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Introduction

R Frame of Mind

Iteration is commonly needed in R (R Core Team, 2017)

repeat the same thing over and over with new samples
process several subgroups of data (compare cities)
apply various functions to one data set

Some idioms make code faster.

Some idioms make code more understandable.
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Introduction

For Loops and Iterators

I’m cutting out a lot of philosophical BS about iterators here. I hope
nobody says ”We want to hear a lot more computer science theory
about keys, iterators, and index variables”

All computer languages with which I’m aware have some variant of a
for loop, a way to say ”here are 14 rows, process each one in order”

R has for loops, as well as a family of ”apply” functions that are very
widely used.

Many usages of the ”apply” functions require the user to write little
functions (that’s why it is important to review functions before working
on apply).
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Overview

R has lots of ways to do things over and over

for and while loops: similar to (easier to write than) C and Java

The R (s)(l)(m)(v)apply family functions: similar to less-well-known
languages like Lisp

apply : for matrices. Process all rows or columns

lapply : process each element in a list

sapply : lapply with output simplification

vapply : improved, safer version of sapply

replicate : shorthand for sapply for simple simulations

mapply : for functions that need several arguments, separately drawn
from separate vectors or lists

Today, lets contrast for and lapply
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Overview

What are the key differences

Most people will emphasize

speed
code clarity

Another important difference is “scope”.

the apply functions operate in an closure, cannot alter objects in the
workspace except by the return value
for loop can alter objects in the workspace because its calculations are
not done in an enclosed environment.
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for loop

for looping

It is easier to teach this with examples than jargon.

Example 1. Suppose

i is integers 1 through 10

x and y are 2 vectors.

x <- vector ()

y <- vector ()

for (i in 1:10) {

x[i] <- log(i)

5 y[i] <- exp(x[i])

}

cbind(i = 1:10, x, y)
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for loop

for looping ...

i x y
[1,] 1 0.0000000 1
[2,] 2 0.6931472 2
[3,] 3 1.0986123 3

5 [4,] 4 1.3862944 4
[5,] 5 1.6094379 5
[6,] 6 1.7917595 6
[7,] 7 1.9459101 7
[8,] 8 2.0794415 8

10 [9,] 9 2.1972246 9
[10,] 10 2.3025851 10

Aha! exp() undoes log() . HS math was correct.

Example 2. Suppose

x already exists

The recommended method of creating the index is the seq along()

function, saves us the trouble of counting how many elements there are.
Because I don’t want to convey the impression that the index always has
to be called “i”, I will name this index “johnelway”
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for loop

for looping ...

x <- log (1:10)

y <- vector ()

for (johnelway in seq_along(x)){

y[johnelway] <- exp(x[johnelway ])

5 }

cbind(johnelway = seq_along(x), x, y)

johnelway x y
[1,] 1 0.0000000 1
[2,] 2 0.6931472 2
[3,] 3 1.0986123 3

5 [4,] 4 1.3862944 4
[5,] 5 1.6094379 5
[6,] 6 1.7917595 6
[7,] 7 1.9459101 7
[8,] 8 2.0794415 8

10 [9,] 9 2.1972246 9
[10,] 10 2.3025851 10
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for loop

for looping ...

Nervous people say “ vector() makes this slower. “We should tell R how

many elements there are supposed to be first:

vector(mode = ”numeric”, length = 10) ”. I agree.

We can take elements out of R lists with “[[“ notation. Suppose

myL is an R list

The individual pieces in which are obtained by writing myL[[i]]

This function “steps through” the 10 elements and replaces them with
something else.

myL <- list()

## pretend myL is full of some precious

objects

for (i in seq_along(myL)){

myL[[i]] <- someFunctionYouMakeUp(myL[[i]])

5 }
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for loop

for looping ...

Results from someFunctionYouMakeUp will replace original values in

myL

It is not necessary to obliterate your old list elements. We can create a
new list to store the output.

newL <- list()

for (i in 1:10){

newL[[i]] <- someFunctionYouMakeUp(myL[[i]])

}

The important thing to notice is that the for loop is allowed to write on
objects in the global workspace.

Hence it is a handy way to cycle through a collection of data frames.

Again, the efficiency experts will criticize this, rightly so. In a big
problem, it would be much faster to create with

newL <- vector(“list”, length = 10)

Paul E. Johnson, (K.U.) iteration 2018 14 / 51



for loop

Why do for loops have a bad reputation?

People who are unfamiliar with R think that it is “just like” C or Fortran,
in which for loops are fast.

they also assume that reading elements with x[i] , or writing elements

with x[i] <- 7 runs fine.

A loopy sort of person would want to write this:

## Declare a vector heinz57 , do something to

each element

heinz57 <- vector(mode = "numeric", length =

57)

for(i in 1:57) {

heinz57[i] <- log(i)

5 }

It will be much faster in R to simply write this:
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for loop

Why do for loops have a bad reputation? ...

x1 <- log (1:57)

identical(x1, heinz57)

[1] TRUE

The difference is in vectorization.

Repeatedly accessing individual pieces with “[“ causes a slowdown.

The story I tell myself is that the second method “pushes computation
into the R compute kernel”, while the first method requires “a constant
interchange of information between the user workspace (to update
heinz57[i]) and the R kernel”.

I’m not against for loops on principle, but only because in practice I find
most newcomers cause very slow code if they rely on them.

Example comparing ifelse() function and for loop.
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for loop

Why do for loops have a bad reputation? ...

The built-in function ifelse() offers a convenient method of recoding a

variable.

ifelse(logical condition, x, y): if logical is true, return x ; if not, return
y .

This is vectorized, so it can be applied to columns in a data frame, as in

dat$z <- ifelse(dat$x1 > dat$y, dat$x1,

dat$x2)

That is faster than a for loop:
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for loop

Why do for loops have a bad reputation? ...

dat$z2 <- NA

for(i in 1:NROW(dat)){

dat$z2[i] <- if(dat$x1[i] > dat$y[i]){

dat$x1[i]

5 } else {

dat$x2[i]

}

}

dat$z2 has to be initialized before the for loop
And the code is a lot longer, more prone to typographical error

The loopy approach to R coding it is s-l-o-w because of

over-use of “[“.
failure to “preallocate” structures into which values are being filled.
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for loop

About pre-allocating memory for storage

In my R website, I have an example “data structures-lists” which shows
that even if we use a for loop, we can speed up the result considerably
if we allocate a list of a given size before we use it.

Example, fill 10,000 matrices into a list. This goes much faster if we do

not create the storage list by the lazy way (“ list() ”) and instead run

this:

alist <- vector(mode = "list", length = 10000)

for(i in 1:10000){

alist2 [[i]] <- matrix(rnorm (9), ncol = 3)

}

Because this grabs storage slots for 10,000 items, it does not have to
pause and

create a new list with one more element
copy the old list members to the new list

every time it goes through the loop.
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lapply

“lapply()”: Do same thing to all Elements of a List

lapply(someList, someFunction) will
1 take a list of things
2 apply the function to each item
3 returning a new list as result.

Use case

we have 50 data sets on people in 50 states

we have a function that can build a summary tables or plot for each of
these

we lapply those functions to the list
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lapply

jumboData example

Suppose there are 150 data frames saved in a list named jumboData .
Here is code you can run to actually generate 150 data frames:

set.seed (234)

getDF <- function(i) {data.frame(ds = i, x1 =

rnorm (100) , x2 = rnorm (100))}

jumboData <- lapply (1:150 , getDF)

This creates the data generator function, and ”lapplies” it to 1:150. If
you want to, investigate that by looking at individual pieces,

jumboData[[144]] for example.

We obtain the means of each one with the built-in function
colMeans()

colMresults <- lapply(jumboData , colMeans)

What did we get?
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lapply

jumboData example ...

is.list(colMresults)

[1] TRUE

print(colMresults [[1]])

ds x1 x2
1.000000000 0.004130791 -0.085854129

print(colMresults [[2]])

ds x1 x2
2.00000000 0.02841649 0.06292265

The result is a list, with 150 vectors, each summarizing one of the data
frames inside jumboData .

We have many (MANY) ways in R to stack those 150 vectors into a
matrix. Here’s one:
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lapply

jumboData example ...

colMstacked <- do.call(rbind , colMresults)

dim(colMstacked)

[1] 150 3

head(colMstacked)

ds x1 x2
[1,] 1 0.004130791 -0.085854129
[2,] 2 0.028416492 0.062922646
[3,] 3 -0.033087563 -0.041779156

5 [4,] 4 0.110083615 -0.178247853
[5,] 5 -0.080966386 -0.001748287
[6,] 6 -0.019188038 -0.169436776

The use of do.call puts this lecture into the intermediate, rather than
elementary R user range. I can explain, and point to this example where
I learned about it in my WorkingExamples collection:
efficiency-stackListItems
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lapply

Functions that require more arguments

The simplest example will have 2 arguments, a list and a function name

aNewList <- lapply(someList , FUN =

someFunction)

someFunction MUST accept an elements from someList as the first
argument

Additional arguments arg2 , arg3 , to someFunction can be provided
like this

aNewList <- lapply(someList , FUN =

someFunction , arg2 = 7, arg3 = 5)

but it is required that someFunction’s first argument must be filled by
the element of someList
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lapply

lapply example with more arguments

My data generator in previous example did not allow any parameters.

Here is my new candidate:

getDF <- function(i, m1 = 0, m2 = 0, s1 = 1, s2 =

1) {

data.frame(ds = i, x1 = rnorm (100, m1, s1),

x2 = rnorm (100, m2, s2))}

jumboData <- lapply (1:150 , getDF , m1 = 90, s1 =

10, m2 = 33, s2 = 10)

Lets check the column means first

colM3T <- t(sapply(jumboData , colMeans))

colM3T [1:5, ]
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lapply

lapply example with more arguments ...

ds x1 x2
[1,] 1 90 .91261 30 .94204
[2,] 2 89 .98699 34 .61032
[3,] 3 87 .38849 33 .30044

5 [4,] 4 88 .73683 31 .78901
[5,] 5 88 .99573 33 .70151

Pick one data frame for inspection

ex133 <- jumboData [[133]]

head(ex133)

ds x1 x2
1 133 92 .19604 27 .23815
2 133 93 .59130 34 .71204
3 133 82 .58271 53 .47827

5 4 133 78 .46469 23 .78407
5 133 101 .30743 38 .52884
6 133 88 .72971 19 .47875
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lapply

lapply example with more arguments ...

Sample 133

x1
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I had to fight a while to get that legend into shape, and that broke the
graph in several ways. Grrr!
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lapply

lapply example with more arguments ...

hist(ex133$x1, xlab = "x1", prob = TRUE , main =

"Sample 133", ylim = c(0, 0.07))

mtext("Histogram with KDE smooth", 3, -1)

lines(density(ex133$x1))

legend("right", legend = paste(c("mean =",

"std.dev ="), round(c(mean(ex133$x1),

sd(ex133$x1, 2)) ,2)))
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lapply sapply and vapply

“sapply()” is only slightly different

The colMresults output from lapply is a list with 150 vectors.

We already found that we can “post process” that list by rbinding the

elements into a matrix with do.call(rbind, colMresults) . There are,

however, one-step solutions.

We can get back an array if we use sapply , or its newer, more-save

cousin vapply .

“s” is for “simplify” the result. Ask R to guess what each pieces is
supposed to give back, then guess how to compactify that.

colMresults2 <- sapply(jumboData , colMeans)

dim(colMresults2)

[1] 3 150
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lapply sapply and vapply

“sapply()” is only slightly different ...

## That ’s 150 columns with 3 rows each. The first

3 columns

colMresults2[ , 1:3]

[,1] [,2] [,3]
ds 1.00000 2.00000 3.00000
x1 90 .91261 89 .98699 87 .38849
x2 30 .94204 34 .61032 33 .30044

The return is a matrix that has one column for each of the input data
frames.

The result seems “sideways”.

I would rather have that information transposed, so I use t()

colMresults2T <- t(colMresults2)

head(colMresults2T)
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lapply sapply and vapply

“sapply()” is only slightly different ...

ds x1 x2
[1,] 1 90 .91261 30 .94204
[2,] 2 89 .98699 34 .61032
[3,] 3 87 .38849 33 .30044

5 [4,] 4 88 .73683 31 .78901
[5,] 5 88 .99573 33 .70151
[6,] 6 91 .24301 34 .07683
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lapply sapply and vapply

vapply() is safer version of sapply()

In Advanced R, Wickham makes a good argument that sapply should
not be used in functions or long scripts because it may guess incorrectly
about return values

vapply is a similar/newer version. We must specify the structure
expected from the return.

colMresults3 <- vapply(jumboData , colMeans ,

numeric (3))

## 3rd argument gives structure required in

output from colMeans

str(colMresults3)

num [1:3, 1:150] 1 90.9 30.9 2 90 ...
- attr, "dimnames")=List of 2..: chr[1 : 3]”ds””x1””x2”.. : NULL

Ach! Output is sideways again.
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lapply sapply and vapply

vapply() is safer version of sapply() ...

The output has 150 columns, too wide to show here. But we can peek
at the first 5 columns

colMresults3[ , 1:5]

[,1] [,2] [,3] [,4] [,5]
ds 1.00000 2.00000 3.00000 4.00000 5.00000
x1 90 .91261 89 .98699 87 .38849 88 .73683 88 .99573
x2 30 .94204 34 .61032 33 .30044 31 .78901 33 .70151
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lapply sapply and vapply

If you want more about iterators

In 2013, I wrote a longer presentation, from which about 10% of this
presentation is taken

There are two large worked out examples of simulations using lapply

iteration-1.pdf
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Bootstrapping

Bootstrapping: Some “Do it Yourself” Work Is Required

Many R functions require users to write little functions that do little
things.

In many cases (like lapply or apply), look for FUN as an argument.

Sometimes no builtin-exists. useR must create!
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Bootstrapping

boot Function Requires a Special Function “statistic”

library(boot)

?boot

Bootstrap Resampling

Description:

5 Generate ’R’ bootstrap replicates of a statistic applied to data.
Both parametric and nonparametric resampling are possible. ...

boot(data , statistic , R, sim = ’’ordinary ’’, stype = ’’i’’,
strata=rep(1, n), L = NULL , m = 0, weights = NULL ,

10 ran.gen=function(d, p) d, mle = NULL , simple = FALSE , ...)

statistic: A function which when applied to data returns a vector
containing the statistic(s) of interest...
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Bootstrapping

Bootstrap: Background Explanation

Bootstrap: draw samples repeatedly and re-estimate θ

Resulting values approximate a sampling distribution θ

The “boot” package asks for a data frame and a special function
“statistic”. statistic must

accept a data frame as the first argument
accept an “index vector” as the second argument
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Bootstrapping

Don’t Panic: This is Confusing to Everybody

This is your DF
index x1 x2 x3 x4

1 8 1
2 9 0

3 8 0
. . .

4 9 1

5 7 0
. . .

7 8 1
8 7 0
9 6

10 9

All the iterations are the same, they just
use different row subsets

boot will choose a set of rows, say “c(1, 6,
8, 10)”. Your statistic function is supposed
to do the right thing with the data subset.

X[c(1, 6, 8, 10), ]

Then boot re-draws an index, “c(3, 5, 7,
9)”.

Then analysis happens with:

X[c(3, 5, 7, 9), ]

Over and over
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Bootstrapping

Example usage

boot(data , statistic = yourFunction , R = 1000)

boot will iterate 1000 times, and yourFunction will provide the statistic
of interest.

You write yourFunction to make required calculation.

boot will tell yourFunction which lines to use in the data frame,
over-and-over.
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Bootstrapping

The Median of a Poisson Distribution

Suppose you have a sample from a Poisson Process:

samp <- rpois(20, lambda =3)

And you calculate the median:

median(samp)

[1] 3

How confident are you in that estimate of the median?
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Bootstrapping

Bootstrap Your Median

Here is yourFunction, it takes just a column vector as input:

calcMed <- function(x, ind){

median(x[ind])

}

x[ind] has the effect of “pulling” rows that match “ind” from “x”

The boot function will send 1000 “case indexes” to your function.

library(boot)

bpois <- boot(samp , calcMed , R = 1000)

bpois
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Bootstrapping

Bootstrap Your Median ...

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
5 boot(data = samp , statistic = calcMed , R = 1000)

Bootstrap Statistics :
original bias std. error

10 t1* 3 0.1815 0.3646103
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Bootstrapping

The plot method for boot output
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Bootstrapping

Why Do They Do It That Way?

Your instinct is to do this the “simple” way

(Just) “Manually” draw new random samples of rows from a data frame.
But: Creating 1000s of “new” re-sampled data sets would “waste”
(exhaust?) memory
Would be especially slow if separate data sets have to be copied between
systems.

More efficient to keep 1 data frame, but 1000’s of vectors of row
numbers.
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Conclusion

Balancing Speed and Comprehension

I’m not divorced from for loops. But I recognize that vectorization is
always faster, if we can use it.

If one is patient with the manuals and documentation, the usage of
lapply , vapply , and boot can be elegant, fast.

If one is impatient, and treats R code as if it were intended for C or
fortran, one might have code that is

done more quickly

harder to debug

runs more slowly
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Conclusion
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sessionInfo ()

R version 3.4.4 (2018 -03-15)
Platform: x86_64-pc-linux-gnu (64 -bit)
Running under: Ubuntu 18.04 LTS

5 Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
10 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8

LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8
LC_IDENTIFICATION=C

15 attached base packages:
[1] stats graphics grDevices utils datasets base

other attached packages:
[1] boot_1.3-20
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20

loaded via a namespace (and not attached):
[1] compiler_3.4.4 tools_3.4.4
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