of calculation is to

use ’svd’ on ’x’, as is done in ’prcomp ’

The SVD (Singular Value Decomposition) of a matrix is

more accurate, but also more expensive to calculate

Johnson (K.U.) Matrices 2018 80 / 85



Conclusions

That intriguing comment in prcomp ...

The traditional approach is to calculate the eigenvalue-decomposition on
a square crossproducts matrix, XTX, rather than X itself.

Because SVD can apply to X, without forming XTX, it is more
accurate.
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Conclusions

Online Free Resources

Højsgaard, Soren, “Linear algebra in R”. This is my favorite. A
beautifully done essay that covers many details. I can’t find this in
Hojsgaard’s page today, but I find plenty of other people have it
available if you search in Google.

Farnsworth, Grant V, “Econometrics in R”.

Bates, Douglas, (June 2004) “Least Squares Calculations in R: Timing
Different Approaches”, Rnews, 4(1): 17

Quick R, “Matrix Algebra”
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Session

sessionInfo ()

R version 3.4.4 (2018 -03-15)
Platform: x86_64-pc-linux-gnu (64 -bit)
Running under: Ubuntu 18.04 LTS

5 Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
10 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8

LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

15 attached base packages:
[1] stats graphics grDevices utils datasets base

other attached packages:
[1] rockchalk_1.8.111 MASS_7.3-49
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Session ...

20

loaded via a namespace (and not attached):
[1] Rcpp_0.12.15 lattice_0.20-35 grid_3.4.4

MatrixModels_0.4-1 nlme_3.1-137
[6] SparseM_1.77 minqa_1.2.4 nloptr_1.0.4 car_2.1-6

Matrix_1.2-14
[11] splines_3.4.4 lme4_1.1-17 tools_3.4.4

pbkrtest_0.4-7 parallel_3.4.4
25 [16] compiler_3.4.4 mgcv_1.8-23 nnet_7.3-12

quantreg_5.35 methods_3.4.4
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